[1] |
Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature 2008;451(7181):990 − 3. http://dx.doi.org/10.1038/nature06536. |
[2] |
Awaidy SA, Hashami HA. Zoonotic diseases in oman: successes, challenges, and future directions. Vector Borne Zoonotic Dis 2020;20(1):1 − 9. http://dx.doi.org/10.1089/vbz.2019.2458. |
[3] |
Wilson MR, Naccache SN, Samayoa E, Biagtan M, Bashir H, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med 2014;370(25):2408 − 17. http://dx.doi.org/10.1056/NEJMoa1401268. |
[4] |
Bergner LM, Mollentze N, Orton RJ, Tello C, Broos A, Biek R, et al. Characterizing and evaluating the zoonotic potential of novel viruses discovered in vampire bats. Viruses 2021;13(2):252. http://dx.doi.org/10.3390/v13020252. |
[5] |
Temmam S, Davoust B, Berenger JM, Raoult D, Desnues C. Viral metagenomics on animals as a tool for the detection of zoonoses prior to human infection? Int J Mol Sci 2014;15(6):10377-97. http://dx.doi.org/10.3390/ijms150610377. |
[6] |
Gehre F, Lagu H, Achol E, Katende M, May J, Affara M. Commentary: mobile laboratories for SARS-CoV-2 diagnostics: what Europe could learn from the East African Community to assure trade in times of border closures. Global Health 2021;17(1):49. http://dx.doi.org/10.1186/s12992-021-00700-9. |
[7] |
Diaz MH, Bai Y, Malania L, Winchell JM, Kosoy MY. Development of a novel genus-specific real-time PCR assay for detection and differentiation of bartonella species and genotypes. J Clin Microbiol 2012;50(5):1645 − 9. http://dx.doi.org/10.1128/JCM.06621-11. |
[8] |
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014;15(3):R46. http://dx.doi.org/10.1186/gb-2014-15-3-r46. |
[9] |
Dabo SM, Confer AW, Saliki JT, Anderson BE. Binding of Bartonella henselae to extracellular molecules: identification of potential adhesins. Microb Pathog 2006;41(1):10 − 20. http://dx.doi.org/10.1016/j.micpath.2006.04.003. |
[10] |
Lowell JL, Eisen RJ, Schotthoefer AM, Liang XC, Montenieri JA, Tanda D, et al. Colorado animal-based plague surveillance systems: relationships between targeted animal species and prediction efficacy of areas at risk for humans. J Vector Ecol 2009;34(1):22 − 31. http://dx.doi.org/10.1111/j.1948-7134.2009.00004.x. |
[11] |
Gu W, Deng XD, Lee M, Sucu YD, Arevalo S, Stryke D, et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat Med 2021;27(1):115 − 24. http://dx.doi.org/10.1038/s41591-020-1105-z. |
[12] |
Gu L, Liu W, Ru M, Lin J, Yu GQ, Ye J, et al. The application of metagenomic next-generation sequencing in diagnosing Chlamydia psittaci pneumonia: a report of five cases. BMC Pulm Med 2020;20(1):65. http://dx.doi.org/10.1186/s12890-020-1098-x. |
[13] |
Andersen SC, Hoorfar J. Surveillance of foodborne pathogens: towards diagnostic metagenomics of fecal samples. Genes (Basel) 2018;9(1):14. http://dx.doi.org/10.3390/genes9010014. |
[14] |
Chaorattanakawee S, Wofford RN, Takhampunya R, Poole-Smith BK, Boldbaatar B, Lkhagvatseren S, et al. Tracking tick-borne diseases in Mongolian livestock using next generation sequencing (NGS). Ticks Tick Borne Dis 2022;13(1):101845. http://dx.doi.org/10.1016/j.ttbdis.2021.101845. |
[15] |
Song XP, Li DM, Jia LJ, Lu L, Wang J, Liu YY, et al. Investigation of Bartonella infection in small mammals in Inner Mongolia, China. Chin J Vector Biol Control 2015;26(3):233 − 7. http://dx.doi.org/10.11853/j.issn.1003.4692.2015.03.004. (In Chinese). |
[16] |
Liu QY, Eremeeva ME, Li DM. Bartonella and Bartonella infections in China: from the clinic to the laboratory. Comp Immunol Microbiol Infect Dis 2012;35(2):93 − 102. http://dx.doi.org/10.1016/j.cimid.2012.01.002. |