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Preplanned Studies

Long-Term Temperature Variability and Risk of Dyslipidemia
Among Middle-Aged and Elderly Adults: A Prospective
Cohort Study — China, 2011-2018

Jianbo Jin'; Yuxin Wang'; Zhihu Xu'; Ru Cao'; Hanbin Zhang’; Qiang Zeng’

Xiaochuan Pan'; Jing Huang'**; Guoxing Li

Summary

What is already known about this topic?
Long-term temperature variability (TV) has been
examined to be associated with cardiovascular disease
(CVD). TV-related dyslipidemia helps us understand
the mechanism of how climate change affects CVD.
What is added by this report?

Based on the China Health and Retirement
Longitudinal Study (CHARLS) from 2011 to 2018,
this study estimated the long-term effect of TV on
dyslipidemia in middle-aged and elderly adults.

What are the implications for public health
practice?

This study suggested that long-term TV may increase
the risk of dyslipidemia. With the threat of climate
change, these findings have great significance for
making policies and adaptive strategies to reduce

relevant risk of CVD.

Dyslipidemia is a vital risk factor for cardiovascular
disease (CVD) and has increased considerably in recent
years. Temperature was convinced to be a major
climate factor that affected plasma lipid levels (7). In
2021, Kang et al. suggested long-term temperature
variability (TV), an indicator of extreme temperatures,
increased the risk of CVD; furthermore, dyslipidemia
can modify the long-term TV-related risk of CVD (2).
Lao et al. also found that the variation of dyslipidemia
prevalence showed seasonal features in China (3).
However, as an indicator of climate change, TV was
rarely included in exploring its impacts on
dyslipidemia. Therefore, we evaluated the long-term
effect of TV on dyslipidemia in middle-aged and older
adults based on the China Health and Retirement
Longitudinal Study (CHARLS) from 2011 to 2018.

The study data were collected from 17,596
individual participants in 150 county-level units
sampled from 450 communities in 125 cities among
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28 provincial-level administrative divisions (PLADs) of
China selecting by the multi-stage probability sampling
method. We excluded 1,615 participants with
dyslipidemia, 5,753 participants without dyslipidemia
reports, and 609 participants for the lack of key
covariate information. The final analysis sample
included 9,619 individuals without dyslipidemia at
baseline with  key variables in 2011-2018
(Supplementary Figure S1, available in http://weekly.
chinacdc.cn/). In CHARLS, all participants provided
written informed consent.

This study defined the dependent variable as being
diagnosed with dyslipidemia or not at baseline.
Diagnosed dyslipidemia was defined as participants’
self-reports of ever having been diagnosed with
dyslipidemia by doctors. The daily meteorological
information of all selected cities in the same period
(2011-2018) was obtained from the China
Meteorological Science Data Sharing Service Network.
Nearest-neighbour interpolation was applied to
estimate the daily data across the mainland of China at
a spatial resolution of a regular grid of 10 km x 10 km
(ten-fold cross validation: R?=0.95; root mean square
error=2.34 “C). We calculated the annual standard
deviation (SD) of the daily average temperature as the
TV index, and TV of the year before each survey was
considered as the long-term TV exposure. TV data
were assigned to each participant by their residential
cities and survey year. Annual average concentrations
of fine particles with a diameter <2.5 pm (PM, 5) from
2011 to 2018 were calculated from a combination of
satellite observations, chemical transport modeling,
and ground-based monitoring (R?-0.81; slope=0.90)
(4). We assigned the annual average city-level PM, 5
concentration of the year before each survey to each
participant.

Recorded demographic characteristics (age, sex) in
CHARLS were included in covariates. We also collated
three lifestyle covariates (smoking, alcohol drinking,
social interactions) and three socioeconomic status
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covariates (education attainment, residence, and
household income per capita). Household income
status was divided into binaries by average. Educational
attainment was divided by whether junior school
education was attained. Gross domestic product
(GDP) at the city level was also collected from the
National Bureau of Statistics and China’s National
Knowledge Infrastructure. By the Kunlun-Qinling-
Huaihe line, the cities were divided into southern cities
and northern cities. Environmental variables and
dependent variables were time-varying for each survey,
and other covariables were the values at baseline.

We assessed the association between long-term TV
and the incidence of dyslipidemia using time-varying
Cox proportional hazards model on a year-based time
scale. We first evaluated the effects of TV on a
continuous scale and reported the association with per
1 °C increase in TV. According to a previous study
about long-term TV (2), TV was also divided into
three categories (low<8.03 °C, medium=8.03-10.23
C, high>10.23 °C), with the low TV as the reference
group. We tested the statistical significance of the
linear trend between each category of TV and
dyslipidemia.

We fitted three models with different categories of
covariates, and TV was included as a continuous
variable or categorical variable in the models. Punitive
spline regression (df=3) was used to analyse the
exposure-response curve of TV and dyslipidemia.
Furthermore, we evaluated the modification in the
association between long-term TV and dyslipidemia,
stratifying by age, sex, residency, household income
status, education attainment,
location.

and  geographical

Data arrangement, cleaning, and all statistical
analyses were conducted using R (version 4.0.2, R
Foundation for Statistical Computing, Vienna,
Austria) with packages dplyr, survival, smoothHR, and

coxme. Statistical significance was defined as <0.05,
two sides. We included 9,619 participants without
dyslipidemia and found 1,848 of them with
dyslipidemia during the follow-up period. The median
follow-up time was 4 years [interquartile range (IQR):
2-7 years]. In cities of CHARLS, the average annual
TV between 2011 and 2018 ranged from 4.18 °C to
17.75 °C. Participants living with high TV were more
likely to have higher education attainment, live in
urban areas, smoke more, drink less, and have higher
PMj, 5 exposure and higher incidence of dyslipidemia
(Supplementary Table S1, available in http://weekly.
chinacdc.cn/).

We observed a positive association
between dyslipidemia and long-term exposure to TV in
three models (details about the models can be found in
Table 1). In model 3, we observed 8.3% [95%
confidence interval (CI): 4.2%-12.6%] increase in
dyslipidemia for each 1 °C increase in TV (Table 1).
Compared with low TV levels, the increase in medium
and high TV levels was associated with 34.0% (95%
CL:  15.6%-553%) and 57.9% (95% CI:
30.3%-91.3%) higher risks of dyslipidemia in a
significant positive trend (Table 1). We also did a
sensitivity analysis using the interval years of TV
between surveys as long-term exposure and found that
hazard ratio (HR) was 1.079 (95% CI: 1.036-1.123)
(Table 1). Punitive spline regression with 3 degrees of
freedom showed that exposure-response curve of long-
term TV exposure and dyslipidemia was almost linear
(Figure 1).

Marginal significant difference was found in the
long-term TV-related risk between participants with
low education attainment (HR: 1.093; 95% CI:
1.011-1.181) and high education attainment (HR:
1.084; 95% CI. 1.036-1.134) (Interaction P
value=0.053) (Supplementary Table S2, available in
http://weekly.chinacdc.cn/). No significant difference

TABLE 1. Cox regression models of TV and dyslipidemia among middle-aged and elderly adults, 2011-2018.

TV levels [Hazard ratio (95%Cl)]

Models TV per 1 C increment [Hazard ratio (95%Cl)] P
Low Medium High

Model 1" 1.089 (1.071-1.107) 1.00 (Ref) 1.346 (1.167-1.553)  1.566 (1.301-1.885)  <0.001

Model 2 1.093 (1.052-1.136) 1.00 (Ref) 1.340 (1.156-1.553)  1.579 (1.303-1.913)  <0.001

Model 3% 1.083 (1.042-1.126) 1.00 (Ref) 1.338 (1.153—-1.553)  1.583 (1.303-1.924)  <0.001

Model 47 1.079 (1.036-1.123) 1.00 (Ref) 1.279 (1.106-1.478)  1.389 (1.148-1.681)  <0.001

Abbreviations: Cl=confidence interval; PM, s=particulate matter of diameter <2.5 uym; TV=temperature variability.

* Crude model.

T Adjusted for model 1 criteria and age, sex, whether having lifestyle of smoking, drinking, annual average temperature, PM, 5, GDP.
§ Adjusted for model 2 criteria and residency, household income per capita, educational attainment.
T Adjusted for model 3 criteria, using the interval years of TV between surveys as long-term exposure.
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FIGURE 1. The exposure-response curve of long-term TV
and dyslipidemia among middle-aged and elderly adults —
China, 2011-2018.

Notes: Age, sex, marriage status, having disability,
smoking, drinking, having accident injury, and having
social interactions were adjusted. The solid line represents
log hazard ratio, and the gray zone indicates 95%
confidence interval.

Abbreviation: TV=temperature variability.

was found in the long-term TV effects in age, sex,
residence, household income status, and living in
different geographical regions.

DISCUSSION

In this study, we found a positive near-linear
association between TV and risk the of dyslipidemia in
middle-aged and elderly people. TV might affect the
incidence of dyslipidemia, the risk factor of CVD.

Previous studies focused more on TV-related
mortality or the incidence of CVD. A study analysed
the effects of short-term TV among 31 cities in China,
and observed a 1 °C rise of TV would increase 0.98 of
CVD mortality (5). Shi et al. study in the USA found
that for each 1 °C increase in TV, mortality in summer
and winter increased by 0.80 and 0.41, respectively (6).
A study in China with 35,000 participants over 35
years found that per 1 “C increase of long-term TV was
associated with 6 increased incidence of CVD, and
dyslipidemia was possibly a modifying factor (2). In
this current study, we observed that higher TV would
increase the incidence of dyslipidemia, which helps to
understand the effects of long-term TV on CVD,
especially among middle-aged and elderly populations.
However, further studies were needed to examine the
cause-and-effect relationship among long-term TV,
dyslipidemia, and CVD.

Limited researches had been carried out to explore
the underlying mechanism. Several studies suggested
that extreme ambient temperature might affect the
levels of high-density lipoprotein (HDL) and low-
density lipoprotein (LDL), possibly by disturbing the
absorbing of lipid (7-8). Some mechanistic studies
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showed that the unstable temperature would affect
other blood biomarkers, such as blood cholesterol
levels and plasma fibrinogen concentrations (5). The
fluctuation in ambient temperature due to climate
change would result in an imbalance between energy
intake and energy expenditure, which contributes to
the prevalence of metabolic syndrome (9-10). The
mechanism of how TV affects plasma lipid levels needs
further investigation.

The study was subject to some limitations. First,
because of the limitation of geographical information,
exposure of TV was assessed at the city level, which
might have induced exposure misclassification. Second,
since the research object was the middle-aged and
elderly people over 45 years old, the results could not
represent the impact of long-term TV on dyslipidemia
in younger people. Third, the long-term exposure
could be affected by other potential unknown
confounding factors, such as indoor air-conditioner
use, which might have led to inaccurate estimation.

In conclusion, we observed that long-term exposure
to TV may increase the risk of dyslipidemia. Under the
challenges of climate change and aging of population,
these findings provided implications for making
policies and adaptive strategies, such as providing
extreme temperature warnings and plans to protect
people working outdoors. Further studies are needed to
investigate the underlying mechanisms for the reported
association.
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SUPPLEMENTARY MATERIAL

Total participants in 2011
(N=17,596) Participants without information

of outcome in 2011 (N=383)
Participants with outcome in 2011
(N=1,615)

Participants without
dyslipidemia in

2011 (N=15,598) Loss to follow in 2013

\ ; (N=2.256)
i " Missing values of outcome in
Participants without 2013 (N=0)
dyslipidemia in
2011 (N=13,342)
‘ Loss to follow in 2015
> (N=1,391)
l Missing values of outcome in
2015 (N=0)
Participants without
dyslipidemia in
2011 (N=11,951)
Loss to follow in 2018
(N=1,382)

Missing values of outcome in
2018 (N=1,732)

Participants without
dyslipidemia in
2011 (N=10,228)
‘ Missing values in key covariates
l > (N=609)

Participants without
dyslipidemia in
2011 (N=9,619)

SUPPLEMENTARY FIGURE S1. Flowchart of the study samples.
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SUPPLEMENTARY TABLE S1. Comparison of the characteristics between included and excluded individuals among
middle-aged and elderly adults — China, 2011-2018.

Excluded individuals (N=7,977)

Included individuals (N=9,619)

Characteristic

No. Percentage (%) No. Percentage (%)
Age >65 (years) 2,440 30.59 2,315 24.07 <0.001
Male 3,959 49.63 4,470 46.47 <0.001
Smoking <0.001
Current smoker 2,438 30.56 2,903 30.18 -
Former smoker 616 7.72 556 5.78 -
Never smoker 4,886 61.25 6,160 64.04 -
Drinking 0.330
Never drinker 4,668 58.52 5,675 59.00 -
Rare drinker 835 10.47 949 9.87 -
Regular drinker 2,431 30.48 2,995 31.14 -
Having social interactions <0.001
Daily interactions 1,820 22.82 2,173 22.59 -
Weekly interactions 754 9.45 1,093 11.36 -
Occasional interactions 781 9.79 1,380 14.35 -
No interactions 3,124 39.16 4,973 51.70 -
Primary school and below 5,045 63.24 6,667 69.31 <0.001
Urban residency 3,864 48.44 3,233 33.61 <0.001
High household income 2,816 35.30 2,529 26.29 <0.001
Living in the south 4,134 51.82 5,259 54.67 <0.001
PM, s (ug/m®), Mean+SD 49.94+23.08 51.29+23.31 <0.001
Air temperature (°C), Mean+SD 14.07+5.54 14.53+5.15 <0.001
Long-term TV (°C), Mean£SD 9.88+2.57 9.60%2.39 <0.001

Note: “—” means not applicable.
Abbreviations: PM, s=particulate matter of diameter <2.5 ym; SD=standard deviation; TV=temperature variability.

SUPPLEMENTARY TABLE S2. The association between long-term TV and dyslipidemia in stratified analyses — China,
2011-2018.

Characteristics Subgroup Hazard ratio (95% Cl) P value
Sex Male 1.094 (1.030, 1.162) Ref.
Female 1.073 (1.019, 1.129) 0.453
Age <65 years 1.079 (1.033, 1.127) Ref.
>65 years 1.095 (1.004, 1.195) 0.978
Residency Rural 1.092 (1.042, 1.145) Ref.
Urban 1.094 (1.017, 1.176) 0.324
Household income Below average 1.086 (1.040, 1.134) Ref.
Above average 1.080 (0.984, 1.185) 0.579
Education attainment Primary school and below 1.093 (1.011, 1.181) Ref.
Junior school and above 1.084 (1.036, 1.134) 0.053
Region Living in northern cities 1.078 (1.016, 1.145) Ref.
Living in southern cities 1.087 (1.017, 1.163) 0.312

Notes: Model 3 adjustment (as illustrated in the Table 1 footnote) was used for the stratified analyses.

Abbreviations: TV=temperature variability; Cl=confidence interval; Ref.=reference.

S2

CCDC Weekly / Vol. 4/ No. 26

Chinese Center for Disease Control and Prevention



China CDC Weekly

Preplanned Studies

Independent and Interactive Effects of Environmental Conditions
on Aerosolized Surrogate SARS-CoV-2 — Beijing,
China, June to September 2020

Yixin Mao'®; Yueyun Luo*®; Wenda Zhang*; Pei Ding'; Xia Li'; Fuchang Deng'; Kaiqiang Xu'; Min Hou';
Cheng Ding'; Youbin Wang'; Zhaomin Dong*’; Raina Maclntyre®; Xiaoyuan Yao';
Song Tang™; Dongqun Xu'"*

Summary

What is already known about this topic?
Environmental factors such as temperature and
humidity play important roles in the transmission of
severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) via droplets/aerosols.

What is added by this report?

Higher relative humidity (61%—-80%), longer spreading
time (120 min), and greater dispersal distance (1 m)
significantly reduced SARS-CoV-2 pseudovirus loads.
There was an interaction effect between relative
humidity and spreading time.

What are the implications for public health
practice?

The findings contribute to our understanding of the
impact of environmental factors on the transmission of
SARS-CoV-2 via airborne droplets/aerosols.

Coronavirus disease 2019 (COVID-19) has led to a
global pandemic and has highlighted the role of
environmental factors in the transmission of
severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) via droplets/acrosols. By altering the
size distribution and evaporation rate of aerosols,
temperature and relative humidity (RH) affect the
shape and length of airborne trajectories (/). However,
few studies have considered the interactions between
multiple environmental factors and their combined
impact on virus-laden droplets and aerosols.

Between June and September 2020, an orthogonal
design was used to conduct suspension experiments in
al.5m x 1.0 m x 1.2 m laboratory exposure chamber.
Independent and interactive impacts of temperature,
RH, and distance on suspension time of droplets/
aerosols with varying diameters and rates of size
reduction of virus-laden droplets/acrosols size were

explored. The numbers of droplets/acrosols with

Chinese Center for Disease Control and Prevention

different diameters and reductions in viral load were
measured in suspension and residual assays. We varied
exposure chamber temperature from 16 C-28 °C, RH
from 30%-80%, and spreading distances of 0.5 m and
1 m to obtain data during 120 min after spreading
sneeze-generated droplets/aerosols containing SARS-
CoV-2 pseudovirus.

Droplets/aerosols settlement velocities increased over
time under each temperature, RH, and distance range
(Figure 1). With increasing time, larger aerosol
particles (>1 pm) settled faster than smaller particles
(<0.5 pm). After 120 min, approximately 50% of small
particles (<0.5 pm) remained in suspension. Aerosol
particles with diameters of >3 pm settled faster at lower
RH (30%-45%), and there was a stepwise effect on
aerosol particles with diameters of <0.5 pm with higher
RH values (Figure 1). Aerosols remained in suspension
in air currents longer than larger particles, but the
numbers of suspended smaller particles decreased
fastest at the highest RH range of 61%-80%.

Despite many studies on RH, few have investigated
the relationship between temperature and stability of
SARS-CoV-2 in aerosols. We found little difference
between settling velocities of aerosols <0.5 pm in
diameter under different temperature conditions
compared with differences under varying RH values
(Figure 1). However, particles >1 pm settled faster at
higher temperatures (24 “C-28 °C) than at lower
temperatures. Unlike variation in settling velocity from
RH and temperature differences, settling velocities
varied little by distances of 0.5 m and 1 m — a finding
that might have been due to the relatively short (1 m)
maximal dispersal distance we studied.

At the temperatures and distances studied, the
lowest residual viral loads in droplets and aerosols at
high RHs (61%—-80%) were observed after 120 min
(Table 1), suggesting that the highest RH range
reduced viral loads (Figure 2A). Based on multiple
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FIGURE 1. Suspension percentages of virus-laden droplet and aerosol particles with different diameters (0.3 ypm, 0.5 pm,
1 um, 3 ym, 5 um, and 10 um) under different conditions as a function of observation time.

Note: Environmental conditions include temperatures of 16 C—19 °C, 20 C-23 °C, and 24 C—48 <C; relative humidity ranges
of 30%—45%, 46%—60%, and 61%—-80%; and spreading distances of 0.5 m and 1 m. Means and standard errors (meanSE)
are shown for three experimental replicates.

TABLE 1. Percentage of residual viral load in virus-laden droplets/aerosols under different environmental conditions at
different observation time.

Viral load (Log,, copies)

Percentage of residual viral load after 120 min (%)

Experiment T(C) RH (%) 0.5m 1m 0.5m 1m
0min 120 min 0min 120 min 120 min vs. 0 min 120 min vs. 0 min
1 16-19  30-45 6.83 4.80 6.46 4.45 70.28 68.89
2 16-19  46-60 6.75 4.74 5.86 4.68 66.22 79.86
3 16-19 61-80 6.86 3.91 5.97 3.56 60.00 59.63
4 20-23  30-45 6.57 4.57 6.81 4.61 69.96 67.69
5 20-23  46-60 6.73 4.70 6.80 4.70 69.84 68.93
6 20-23 61-80 6.88 413 6.80 4.04 60.03 59.41
7 24-28  30-45 6.78 4.57 6.46 472 67.40 73.07
8 24-28  46-60 6.71 4.56 6.37 4.53 67.96 70.64
9 24-28 61-80 6.81 4.46 6.54 3.91 65.49 59.79

Notes: Environmental conditions include temperatures of 16 C-19 °C, 20 C-23 °C, and 24 C-48 °C; RH ranges of 30%—45%, 46%—60%,

and 61%—-80%; and spreading distances of 0.5 m and 1 m.
Abbreviations: T=temperature, RH=relative humidity.

linear regression analysis, a time of 120 min and a
spreading distance of 1 m significantly reduced
droplet/aerosol viral loads (Figure 2A), with the most
significant reduction factor being time. Mean viral
loads after 120 min at distances of 0.5 m and 1 m were
66.33% and 67.81% of the mean viral loads at 0 min
(Table 1).
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We observed a significant interaction effect of time
(120 min) and RH (61%-80%) on viral load
(Figure 2C).  There other statistically
significant  two-way or three-way interactions
(Figure 2B, 2D, and 2E). According to modeling
results, residual viral load decreased at high RH
(61%-80%), while an increase in time (120 min)

were no
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FIGURE 2. Modeled viral loads of virus-laden droplets/aerosols based on multiple interaction combinations of different
environmental factors. (A) Multiple linear regression for independent factors; (B) two-way interaction between temperature
and RH; (C) two-way interaction between time and RH; (D) two-way interaction between temperature and time; (E) three-

way interaction among time, temperature, and RH.

Notes: Correlation refers to correlation coefficients and has no unit; T20-23 indicates the temperature was 20 C-23 °C, and
T24-28 indicates the temperature was 24 C-28 °C; RH46-60 indicates relative humidity was 46%—60%, and RH61-80
indicates relative humidity was 61%-80%; Time120 indicates the interaction time was 120 min; and D1 indicates the

spreading distance was 1 m.

Abbreviations: T=temperature, RH=relative humidity.
*: significance levels of P<0.05;

**: significance levels of P<0.01;

***: significance levels of P<0.001.

significantly affected the impact of RH on the viral
load. Our results also showed that viral load was also
significantly correlated with large particle size (>3 pm)
(Supplementary Figure S1, available in https://weekly.
chinacde.cn/), indicating that SARS-CoV-2 was mostly
suspended within particles of this size class during
sneezing.

DISCUSSION

The results showed that larger aerosol particles
settled faster than smaller particles. The amount of
small particles dicreased faster with higher relative
hmidity. At high RHs, small droplets can uptake water
vapor (2) and/or cohere to each other to form larger
droplets, thus increasing their weight and size (3) and,
therefore, increasing their settling rate. In contrast,
aerosol particles with greater diameters (>3 pm) settled

Chinese Center for Disease Control and Prevention

out faster at lower RHs (30%—-45%). Higher RHs
(61%—80%) significantly increased the settling velocity
of aerosols with smaller diameters (<0.5 pm) and
reduced the load
temperature or distance, implying that RH plays a
significant role in the spread of SARS-CoV-2. The risk
of transmitting SARS-CoV-2 via aerosols is higher in

simultaneously viral at any

dry indoor environments. Therefore, this risk might be
reduced by regulating the RH of indoor environments.

We also found that particles larger than 1 pm settled
more rapidly at higher temperatures (24 C-28 ).
High temperatures increased the evaporation of water
and the conversion of respiratory droplets into aerosols.
Hence, relatively high temperatures may affect large
particles in a similar way that low RH values do. In
addition, the mean viral loads after 120 min at
different distances (0.5 m or 1 m) remained high.
Time had a significant effect on viral loads, so this
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finding may indicate a long suspension time and
potentially long-range infection through the air (4).
But the distances we studied (0.5 m or 1 m) had little
effect on aerosol particle settlement. Thus, further
studies involving larger distances are required to clarify
the importance of distance on aerosol transmission.

Our findings are consistent with conclusions from
other studies. Larger aerosol particles (>1 pm) settled
faster, consistent with a study by Lindsley and
colleagues (5). Approximately half of the small particles
(<0.5 pm) remained suspended after 120 min.
Respirable viral aerosols can linger and remain viable in
air for relatively long periods (<16 h) owing to their
smaller size (6). The number of smaller particles
decreased fastest at the highest RHs. Similarly, a study
of influenza virus found that exhaled respiratory
droplets contributed to the propagation of influenza
virus at a high RH (80%) (7). However, our maximum
observation distance was small, and the difference in
viral loads at different distances was not apparent. A
previous study in hospital wards in Wuhan found that
SARS-CoV-2-laden aerosols could spread over a
distance of up to 4 m (8). A modeling simulation study
reported that the maximum spreading distance of
droplets could reach 6 m in an extremely cold and
humid environment (7).

The study was subject to some limitations. First, due
to bio-safety concerns, the study used a SARS-CoV-2
pseudovirus instead of SARS-CoV-2 to generate
droplets and aerosols. Therefore, infectivity of the virus
under different environmental conditions could not be
determined. Second, the experiments were performed
in a laboratory exposure chamber within a quiescent
indoor environment, which was not necessarily
representative of real exposure scenarios. Third, high
viral loads were reported for the Delta and Omicron
variants of SARS-CoV-2 (9), and these variants of
concern (VOCs) were prone to spreading quickly in
enclosed spaces (10). However, we did not consider the
potential differences in the stabilities and transmission
of these VOCs and/or variants of interest under
different environmental conditions.

This study found that temperature, RH, spreading
time, and dispersal distance, as well as the interaction
between RH and spreading time, significantly affect
the transmission of SARS-CoV-2 pseudovirus via
droplets/acrosols. These findings highlighted the
independent and interactive effects of environmental
factors on virus-laden droplets and aerosols. By
elucidating the effects of different environmental
conditions on the trajectory of airborne viral
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transmission, adaptive public health strategies for
preventing and controlling COVID-19  could
incorporate seasonal weather variations and local
environments. In order to reduce viral load and
duration in the air, the following targeted preventive
control measures might be adopted: 1) appropriately
increase air humidity in residential and confined public
places (e.g., using humidifiers); 2) appropriately
ambient temperature;  3)
frequency of air disinfection; and 4) expand the scope
of disinfection. Our study provided useful information
for policymakers and guidance for the general public in
the global combat against COVID-19.
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SUPPLEMENTARY MATERIAL

Materials and Methods

Study design: The orthogonal experiment was designed with two main aims. First, a suspension assay was used to
investigate the impacts of environmental conditions on the suspension rates of pseudovirus-laden droplets and
aerosols with different diameters. Second, a residual assay was used to determine the independent and interactive
effects of environmental conditions on the viral loads of droplets/acrosols. The experimental conditions included
temperature ranges of 16 C-19 C,20 C-23 C, and 24 C-28 °C; RH ranges of 30%—45%, 46%—60%, and
61%-80%; and spreading distances of 0.5 m and 1 m from the outlet of a sneezing simulation device. For the
particle suspension assay, the observation times (i.e., durations after aerosolization) were 0 min, 20 min, 40 min, 60
min, 80 min, 100 min, and 120 min; 0 min and 120 min were selected for the residual assay. A SARS-CoV-2 spike
pseudovirus (Sino Biological Inc., Beijing, China) without autonomous replication ability was used as a proxy for
SARS-CoV-2 to determine the impact of each environmental factor on the viral loads of droplets/aerosols.
According to a previous study (7), all experiments began with a similar viral concentration in artificial saliva
suspensions and a similar number of sneeze-produced aerosol particles.

Experimental setup: Experiments were carried out in a laboratory exposure chamber (1.5 m x 1.0 m x 1.2 m)
equipped with a high-efficiency filter to ensure the cleanliness of initial air under a quiescent environment (2-3). A
temperature regulator (Jingchuang, RCW-360WIFI, China) and a humidity regulator (Soleusair, AHU-300N1,
USA) were used to adjust the temperature and RH conditions, respectively, before each experiment according to the
orthogonal experimental design. Dark conditions were maintained in the chamber throughout the experiments to
avoid the potential influence of natural ultraviolet rays. We constructed a sneeze aerosol simulator comprising a
compressor, an automated (on/off) electrical modulating valve, a manual electrical modulating valve, and a spray
gun (2-3). The automated electrical modulating valve controlled the sneezing duration to 1 s. The manual electrical
modulating valve adjusted the sneezing flow rate to 11+2 m/s, the total number of droplets/acrosols (diameters of
0.1 pm—100 pm) to 106, and the total aerosol volume to 70 uL/sneeze. To avoid cross-contamination, the chamber
was ventilated with clean air [high-efficiency particulate air (HEPA)] during each test. After each test, the internal
part of the chamber was wiped with 75% ethanol and then left to dry under clean air conditions.

Particle suspension assay: The poly-disperse SARS-CoV-2 pseudovirus solution was ejected 5 times (simulating 5
sneezes) from artificial saliva (108 copies/mL). The real-time particle number concentration (PNC) was measured
with diameters ranging from 0.3 pm to >10 pm during each simulated sneeze. Particle measurement devices were set
up at two different distances (0.5 m and 1 m away from the sneeze outlet). The sampling inlets of all devices were
positioned along the centerline facing the sneeze outlet. At each sampling location, a Y09-301 Laser Particle
Counter (AC-DC, Jiangsu Sujing Group Co., Ltd., China) was used to monitor the PNC. The data logging interval
were set to 1s for all experiments. The testing times were 0 min, 20 min, 40 min, 60 min, 80 min, 100 min, and
120 min after each simulated sneeze. To determine potential variations, tests were repeated three times (n=3).

Residual assay of the viral load: Virus-laden droplets and aerosols were collected using bio-aerosol samplers
(BIOSAMPLER, SKC, California, USA; sampling flow of 12.5 L/min and sampling frequency of 10 min) at 0 min
and 120 min to detect the viral load. The obtained SARS-CoV-2 pseudovirus on the filter membranes was eluted
with 1 mL of viral preservation medium (Dakewe Biological Engineering Co. Ltd, Shenzhen, China). Viral
ribonucleic acid (RNA) was extracted using a QIAamp Viral RNA Mini Kit (QIAGEN Inc., Hilden, Germany)
following the relevant protocol. The copy number of viral RNA was measured using a QX200 droplet digital
polymerase chain reaction (ddPCR) system (Bio-Rad, California, USA) targeting the WPRE gene. Detailed
information on the viral RNA extraction process, primer and probe sequences, reaction mix, droplet digital ddPCR
amplification parameters, and quality assurance and quality control (QA/QC) can be found elsewhere (2-3).

Statistical analyses: Multiple linear regression analysis was performed using R (version 3.6.2, R core team 2021. A
language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/) to determine the relationship between each environmental factor and the viral load.
First, we examined the effects of different temperature ranges (16 C-19 C, 20 C-23 C, and 24 C-28 °C), RHs
(30%—45%, 46%—60%, and 61%-80%), spreading distances (0.5 m and 1 m), and observation time (0 min—
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SUPPLEMENTARY FIGURE S1. Effect of the diameters of virus-laden droplets/aerosols on the viral load.
Notes: We defined a correlation greater than 0 as a positive correlation, less than 0 as a negative correlation.
*: significance levels of P<0.05.

**: significance levels of P<0.01.

120 min). A density plot was used to observe the distribution of viral load as evidence of proper transformation. The
intercept of the regression model represented the base status for each environmental factor of interest: time of 0 min,
distance of 0.5 m, temperature of 16 C—19 °C, and RH of 30%—45%. Second, we included two-way and three-way
interaction terms to account for the interactions amongst the various environmental conditions. Third, we further
considered the effects of different particle diameters on the viral load. A P-value of 0.05 was taken as the nominal
level to determine the statistical significance in all analyses.
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Interactive Effects Between Temperature and PM, ; on Mortality:
A Study of Varying Coefficient Distributed Lag Model —
Guangzhou, Guangdong Province, China, 2013-2020

Sujuan Chen'%; Hang Dong**; Mengmeng Li*; Lin Huang'; Guozhen Lin*%
Qiyong Liu‘; Boguang Wang'; Jun Yang™*

ABSTRACT

Introduction: There is a large body of
epidemiological ~ evidence  showing  significantly
increased mortality risks from air pollution and
temperature. However, findings on the modification of
the association between air pollution and mortality by
temperature are mixed.

Methods: We used a varying
distributed lag model to assess the complex interplay
between air temperature and PM; 5 on daily mortality
in Guangzhou City from 2013 to 2020, with the aim
of establishing the PM, s-mortality association at
different temperatures and exploring synergetic
mortality risks from PM,s and temperature on
vulnerable populations.

Results: We observed near-linear concentration-
response associations between PM, 5 and mortality
across different temperature levels. Each 10 pg/m3
increase of PM;s5 in low, medium, and high
temperature strata was associated with increments of
0.73% [95% confidence interval (CI): 0.38%, 1.09%],
0.12% (95% CI: -0.27%, 0.52%), and 0.46% (95%
CI: 0.11%, 0.81%) in non-accidental mortality, with a
statistically significant difference between low and
medium temperatures (P=0.02). There were significant
modification effects of PM, 5 by low temperature for
cardiovascular mortality and among individuals 75
years or older.

Conclusions: Low temperatures may exacerbate
physiological responses to short-term PM, 5 exposure
in Guangzhou, China.

coefficient

INTRODUCTION

Ambient air pollution and temperature are leading
environmental challenges to global public health. In
2019, PM,; 5 was responsible for an estimated 4.14
million deaths and 118 million disability-adjusted life

570 CCDC Weekly / Vol. 4/ No. 26

years (DALYs) (). Temperature is an important
predictor of many diseases and has been perceived as a
key environmental factor in climate change scenarios
(2). Air pollution was identified as the fourth leading
risk factor for death worldwide (3). Short-term
exposure to PM, 5 can increase the risk of death from
chronic diseases (4).

In the context of climate change, health risk
assessment of the joint effect of air pollution and
temperature has attracted growing public concern (5).
In Chengdu, China for example, stronger associations
between air pollution and hospital admission for
chronic obstructive pulmonary disease (COPD) were
found at low-temperatures than at moderate
temperatures (6). However, other studies have failed to
identify synergetic health effects of air pollution and
temperature. For example, Jhun and co-authors found
that the interaction between ozone and temperature
was not statistically significant in 97 US cities (7). In
addition, potential variations of exposure-response
patterns under various temperature levels have been
less well documented. As an extension of distributed
lag models, the varying-coefficient distributed lag
model has been flexibly applied to explore interactive
and time-lagged effects between different exposure
hazards (8).

We aimed to establish the exposure-response
association between PM; 5 and mortality at different
temperature strata using the varying coefficient
distributed lag model in Guangzhou, China, and to
explore synergetic mortality risks from PM, s and
temperature on vulnerable populations.

METHODS

The study period was 2013-2020. We obtained
daily mortality data in Guangzhou from Guangzhou
Center for Disease Control and Prevention. Causes of
death were classified according to International
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Classification of Diseases, Tenth Revision:
accidental causes (A00-R99), cardiovascular disease
(I00-199), ischemic heart disease (IHD, 120-125),
stroke (I60-169), respiratory disease (JO0-]J98), and
COPD (J40-J47). Daily counts of non-accidental
deaths were stratified by age (<75 and >75 years),
gender, and educational level (<9 and >9 years). We
obtained daily concentrations of air pollutants (O3,
PM,; 5, PMyj, NO,, SO,, and CO) from Guangzhou

monitoring stations and daily meteorological data from

non-

basic weather stations in Guangzhou from the China
Meteorological Data Service Center (http://data.cma.
cn/).

The varying coefficient distributed lag model, based
on generalized linear models with a quasi-Poisson
family (9), was used to estimate the modifying effect of
temperature on the association between PM,; 5 and
mortality. We incorporated several covariates in the
model: a natural cubic spline with 7 degrees of freedom
(df) per year for a time variable; a natural cubic spline
with 3 df for relative humidity, air pressure, and
moving average temperature (with time lags of 0-10
days); and holidays and day of the week as indicator
variables. The cross-product of categorical temperature
levels [low (<25th percentile), medium (25th-75th),
and high (>75th percentile)] and PM; 5 was used to
examine the interaction between air pollution and
temperature. In addition, stratified analyses were
conducted by gender, age group, and education.

Relative differences of RRs across strata [relative risk
ratios (RRR)] were calculated to detect potential effect
modifications by temperature. To verify the robustness
of our results, we performed a series of sensitivity
analyses. Details of the model are provided in the
Supplementary Material (available in
https://weekly.chinacdc.cn/).  All statistical analyses
were conducted in the R language environment (R
Core Team 2021, Vienna, Austria) using the “dlnm”,
“mgcv”, and “splines” packages.

RESULTS

Table 1 depicts summary statistics on daily air
pollution, weather conditions, and mortality. The
average PM,s value was 35.1 pg/m® during
2013-2020. During the study period, there were
403,492 deaths registered in Guangzhou, among
which cardiovascular diseases, IHD, stroke, respiratory
disease, and COPD accounted for 39.5%, 16.7%,
10.3%, 14.4%, and 6.1%, respectively.

Supplementary Figure S1  (available in  https://
weekly.chinacdc.cn/) shows Spearman’s correlations
between air pollution and weather conditions. There
were negative correlations between temperature and
relative humidity and air pollutants (except for O3)
and positive correlations among air pollutants.

Figure 1 shows lag patterns of PM; s on cause-
specific mortality at different temperature levels. Effect

TABLE 1. Summary statistics for daily weather conditions, air pollution, and mortality in Guangzhou, 2013-2018.

Percentiles
Variable Mean Minimum 25th soth 75th Maximum

Temperature (C) 222 34 174 23.3 27.3 32.0

Low (<25th) 13.6 4.6 11.8 14.0 15.8 17.7

Medium (25th—75th) 23.1 17.8 20.7 23.3 25.7 27.3

High (>75th) 28.9 27.4 27.9 28.8 29 .6 31.9
Mean humidity (%) 80.4 31.0 75.0 81.5 88.0 100.0
Mean pressure (hPa) 1,007.1 985.7 1,000.3 1,005.4 1,010.8 3,276.6
PM,5 (g/m?) 35.1 35 20.0 30.0 45.0 150.0
Cause (Number of deaths per day)

Non-accidental 131 79 115 128 143 238

Cardiovascular disease 55 21 45 53 62 115

Ischemic heart disease 23 6 18 22 27 51

Stroke 14 0 11 14 17 34

Respiratory disease 20 6 15 19 24 48

COPD 8 0 6 8 11 30

Abbreviation: COPD=chronic obstructive pulmonary disease.
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FIGURE 1. RR (95% CI) of mortality associated with 10 ug/m? increase of PM,; by a time lag of 0-7 days.
Note: dots and vertical lines represent point estimates and 95% confidence intervals of PM,; at individual lag days.
Abbreviations: RR=relative risk; IHD=ischemic heart disease; COPD=chronic obstructive pulmonary disease; Cl=confidence

interval.

of PM; 5 on the daily death toll of different diseases
had consistent and evident trends in which mortality
risks reached maximum within 1-2 lag days of
exposure, then leveled off, and disappeared within 4-5
days.

Figure 2 shows the estimates of exposure-response
relationships between PM, 5 and mortality at different
temperature levels. We found approximately linear
associations between PM; 5 and mortality. The highest
effect of PM,; 5
consistently observed at the lower temperatures, while

estimates on mortality were
lower effect estimates were seen at the higher
temperatures. Each 10 pg/m3 increase of PM, 5 in low,
medium, and high temperature strata was associated

572 CCDC Weekly / Vol. 4/ No. 26

with respective increments of 0.73% [95% confidence
interval (CI): 0.38%, 1.09%], 0.12% (95% CI:
-0.27%, 0.52%), and 0.46% (95% CI: 0.11%,
0.81%) in non-accidental mortality (Table 2). There
was an RRR of 1.01 (95% CI: 1.00, 1.01) between low
and medium temperatures (P=0.02) (Supplementary
Table S1, available in https://weekly.chinacdc.cn/). For

cause-specific ~ mortality, statistically  significant
differences between the risk of PM,s across
temperature  levels were only observed for

cardiovascular mortality, with effect estimates of
0.88% (95% CI: 0.37%, 1.39%), 0.04% (95% CI:
-0.52%, 0.60%) and 0.50% (95% CI: 0.00%, 0.99%)

at low, medium and high temperature levels (Table 2),
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FIGURE 2. Concentration-response associations between PM, ; and mortality under different temperature conditions.
Abbreviations: RR=relative risk; IHD=ischemic heart disease; COPD=chronic obstructive pulmonary disease.

and an RRR of 1.01 (95% CI: 1.00, 1.02) between low
temperature and medium temperature (P=0.03). The
highest effect of PM,s was found in respiratory
mortality at low temperatures, with an effect estimate
of 1.57% (95% CI: 0.75%, 2.39%); however,
difference by temperature was not statistically
significant.

In analyses stratified by personal characteristics, we
found consistently higher effects of PM, s at low
temperatures compared with medium temperatures,
but the only statistically significant difference was
among individuals of 75 years or older. Each 10 pg/m3
increase of PM, s in the low, medium, and high

Chinese Center for Disease Control and Prevention

temperature strata was associated with increments of
1.22% (95% CI: 0.76%, 1.68%), 0.29% (95% ClI:
-0.22%, 0.79%), and 0.83% (95% CI: 0.38%,
1.28%) in mortality of the elderly, respectively, with
RRR of 1.01 (95% CI: 1.00, 1.02) between low and
medium temperature strata (P=0.01). The elderly were
more susceptible to PM, 5 compared with younger age
groups under both low and high temperature
conditions.

Using different degrees of freedom for time trend
analyses adjusting for co-pollutants changed the effect
estimates only slightly (Supplementary Tables S2-S3,
available in https://weekly.chinacdc.cn/), indicating
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TABLE 2. Cumulative (lag 0—4 days) mortality risk of each 10 ug/m? increase in PM,; at different temperature strata (ER,

95% Cl).
Variable Low temperature Medium temperature High temperature
ER% 95% CI ER% 95% CI ER% 95% CI

Non-accidental mortality 0.73* (0.38, 1.09)* 0.12 (-0.27, 0.52) 0.46* (0.11, 0.81)*
Cardiovascular mortality 0.88* (0.37, 1.39)* 0.04 (-0.52, 0.60) 0.50* (0.00, 0.99)*
Stroke mortality 1.35* (0.43, 2.29)* 0.64 (-0.38, 1.67) 1.10* (0.20, 2.02)*
Ischemic heart mortality 0.50 (-0.25, 1.25) -0.52 (-1.33,0.31) -0.02 (-0.64, 0.77)
Respiratory mortality 1.57* (0.75, 2.39)* 0.85 (-0.04, 1.76) 1.24* (0.45, 2.05)*
COPD mortality 1.34* (0.10, 2.59)* 0.69 (-0.67, 2.07) 0.95 (-0.26, 2.17)
Gender

Female 0.87* (0.37, 1.37)* 0.04 (-0.51, 0.60) 0.50* (0.01, 1.00)*

Male 0.63* (0.19, 1.07)* 0.18 (-0.30, 0.67) 0.43* (0.00, 0.86)*
Age (years)

0-74 0.01 (-0.48, 0.50) -0.13 (-0.68, 0.41) -0.09 (-0.57, 0.39)

>75 1.22* (0.76, 1.68)* 0.29 (-0.22, 0.79) 0.83* (0.38, 1.28)*
Education

Low education 0.69* (0.23, 1.15)* -0.04 (-0.56, 0.48) 0.40 (-0.05, 0.86)

High education 0.55 (-0.24, 1.35) 0.32 (-0.56, 1.22) 0.32 (-0.43, 1.14)

Abbreviations: ER=excess risk; Cl=confidence interval; COPD=chronic obstructive pulmonary disease.

* indicates statistically significant results.

robustness of our main results. Using different
temperature cutoffs (Supplementary Table $4,
available in https://weekly.chinacdc.cn/) and different
PM, 5 time-lags (Supplementary Table S5, available in
https://weekly.chinacdc.cn/)  did  not  remarkably
change the estimates of temperature-stratified air
pollution effects on mortality.

CONCLUSIONS

To the best of our knowledge, this is one of the few

studies  exploring  exposure-response  associations
between air pollution and mortality under different
conditions. Our  study

observed greater mortality risks from PM; 5 in lower

temperature consistently
temperatures than in moderate temperatures across
different causes of death. Interaction effects between
PMj, 5 and low temperatures were more pronounced in
the elderly than in younger people.

We observed the highest effect of PM;s on
mortality in low temperature strata compared with
high and medium
temperatures have consistently been found to enhance
the effect of PM, 5 on cardiovascular mortality in
Beijing (10), natural and respiratory mortality in Hong
Kong (11), and COPD mortality in Chengdu (6). For

instance, Li and coauthors found that each 10 pg/m?

temperature  strata. Low

574 CCDC Weekly / Vol. 4/ No. 26

increment of PM, s during the lowest temperature
range was associated with a 1.27% (95% CI: 0.38%,
2.17%) increase in cardiovascular mortality, compared
with 0.59% (95% CI: 0.22%, 1.16%) across the whole
temperature range (/0). Likewise, the association
between PM, 5 and mortality in Hong Kong was
higher
temperatures, with corresponding effect estimates of
0.94% (0.95% CI: 0.65%, 1.24%) and 0.47% (95%
Cl: 0.65%, 1.24%) for each 10 pg/m? increment in
PM, 5 (11). The reduced beat frequency of nose and
trachea cilia on cold days, which affects the clearance

stronger at low temperatures than at

rate of particulate matter and makes people more
susceptible to PM; 5, is suspected as an underlying
mechanism for the greater effect of PM; 5 on mortality
at low temperatures in Guangzhou (72). Some studies
found that people living in warm regions probably
experience a higher mortality risk during cold weather
than do people living in cold regions (73). In addition,
low temperatures may exacerbate airway inflammation
and increase the burden on respiratory functions (/4).
We also found relatively higher effect estimates of
PMj; 5 on mortality in high temperatures compared to
moderate temperatures, although the difference was
not statistically significant, consistent with previous
studies (6,10). However, another study reported a
statistically significant higher health effect of PM; 5 in
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high temperature strata (75). The discrepant results
may be explained by differences in population
structure and air pollution exposure patterns.

In this study, we observed a significant modification
of the effect of PM, 5 on cardiovascular mortality by
low temperatures. As ambient temperature decreases,
cold receptors in the skin are stimulated, the
sympathetic nervous system increases catecholamine
levels, blood vessels near the skin constrict to reduce
heat loss, and blood pressure suddenly increases (10).
High blood pressure can lead to oxygen deficiency,
myocardial ischemia, or arrhythmia, and become a risk
factor  for spasms and ruptures of
atherosclerotic plaque that cause thromboses (12).
Such marked changes make people more susceptible to
adverse cardiovascular outcomes caused by PM; 5. The
findings are important from a public health
perspective, as 39.5% of all non-accidental deaths in
Guangzhou were cardiovascular deaths.

Our analysis also found significant interaction effects
of PM; 5 and low temperature among the elderly but
not among young people, which is consistent with a
previous study (6). The body’s homeostasis and
thermoregulatory functions, and the capacity to
eliminate chemicals from the body decrease with age
(16), which may contribute to the combined health
hazards of PM, 5 and temperature change. The elderly
also suffer from higher rates of comorbidities, which
may further enhance their vulnerability to
environmental exposure.

The study was subject to some limitations. First, we
substituted measured air pollution and air temperature
at fixed outdoor monitoring stations for personal
exposures, which will lead to some exposure
measurement errors. Second, only adverse associations
of PM,5 were examined in this study, leaving
confounding by other factors unexplored. Last, our
results may not generalize to areas with different
population structures and air pollution compositions.

In summary, we observed an interaction between
PMj, 5 and low temperature on mortality, especially for
non-accidental and cardiovascular mortality and
among the elderly. Considering the synergetic health
risks of air pollution and temperature, cooperation
from multiple sectors with the aim of protecting
vulnerable populations may mitigate health challenges
from climate change and air pollution.
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SUPPLEMENTARY MATERIAL

Model Construction
The varying coefficient distributed lag model:

Logd E(Y,)] = o + ns(Hum,, 3) + ns{(Press;, 3) + ns( Temp,, 3) + ns( Time,, 78) + vHoliday, + cb(PM, 5) + T; % cb(PM, 5)

Where E(Y,) denotes the daily expected number of deaths on day # « is the intercept; ns is a natural cubic spline.
7 degrees of freedom (df) per year for time (77me,) was used to control for long-term trends and seasonal variables of
daily mortality (7). Holiday, is an indicator variable of population dynamics due to holidays. 7} is a categorical
variable indicating various temperature levels. To explore the possible effect modification by ambient temperature,
we divided the ambient temperature into three levels: low (<25th percentile), medium (25th-75th), and high
(>75th percentile), which was consistent with previous studies (2). ns (natural cubic splines) with three df was
adapted for daily relative humidity and air pressure (3). And we applied the natural cubic spline (ns) to fit the
moving average (lag 0—10 days) of temperature to control the confounding effects of temperature (7emp,). In the
basic model, we used a distributed lag model (DLM) to describe the association with PM, 5. Lag effects were
described by a cross-basis function (cb) in the distributed lag model (4). Specifically, we applied a cross-basis

5
Temperature
Humidity
Air pressure
Wind speed
Rainfall
Sunshine

9

o =
wn =¥
g X
0.81
o
PM,. 067 | 074 | 095 . 044
O, 044 | 009 | 039 | 033 . @ - 0.26
Temperature | —0.04 | —0.36 | —0.29 | —0.37 | 0.35 . @ F0.07
Humidity | —0.25 | 0.06 | —0.33 | —0.27 | —0.46 | 0.18 . @ @ L 012
Airpressure | 0.00 | 029 | 035 | 036 | —021 | —0.86 | —0.36 . 030
Wind speed | 0.25 | —0.15 | —0.06 & 0.05 | 0.09 | —0.19 | —023 | 0.03
-0.49
Rainfall | —0.18 | —0.14 | -0.40 | —-0.32 | —0.37 | 0.14 | 0.59 | —0.34 | 0.08 .
-0.68

Sunshine| 040 | 0.00 | 023 | 0.17 | 076 | 028 | —0.49 | —0.15 | 026 | —0.39

PM, | 066 | 0.75

—0.86

SUPPLEMENTARY FIGURE S1. Correlations (Spearman correlation coefficient) among air pollution and weather
conditions.

*: P<0.05;

**: P<0.01;

***: P<0.001.
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SUPPLEMENTARY TABLE S1. RRR, 95% confidence intervals (Cl), and P-values of significance test of effects of PM,; (per
10 pg/m?®) on mortality under different temperature levels.

Low temperature

High temperature

Variable Medium temperature
RRR 95% ClI P RRR 95% CI P

Cause

Non-accidental mortality Reference 1.006*  (1.001, 1.011)*  0.024* 1.003 (0.998, 1.009) 0.207

Cardiovascular mortality Reference 1.008* (1.001, 1.016)* 0.030* 1.005 (0.997, 1.012) 0.228

Stroke mortality Reference 1.007 (0.993, 1.021) 0.315 1.005 (0.991, 1.018) 0.511

IHD mortality Reference 1.010 (0.999, 1.022) 0.072 1.005 (0.994, 1.016) 0.365

Respiratory mortality Reference 1.007 (0.995, 1.019) 0.247 1.004 (0.992, 1.016) 0.526

COPD mortality Reference 1.006 (0.99, 1.023) 0.434 1.003 (0.987, 1.019) 0.751
Gender

Female Reference 1.005 (0.997, 1.012) 0.219 1.001 (0.994, 1.008) 0.793

Male Reference 1.004 (0.998, 1.011) 0.178 1.002 (0.996, 1.009) 0.450
Age (years)

0-74 Reference 1.001 (0.994, 1.009) 0.708 1.000 (0.993, 1.008) 0.914

>75 Reference 1.009* (1.002, 1.016)* 0.008* 1.005 (0.999, 1.012) 0.118
Education level

Low education Reference 1.007 (0.997, 1.017) 0.153 1.004 (0.997, 1.011) 0.212

High education Reference 1.002 (0.991, 1.014) 0.698 1.000 (0.988, 1.012) 1.000

Abbreviations: RRR=relative risk ratios; IHD=ischemic heart disease; COPD=chronic obstructive pulmonary disease.
* indicate statistically significant results.

SUPPLEMENTARY TABLE S2. Sensitivity analysis of the modification by the temperature on the PM, s;-mortality association
using 5-8 degrees of freedom (df) per year for the time trend.

Degrees of freedom (df)

Low temperature

Medium temperature

High temperature

ER 95% ClI ER 95% ClI ER 959% Cl
df=6 0.73 (0.38, 1.09) 0.12 (-0.27, 0.52) 0.46 (0.1, 0.81)
df=5 0.81 (0.46, 1.16) 0.17 (-0.21, 0.54) 0.49 (0.15, 0.83)
df=7 0.68 (0.32, 1.04) 0.11 (-0.29, 0.51) 0.39 (0.03, 0.75)
df=8 0.74 (0.38, 1.10) 0.20 (-0.19, 0.60) 0.46 (0.11, 0.82)

Abbreviations: ER=excess risk; Cl=confidence interval.

SUPPLEMENTARY TABLE S3. Sensitivity analysis of the modification by the temperature on the air pollution-mortality
association with adjustments for different co-pollutants.

Low temperature

Medium temperature

High temperature

Co-pollutants

ER 95% CI ER 95% CI ER 95% ClI
Main model 0.73 (0.38, 1.09) 0.12 (-0.27, 0.52) 0.46 (0.11, 0.81)
PM,s + SO, 0.41 (-0.01, 0.84) -0.19 (-0.65, 0.27) 0.14 (-0.28, 0.56)
PM, s + NO, 0.86 (0.42, 1.31) 0.24 (-0.23,0.71) 0.53 (0.09, 0.97)
PM,s + Oy 0.59 (0.21, 0.97) -0.04 (-0.46, 0.38) 0.33 (-0.05, 0.71)

Abbreviations: ER=excess risk; Cl=confidence interval.

composed of a linear function for exposure-response, and a natural cubic B-spline for the lag response with an

intercept and two internal knots placed at equally spaced values in the log scale. We chose 4 days to examine the lag

effect of PM, 5.

In this study, we extended distributed lag model (DLM) to the varying coefficient DLM by including a linear

interaction between temperature (7)) and the cross-basis variables. We directly incorporated the principal and
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SUPPLEMENTARY TABLE S4. Sensitivity analysis of the modification by the temperature on the PM, s;-mortality association
using different temperature cutoffs.

Low temperature Medium temperature High temperature
Temperature cutoffs
ER 95% CI ER 95% ClI ER 95% ClI
25th/75th 0.73 (0.38, 1.09) 0.12 (-0.27, 0.52) 0.46 (0.11, 0.81)
20th/80th 0.61 (0.26, 0.96) 0.20 (-0.21, 0.60) 0.45 (0.10, 0.80)
15th/85th 0.51 (0.16, 0.86) 0.46 (0.02, 0.89) 0.45 (0.10, 0.80)
10th/90th 0.50 (0.14, 0.85) 0.73 (0.26, 1.21) 0.44 (0.09, 0.79)

Abbreviations: ER=excess risk; Cl=confidence interval.

SUPPLEMENTARY TABLE S5. Sensitivity analysis of the modification by the temperature on the PM, ;-mortality association
using different days of lag.

Low temperature Medium temperature High temperature
Days of lag
ER 95% CI ER 95% ClI ER 95% CI
Lag 0-4 0.73 (0.38, 1.09) 0.12 (-0.27, 0.52) 0.46 (0.11, 0.81)
Lag 0-3 0.81 (0.48, 1.15) 0.24 (-0.14, 0.61) 0.57 (0.24, 0.89)
Lag 0-5 0.56 (0.19, 0.94) -0.05 (-0.46, 0.37) 0.29 (-0.08, 0.66)
Lag 0-6 0.43 (0.03, 0.83) -0.15 (-0.58, 0.28) 0.17 (-0.22, 0.56)

Abbreviations: ER=excess risk; Cl=confidence interval.

interaction terms in the model during a special parameterization to satisfy the DLM software specifications. The
interaction term, the cross-product of the categorical temperature variable and PM; 5 were used to examine the
interaction effects between air pollution and temperature. We can estimate the effects of air pollution at a specific
temperature from the three-dimensional curve. For instance, to obtain the effect of temperature at the specific
concentration of air pollution, we only need to provide 3 coefficients of unidimensional NS splines that modeled
the overall cumulative exposure-response relationship. Further, with the temperature divided into three levels, the
model specifications and interpretations were similar. We then used this varying coefficient DLM to predict the
exposure-lag-response association for different temperature strata. To examine potentially vulnerable populations,
we repeated statistical analyses by gender, age group, and education to examine the changes in effect estimates across
subgroups.

In order to detect the potential effect modifications of temperature, we calculated the relative differences of RRs
across strata [relative risk ratio (RRR)] with the following equation.

RRR = EXP |:(E1 - Ez) + 196 V SElz + SE22:|

where £, and E, denote the effect estimates [i.e. In(RR)] of two subgroups; SE(E)) and SE(E)) are corresponding
standard errors of £, and E, (5).
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ABSTRACT

Air  pollution is a significant risk factor
contributing to the burden of disease in China. Health
risk assessment and management are important to
reduce the impact of air pollution on public health. To
help formulate standardized health risk assessment
techniques, a series of studies were conducted from
2006 to 2019. Through systematic review, study of
molecular mechanisms, epidemiological investigation,
and health effect monitoring, the overall project
established a monitoring and evaluation indicator
system, a comprehensive information platform,
software for automatic data cleaning, and standardized
health  risk techniques. ~ Technical
specifications have been issued by the National Health
Commission for promoting health risk assessments
across China. This paper introduces the project, the
research approach, its main research accomplishments,
innovations, and public health significance, and
describes directions for further research.

assessment

BACKGROUND

Air pollution is one of the most important public
health problems in China. The Global Burden of
Disease Study found that ambient and household air
pollution were the fourth and fifth most significant risk
factors contributing to the nation’s age-standardized
disability-adjusted life-years rating (7). To reduce the
impact of air pollution on health, China enacted laws
requiring the establishment and improvement of
environment and health monitoring, investigations,
and  risk systems.  Establishing a
comprehensive air pollution and health monitoring
system and health risk assessment technology involved
three major technical problems. First, a population-
wide indicator system for monitoring and evaluating

assessment
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the health effects of air pollution that spanned the life
cycle and range of severity, from sub-clinical health
effects to death, needed to be established. Second, a
comprehensive information platform that incorporated
multi-source data integration and data quality control
was required. Third, a health risk assessment
technology needed to be established based on the
mechanisms of action of air pollution on health.

After 14 years of hard work, a multi-disciplinary
collaborative research program was finished ,which was
funded by the National Health Commission (NHC),
the Ministry of Science and Technology, and the
National Natural Science Foundation of China.
Through a series of studies (systematic reviews,
molecular  mechanisms  studies, epidemiological
investigations, and health effect monitoring), the three
major  technical problems were solved, and
specifications were formulated. The project identified
the major health impacts and potential health risks of
urban air pollution and is working to reduce disease
burden by integrating health into air pollution
prevention and control policies.

OVERALL RESEARCH APPROACH

Figure 1 shows the studies used to establish a
monitoring and evaluation indicator system (MEIS),
a comprehensive information platform, and health risk
assessment technology. First, MEIS indicators (i.e., air
pollution, and health influencing factors) were
established through systematic literature review,
mechanistic studies of respiratory system damage and
cardiovascular disease, and analyses of existing air
pollution and health monitoring systems.

Second, air quality, meteorological, toxicological,
and health data were collected in selected cities with
smog. After analyzing the data, evaluating data quality,
and defining a data dictionary, an information
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FIGURE 1. Overall research approach of air pollution health impact monitoring and health risk assessment technology and

its application.

platform and database for integrated monitoring of air
pollution on health was established.

Third, data application rules were clarified by
studying relevant technologies, after which accurate
exposure  assessment models,  exposure-response
assessment models, public health risk assessment
models, and health risk assessment techniques for air
pollution were established. Finally, the indicator
system, a comprehensive information platform, and
health risk assessment technology were promoted to
provide technical support for establishing and
improving the health risk assessment system and
implementing health risk management.

RESEARCH ACCOMPLISHMENTS

Figure 2 shows the research milestones leading to the
indicator system, the information platforms and
database, and health risk assessment technology.

Indicator System

In accordance with the World Health Organization
(WHO) Driving Force-Pressure-State-Exposure-Effect-
Action (DPSEEA) framework and the American
hazard, exposure, health effects, and intervention
(HEHI) framework, air pollution and health indicators
were divided into basic, atmospheric environment,
health, and intervention categories (2). Indicators with
clear and probable causal evidence for health effects
were stratified into core indicators. Research clarified
the health impact of indicators that are closely related
to or possibly have causal effects on health.

578 CCDC Weekly / Vol. 4/ No. 26

A guiding principle was that the indicator set should
make full use of existing monitoring data in China.
Studies were conducted in eight cities to determine the
relationship between smog pollutant characteristics and
health. Disease and death data were obtained from
existing monitoring or registration systems, and data
characteristics, quality, accessibility, and availability
were evaluated. Ultimately, an atmospheric pollution
environmental health indicator system was established
based on existing literature, mechanism studies, and
data from existing monitoring systems (2).

Information Platform and Database

Data from existing monitoring systems and
supplementary investigations were used to establish a
comprehensive information platform and database in
selected cities with smog. Relevant data included air
pollutant and fine particulate matter (PM; s)
composition, meteorological factors, and multi-sourced
data on physiological and functional indicators for
entire populations and sub-groups — morbidity and
symptoms, hospital outpatient services, emergencies,
and hospitalizations, and causes of death. Multivariate
analyses were conducted, and a data dictionary was
defined. A basic database on health impact of smog was
established, and data rules were defined. Data quality
was evaluated by assessing repeatability, completeness,
validity, and standardization. An object-oriented
methodology was used to design the software, and the
resulting Comprehensive Information Platform for
Health Impact of Smog (HIS platform) was developed
in Java with middleware technology and centralized
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FIGURE 2. Research milestones of air pollution health impact monitoring and health risk assessment technology and its

application.

Abbreviation: LIGHT=Tumor necrosis factor ligand superfamily member 14, a tumor necrosis factor (TNF) superfamily
ligand; IgE=Immunoglobulin E; HIF-1= hypoxia inducible factor-1; FHL2=four and a half LIM domain protein 2.

data management. This approach allowed for multi-
source data collection, data quality assessment,
statistical analyses, data management, and visual
display of analytic results.

Automated Data Cleaning Tools
Java was used to develop the Toolkit Software for
Cleaning Monitoring Data of Air Pollutants and
Health (CMDAPH software) in a structured query
language database. The resulting software is a secure
tool without requiring installation. It is easy to operate,
allowing for intuitive data import, automatic auditing,
cleaning, export, and visual display. A professional
book was published: “Methods for Data Cleaning and

Public Health Impact Evaluation of Air Pollutant.”

Health Risk Assessment and Technical

Specifications

Health hazards were identified through a systematic
literature review and the findings of molecular
mechanism studies of airway and blood vessel damage
due to typical air pollutants. An accurate assessment
model of individual exposure to PM; 5 was established
by integrating air pollution data, building
characteristics, permeability coefficients, 24-hour
population activity patterns, and concentrations of air
pollutants in microenvironments. Exposure-response

Chinese Center for Disease Control and Prevention

evaluation models suitable for long-term or short-term
exposure were formulated using public health, air
pollution, and meteorological data. Based on sensitivity
analyses, the influence of other air pollutants,
meteorological factors, day of the week, time, and
seasonal trends were adjusted to evaluate the relation
between smog exposure and outcomes in several pilot
cities in China. This model became a key method for
population-based and toxicity-based  health risk
assessments. These technologies were integrated to
develop comprehensive, mechanistic health risk
assessments. Major project outputs included the
publication of the Methods and Application for Health
Risk Assessment of Air Pollution, and formulation of
Technical Specifications for Health Risk Assessment of
Ambient Air Pollution (HRAAAP specification, WS/T
666-2019).

INNOVATIONS

This project brought about several technical
innovations in systems integration. Based on molecular
mechanism study results, monitoring data analyses,
and DPSEEA and HEHI frameworks, an end-to-end
technology system was established. This system, in
turn, led to the establishment of a monitoring and
evaluation indicator system, a comprehensive
information  platform  with  multi-source  data

CCDC Weekly / Vol. 4/ No. 26 579
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integration and data quality control, and
comprehensive health risk assessment technology.

The molecular mechanism studies yielded six major
findings or outputs. First, non-allergenic air pollutants
such as formaldehyde, phthalate, and PM;s may
cause allergies and asthma. Second, two phthalates
(i.e., diisononyl phthalate, Di 2-Ethyl Hexyl Phthalate
(DEHP)] increase blood pressure by activating
angiotensin converting enzyme and inhibiting the
nitric oxide (NO) pathway. DEHP with high
molecular weight and dibutyl phthalate with low
molecular weight had different effects on blood
pressure due to their differential effects on the renin-
angiotensin-aldosterone system or estrogen levels
(3-6). Third, PM,s exposure can induce the
expression of nitric oxide synthase 2 (NOS2) and
production of NO to cause high levels of autophagy.
Conversely, blocking the NOS2 signaling pathway can
inhibit autophagosome formation and subsequent cell
death. NO plays a key role in the lung oxidative stress
response earlier than in inflammatory responses (7).
Fourth, four and a half LIM domain protein 2 (FHL2)
and autophagy play an important role in the vascular
inflammatory response and vascular remodeling
induced by PM; 5 exposure (8). Fifth and sixth, two
markers and primers developed in this project were
converted to patents — a marker for the detection of
asthma in children (Grant No. ZL 201110060515.7)
and a marker and primer for the detection of asthma in
children (Grant No. ZL 201310299330.0).

Another development is obtaining
software copyrights by the project’s HIS platform and
CMDAPH software.

The PM, 5 individual exposure assessment model
became more accurate and comprehensive, as it
considered building characteristics, indoor and outdoor
PM, 5 concentrations, permeability coefficients, 24-
hour population activity characteristics, and the
concentrations of air pollutants in residential, office,
supermarket, outdoor exercise, or transportation
settings (9-10).

Finally, the HRAAAP specification represented the
first health risk assessment standard of environmental
exposure for China’s health industry (17).

innovative

PUBLIC HEALTH SIGNIFICANCE

The key air pollution health risk assessment
technologies established by the project expanded the
understanding of health impacts and health risks
caused by typical air pollutants and provided technical
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support for establishing an environmental health risk
assessment and risk management system.

Promoting Monitoring and Health Risk

Assessment Across the Country

Due to severe smog and concerns about its health
impact, NHC launched the national air pollution
(smog) health impact monitoring program in 2013.
The establishment of a timely indicator system
provided a top-level design and monitoring scheme.
The HIS platform and CMDAPH software have also
been widely used in monitoring projects since 2017,
including in applications in all 31 provincial-level
administrative  divisions (PLADs), 87 monitoring
cities, and 167 monitoring sites by 2021.

The HRAAAP specification was promulgated by
NHC in 2019 and officially implemented on January
1, 2020. By implementing standardized technical
training in the monitoring program, monitoring staff
in the 31 PLADs improved their skills in data review,
clearing, statistical analysis, and health risk assessment.
Air pollution health risk assessment has been widely
implemented in monitoring cities. Identification of
major health impacts and potential health risks of
urban air pollution based on local conditions provides
evidence and a scientific basis for the formulation of air
pollution prevention and control policies and the
development of targeted health protection measures.

Decision-making Basis for National

Environmental Health Actions

Promulgation and implementation of the HRAAAP
specification enabled the establishment of relevant
standards for environmental and health risk assessment
and laid a foundation for establishing a risk assessment
system. It also supported decision-making related to air
pollution health risk management and public health
protection in China. Relevant results provided a
scientific basis for formulating the Three-year Action
Plan for Resolutely Fighting the Battle Against
Pollution, Comprehensively Strengthening
Environmental and Health Work, and the Healthy
China Action (2019-2030): Action to Promote a
Healthy Environment.

Enhancing Public Health Protection

Awareness

The popular science books Smog and Health
Knowledge Q&A and  Abnormal  Weather —and
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Environmental Pollution Events Cognition and Response
were published as part of this project. The content was
translated into various publicity materials including
web pages, posters, and leaflets. Targeted health
protection suggestions were promoted through display
boards, websites, and news media. In a national survey,
430,000 parents received information about the
prevention and control of childhood asthma. These
efforts enhance the public’s awareness of the health
impact of air pollution and protective behaviours that
can be adopted, thus playing an important role in
reducing the health impact of air pollution.

NEXT RESEARCH DIRECTIONS

The atmosphere has a complex composition, and
with the widespread application of new chemicals,
people are exposed to an increasing number of novel
air pollutants. Many studies have shown that health
effects differ by air pollutant composition. It is still not
clear how to accurately assess the health impact and
health risk of single pollutants in mixed pollutant
exposures. With the progress of science and the
emergence of new air pollutants, future research should
focus on several topics. First, health impact and
mechanisms of action of new air pollutants and key
components of particulate should be
investigated to provide more evidence for causal health
effects of air pollutants.  Second, exposure
characteristics and quantitative evaluation methods
should be established for new air pollutants and air
pollutant mixtures. This will provide accurate exposure
data for the assessment of the health impact of
pollutants. Third, a quantitative health risk assessment
technology needs to be established to improve health
protection measures by  assessing
combined exposures of various air pollutants and the
comprehensive influence of geographical,
meteorological, population, and economic factors.
Finally, the impact of continuous air quality
improvement or deterioration on public health requires
further investigation to support the establishment of a
sustainable development path between economic
development and ecological balance.
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