-
In 2020, there was a daily increase of 4,000 new human immunodeficiency virus (HIV) infections globally, and 31% of which would be among adolescents aged 15–24 years old (1), defined as the youth by the United Nations (UN) (2). More importantly, a proportion of the youth are sexually active. Due to the lack of school-based HIV education and prevention services, out-of-school youth become more vulnerable to HIV infection than students. This study described the crude reporting rate of out-of-school youth aged 15–24 and illustrated the spatial distribution characteristics using global spatial autocorrelation and hot spot analysis, which was based on case-reporting areas. The objective of this study was to understand the epidemiological situation and spatial distribution of out-of-school youth. The crude reporting rate of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) among out-of-school youth increased from 5.25 per 100,000 persons in 2010 to 13.75 per 100,000 persons in 2020 with a weakly aggregated spatial distribution. In addition, local hotspots gradually spread from southwestern China to the central, eastern, and northeastern areas. In-depth studies should continue to be conducted in the future to understand the prevalence characteristics among out-of-school youth, while strengthening HIV prevention interventions and services for out-of-school youth in hotspots.
The crude reporting rate of out-of-school youth HIV/AIDS cases in China (data include the mainland of China only) from 2010 to 2020 was calculated as the ratio of the number of reported cases among out-of-school youths to the total out-of-school youth population, where the total out-of-school youth population was derived as the total population of youth aged 15–24 years old minus the student population in this age group. The total population of youth aged 15–24 was derived from the number of the population of youth aged 15–24 in the sample and the sampling fraction, which were both obtained from the China Statistical Yearbook. The number of enrolled students was obtained from the website of the Ministry of Education of the People’s Republic of China and represented the total number of regular senior secondary schools, regular specialized secondary schools, vocational high schools, undergraduates in regular higher educational institutions (HEIs), and those in master’s degree programs. The number of reported cases of students by cities in the mainland of China by year was obtained from the HIV/AIDS Comprehensive Response Information Management System (CRIMS).
A total of 128,646 out-of-school youth HIV/AIDS cases aged 15–24 were reported from 2010 to 2020, covering all provincial-level administrative divisions (PLADs) in China. The number of reported HIV/AIDS cases among out-of-school youth in China showed an increasing trend from 8,579 in 2010 to 13,750 in 2015 and decreased to 10,398 in 2020. The proportion of HIV/AIDS cases among out-of-school youth aged 15–24 years declined from 91.53% of all cases in this age group in 2010 to 77.76% in 2020. The Chinese crude reporting rate of out-of-school youth HIV/AIDS cases presented a general upward trend from 5.25 per 100,000 persons in 2010 to 15.04 per 100,000 persons in 2018, then dropped to 13.75 per 100,000 persons in 2020 (Table 1).
Year Out-of-school youth aged 15–24 years reported HIV/AIDS cases Proportion of out-of-school youth HIV/AIDS cases aged 15–24 years to all cases among 15–24 years (%) Total population of out-of-school youth aged 15–24 years Crude reporting rate (per 100,000) 2010 8,579 91.53 163,390,413 5.25 2011 9,225 89.57 157,930,318 5.84 2012 10,043 87.87 147,002,113 6.83 2013 11,222 87.47 138,494,425 8.10 2014 12,841 83.43 125,941,350 10.20 2015 13,750 80.95 112,201,357 12.25 2016 13,657 81.73 104,446,501 13.08 2017 13,230 81.13 95,893,937 13.80 2018 13,333 81.11 88,623,320 15.04 2019 12,368 78.33 82,561,534 14.98 2020 10,398 77.76 75,603,657 13.75 Total 128,646 83.04 1,292,088,925 9.96 Table 1. Number of reported HIV/AIDS cases and crude reporting rate among out-of-school youth aged 15–24 years in China, 2010–2020.
The cumulative number of newly documented out-of-school youth HIV/AIDS cases nationwide from 2010 to 2020 was analyzed by global spatial autocorrelation. The results showed global Moran’s Index (Moran’s I)=0.029, Z=5.021, P<0.001, indicating that there was a weakly positive spatial autocorrelation of HIV/AIDS cases among out-of-school youth in China from 2010 to 2020. The annual global autocorrelation analysis shows that Moran’s I decreased from 0.058 in 2010 to 0.018 in 2014 and slightly increased from 0.019 in 2015 to 0.027 in 2020; the Moran’s I in 2020 was still lower than that in 2010, indicating an overall downward trend in spatial aggregation (Table 2).
Year Moran’s I Z Score P value 2010–2020 0.029 5.021 <0.001 2010 0.058 9.811 <0.001 2011 0.052 8.410 <0.001 2012 0.036 5.828 <0.001 2013 0.026 4.294 <0.001 2014 0.018 3.188 0.001 2015 0.019 3.273 0.001 2016 0.019 3.335 <0.001 2017 0.020 3.403 <0.001 2018 0.016 3.004 0.003 2019 0.021 3.577 <0.001 2020 0.027 4.503 <0.001 Note: If Moran’s I ≠ 0 and Z ≥ 1.96 or Z ≤ –1.96, the distribution of cases is indicated as spatially correlated. If Moran’s I was close to 0 and Z values ranged between –1.96 and 1.96, the cases were randomly distributed and there was no correlation. Table 2. Global autocorrelation analysis of the number of out-of-school youth HIV/AIDS cases in China, 2010–2020.
The study results of local hotspots from 2010 to 2020 using Getis-Ord Gi* showed that the number of local hotspots for out-of-school youth HIV/AIDS cases in China, varying between 11 and 15, did not change much from 2010 to 2020. Chongqing, Chengdu, Beijing, Shanghai, Guangzhou, Kunming, and Liangshan Yi Autonomous Prefecture were stable hotspots. From 2010 to 2012, local hotspots for out-of-school youth HIV/AIDS cases were mainly located in the southwest of China, including Chongqing, Chengdu, Liangshan Yi Autonomous Prefecture, Kunming, Honghe Hani Yi Autonomous Prefecture, and Dehong Dai Jingpo Autonomous Prefecture. Between 2013 and 2020, the hotspots area gradually shifted to the central, eastern, and the northeastern regions, and more new hotspot areas began to emerge, mainly in the cities of Hangzhou, Changsha, Wuhan, Xi’an, Zhengzhou, Shenyang, and Harbin. However, there were no cold spot cities in the country from 2010 to 2020, indicating that there have been no low agglomerative areas in China in recent years.
HTML
Citation: |