[1] Wang LP, Zhou SX, Wang X, Lu QB, Shi LS, Ren X, et al. Etiological, epidemiological, and clinical features of acute diarrhea in China. Nat Commun 2021;12(1):2464. https://doi.org/10.1038/s41467-021-22551-z.
[2] Li WW, Pires SM, Liu ZT, Ma XC, Liang JJ, Jiang YY, et al. Surveillance of foodborne disease outbreaks in China, 2003–2017. Food Control 2020;118:107359. https://doi.org/10.1016/j.foodcont.2020.107359.
[3] GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet 2024;404(10459):1199 − 226. https://doi.org/10.1016/S0140-6736(24)01867-1.
[4] Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022;399(10325):629 − 55. https://doi.org/10.1016/S0140-6736(21)02724-0.
[5] Ehuwa O, Jaiswal AK, Jaiswal S. Salmonella, food safety and food handling practices. Foods 2021;10(5):907. https://doi.org/10.3390/foods10050907.
[6] Viana GGF, Cardozo MV, Pereira JG, Rossi GAM. Antimicrobial resistant Staphylococcus spp. , Escherichia coli, and Salmonella spp. in food handlers: a global review of persistence, transmission, and mitigation challenges. Pathogens 2025;14(5):496. https://doi.org/10.3390/pathogens14050496.
[7] Han RR, Shi QY, Wu S, Yin DD, Peng MJ, Dong D, et al. Dissemination of carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) among carbapenem-resistant Enterobacteriaceae isolated from adult and children patients in China. Front Cell Infect Microbiol 2020;10:314. https://doi.org/10.3389/fcimb.2020.00314.
[8] Matheou A, Abousetta A, Pascoe AP, Papakostopoulos D, Charalambous L, Panagi S, et al. Antibiotic use in livestock farming: a driver of multidrug resistance? Microorganisms 2025;13(4):779. http://dx.doi.org/10.3390/microorganisms13040779.
[9] Zhao WY, Ye CS, Li JG, Yu X. Increased risk of antibiotic resistance in surface water due to global warming. Environ Res 2024;263(Pt 2):120149. http://dx.doi.org/10.1016/j.envres.2024.120149.
[10] Im J, Nichols C, Bjerregaard-Andersen M, Sow AG, Løfberg S, Tall A, et al. Prevalence of Salmonella excretion in stool: a community survey in 2 sites, Guinea-Bissau and Senegal. Clin Infect Dis 2016;62 Suppl 1(Suppl 1):S50-5. http://dx.doi.org/10.1093/cid/civ789.
[11] Satlin MJ, Lewis II JS, Weinstein MP, Patel J, Humphries RM, Kahlmeter G, et al. Clinical and laboratory standards institute and European Committee on antimicrobial susceptibility testing position statements on polymyxin B and colistin clinical breakpoints. Clin Infect Dis 2020;71(9):e523 − 9. https://doi.org/10.1093/cid/ciaa121.
[12] Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18(3):268 − 81. https://doi.org/10.1111/j.1469-0691.2011.03570.x.
[13] Lu X, Luo M, Wang MY, Zhou ZM, Xu JL, Li ZP, et al. High carriage and possible hidden spread of multidrug-resistant Salmonella among asymptomatic workers in Yulin, China. Nat Commun 2024;15(1):10238. https://doi.org/10.1038/s41467-024-54405-9.
[14] Gargano V, Sciortino S, Gambino D, Costa A, Agozzino V, Reale S, et al. Antibiotic susceptibility profile and tetracycline resistance genes detection in Salmonella spp. strains isolated from animals and food. Antibiotics (Basel) 2021;10(7):809. https://doi.org/10.3390/antibiotics10070809.
[15] Wei B, Shang K, Cha SY, Zhang JF, Jang HK, Kang M. Clonal dissemination of Salmonella enterica serovar albany with concurrent resistance to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, tetracycline, and nalidixic acid in broiler chicken in Korea. Poult Sci 2021;100(7):101141. https://doi.org/10.1016/j.psj.2021.101141.
[16] Ohata N, Noda M, Ohta K, Hatta M, Nakayama T. Prevalence of streptomycin and tetracycline resistance and increased transmissible third-generation cephalosporin resistance in Salmonella enterica isolates derived from food handlers in Japan from 2006 to 2021. J Appl Microbiol 2024;135(9):lxae236. https://doi.org/10.1093/jambio/lxae236.
[17] Chereau F, Opatowski L, Tourdjman M, Vong S. Risk assessment for antibiotic resistance in South East Asia. BMJ 2017;358:j3393. https://doi.org/10.1136/bmj.j3393.
[18] Zhao WY, Zhang BH, Zheng SK, Yan WL, Yu X, Ye CS. High temperatures promote antibiotic resistance genes conjugative transfer under residual chlorine: mechanisms and risks. J Hazard Mater 2025;483:136675. https://doi.org/10.1016/j.jhazmat.2024.136675.
[19] Zhao CD, Suyamud B, Yuan Y, Ghosh S, Xu XL, Hu JY. Effect of non-antibiotic factors on conjugative transfer of antibiotic resistance genes in aquaculture water. J Hazard Mater 2025;483:136701. https://doi.org/10.1016/j.jhazmat.2024.136701.
[20] Onwugamba FC, Fitzgerald JR, Rochon K, Guardabassi L, Alabi A, Kühne S, et al. The role of ‘filth flies’ in the spread of antimicrobial resistance. Travel Med Infect Dis 2018;22:8 − 17. https://doi.org/10.1016/j.tmaid.2018.02.007.
[21] Li WB, Huang TT, Liu CJ, Wushouer H, Yang XY, Wang RN, et al. Changing climate and socioeconomic factors contribute to global antimicrobial resistance. Nat Med 2025;31(6):1798 − 808. https://doi.org/10.1038/s41591-025-03629-3.
[22] Sun CT, Cui MQ, Zhang S, Wang HJ, Song L, Zhang CP, et al. Plasmid-mediated tigecycline-resistant gene tet(X4) in Escherichia coli from food-producing animals, China, 2008-2018. Emerg Microbes Infect 2019;8(1):1524 − 7. https://doi.org/10.1080/22221751.2019.1678367.
[23] Jin X, Chen Q, Shen F, Jiang Y, Wu XQ, Hua XT, et al. Resistance evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11 during treatment with tigecycline and polymyxin. Emerg Microbes Infect 2021;10(1):1129 − 36. https://doi.org/10.1080/22221751.2021.1937327.
[24] Lan X, Qin SG, Liu H, Guo MR, Zhang YP, Jin XY, et al. Dual-targeting tigecycline nanoparticles for treating intracranial infections caused by multidrug-resistant Acinetobacter baumannii. J Nanobiotechnology 2024;22(1):138. https://doi.org/10.1186/s12951-024-02373-z.
[25] He T, Wang R, Liu DJ, Walsh TR, Zhang R, Lv Y, et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat Microbiol 2019;4(9):1450 − 6. https://doi.org/10.1038/s41564-019-0445-2.
[26] Allel K, Day L, Hamilton A, Lin LES, Furuya-Kanamori L, Moore CE, et al. Global antimicrobial-resistance drivers: an ecological country-level study at the human–animal interface. Lancet Planet Health 2023;7(4):e291 − 303. https://doi.org/10.1016/S2542-5196(23)00026-8.