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Preplanned Studies

Characterizing Human Collective Behaviors During COVID-19
— Hong Kong SAR, China, 2020
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Summary

What is already known about this topic?
People are likely to engage in collective behaviors
online during extreme events, such as the coronavirus
disease 2019 (COVID-19) crisis, to express awareness,
take action, and work through concerns.

What is added by this report?

This study offers a framework for evaluating
interactions among individuals’ emotions, perceptions,
and online behaviors in Hong Kong Special
Administrative Region (SAR) during the first two
waves of COVID-19 (February to June 2020). Its
results indicate a strong correlation between online
behaviors, such as Google searches, and the real-time
reproduction numbers. To validate the model’s output
of risk perception, this investigation conducted 10
rounds of cross-sectional telephone surveys on 8,593
local adult residents from February 1 through June 20
in 2020 to quantify risk perception levels over time.
What are the implications for public health
practice?

Compared to the survey results, the estimates of the
risk perception of individuals using our network-based
mechanistic model capture 80% of the trend of people’s
risk perception (individuals who are worried about
being infected) during the studied period. We may
need to reinvigorate the public by involving people as
part of the solution that reduced the risk to their lives.

Countries have adopted public health and social
disease 2019
(COVID-19) transmission, loss of jobs, education
impediments, and other critical social and cultural
activities affected during crises (/-3). During such
extreme events, people are likely to engage in a

measures to control coronavirus

miscellaneous set of behaviors (henceforth collective
behavior), such as exchanging information in social
situations (4). For instance, people are inclined to
swiftly spread messages via social media about natural
disasters in order to gain more knowledge and decrease
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unforeseen worries (5). Recent studies suggest people
would likely similarly share such COVID-19 content
on their social media (6-).

The first COVID-19 case was confirmed in Hong
Kong Special Administrative Region (SAR) on January
22,2020 (8). Since then, Hong Kong has put in place
strong measures to prevent COVID-19, including
wearing masks in all public areas; the closure of
schools, bars and social venues; work-at-home policies;
and restaurant disease control measures (9). Alongside
this, social media has predictably become an all-
embracing part of daily life for rapid knowledge
dissemination during the isolationism of the
COVID-19 pandemic. These platforms have been
used by Hong Kong people to, among other uses,
express their emotions (e.g., depression) during the
pandemic (/0). To study human collective behaviors
during the COVID-19 response, this study evaluates
interactions among Hong Kong residents’ emotions,
perceptions, and behaviors using a network-based
mechanistic model that links together external
situations of COVID-19 prevalence and social
networks (Figure 1A).

This study’s stochastic, network-based, agent-based
model incorporates environment, agents, local
behaviors, and ever-updating rules by combining the
mapping between multiagent systems and social
networks (/7). Following external situation reports,
individuals perceive risks,
different emotional reactions, and further change their
behaviors — usually by following the strengthening
process (i.e., risk perception drives emotional reactions,
and emotional reactions affect collective behaviors,
Figure 1A). Inversely, resulting behaviors should
reduce individuals’ emotions (e.g., anxiety and stress)
and risk perception.

This study gives a general framework for network-
based, agent-based models — extending this study’s
authors’ prior proposed study of collective behaviors
during extreme events (5). In this framework, each
individual has a profile of six attributes, of which one is

experience
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FIGURE 1. Reconstruction of human collective behaviors during the first and second waves of the coronavirus disease 2019
(COVID-19) pandemic in Hong Kong from February 1 to June 20 in 2020, using a human collective behavior model that
incorporates daily external situation reports of new infections. (A) Structure of the individual-based model with influences
from the external situation and individual-based social networks. (B) Results for daily individual emotional intensity levels.
The red dots and shading indicate the median and 95% credibility interval (Crl) of square root of normalized averaged levels
of individual emotional intensity across all agents in the model. (C) Results for daily individual risk perception levels. (D)
Results for normalized daily search behavior levels.

Note: We projected the daily time series of the observed behaviors of individuals by tracking external situation reports of
new infections. In response to the external situation reports, each individual can experience the strengthening process that
first changes the perceived risk of infections and then changes the emotional reactions (e.g., anxiety and stress), which in
turn leads to the adjustment of protective behaviors. Each individual will also experience the weakening process, in which
the changes in protective behaviors can reduce the emotional reactions and perceived risk of infections. Due to daily
interactions on social networks (e.g., messaging in Facebook), the emotion and behaviors of an individual can influence the
emotions and behaviors of other connected individuals in the network, denoted as emotion contagion and behavior
mirroring. These dotted lines denote the interactions of psychological factors within and between individuals. Our human
collective behavior model is well matched to the observed time series in our survey data (black dots). The black dots
indicate the normalized daily logarithmic percentage of individuals who are worried about being infected in our survey to
indicate people’s risk perception in Hong Kong. The red dots and shading indicate the median and 95% Crl of normalized
averaged levels of individual risk perception across all agents in the model. The blue bars indicate daily new cases reported
in Hong Kong. Our human collective behavior model incorporating the interactions among agents is well fitted to the
observed time series data (black dots). The black dots indicate the observation of normalized daily Google search behaviors
of residents in Hong Kong. The red dots and shading indicate the median and 95% Crl of averaged levels of individual
behaviors across all agents in the model.

individual behavior, two
(emotional intensity and risk perception) and three
intrinsic characteristics

psychological  factors

(personality characteristics,
open level, and expression level). This study then

the
behaviors by the overall behaviors of all agents in the

projected population-scale human collective

study’s multiagent system. More details of methods
and data can be found in the Supplementary Material
http://weekly.chinacde.cn).  Lastly,

(available in
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although this study analyzed the model with a focus on
Hong Kong, the results can be applied to other cities in
general. All analyses were conducted by Matab
software (version R2020a, The MathWorks Inc.,
Natick, MA, USA).

Following reports of external situations, individuals
perceive modified risks, experience different emotional
reactions, and change their behaviors. Those resulting
protective behaviors inversely reduce people’s anxiety
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and perceptions of susceptibility, resulting in less
decreases in perceived risk during March and April
2020 (Figure 1C and D). This study then projected
the daily time series of the observed behaviors of
individuals by tracking external situation reports of
new infections (Figure 1B-D). When comparing
observed behaviors of Google search data, this study’s
human collective behavior model incorporating the
interactions among agents is well ficted. About 79% of
the observed Google search data are included in the
95% credibility interval (Crl) ranging of normalized
averaged levels of individual behaviors across all agents
in the model (Figure 1D). The Pearson’s linear
between  the
reproduction number (R,) and the averaged levels of
individual behaviors is -0.40 with a P-value of 0.0001.
After the individual behavior reached its bottom, R,
began to increase after April 23, 2020.

To validate the model output of risk perception, this
investigation conducted 10 rounds of cross-sectional
telephone surveys from February 1 through June 20 in
2020. A total of 8,593 local adult residents have been
interviewed via  these (Supplementary
Material). Such large-scale longitudinal data provides
an opportunity to quantify risk perception levels over
time. This study estimates the daily time series of the
risk perception of individuals using the network-based
mechanistic model informed by external situation
reports of new infections. Compared to the survey
results, the estimated values of median and 95% Cirl
capture 80% (8 out of 10 surveys) of the trend of
people’s risk perception (individuals who worried
about being infected) during the studied period
(Figure 1C). The average level of individual risk
perception continues to decrease, but slows down as
case numbers start to soar in March 2020.

correlation  coefficient real-time

surveys

DISCUSSION

Hong Kong has been following a zero-COVID
strategy, through which it has implemented stringent
social distancing measures (including unprecedented
restrictions, quarantines on inbound
travellers, universal masking, closure of schools, bars
and social venues, work-at-home policies, and
restaurant measures) to curb COVID-19 transmission
since January 2020 and bring case numbers down to
low levels in each wave (9,12-13). Given the
continued threat of COVID-19 in Hong Kong (74),
pandemic fatigue is a natural response due to the
complex interplay of cultural and social factors (e.g.,

movement
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the risk perception of threats) (15-18), which has been
observed in many countries (/9-22). This study’s
results of decreasing individual risk perception indicate
that the gradual emergence of pandemic fatigue in
Hong Kong arose as demotivation from a series of
related behaviors.

The theory behind this study is the interplay of
human psychological factors and external influences on
psychological factors, as indicated in Figure 1 (5). This
study has several limitations. First, it analyzed self-
reported behavior but did not validate this against
actual behaviors — although self-reported surveys have
been widely used to study human behavior, such as
contact patterns (23) and hospital attendance (24).
Second, this study focuses on the period of the first
two waves in Hong Kong, which are taken as extreme
events, rather than subsequent waves. Informed by the
daily Google search interest in Google Trend for
COVID-19 in Hong Kong, this study finds it has
decreased 20% to 50% on average since the third wave,
perhaps due to people having gained enough
knowledge and having gotten used to the COVID-19
situation. Third, other social activities may affect the
risk perception and protective behaviors. Prolonged
financial stress due to job loss, mask costs, and the
distrust of governmental policies may also contribute
to the emergence of pandemic fatigue in the studied
period. Fourth, the risk perception is represented in
this study by the proportion of weekly surveyed
residents who are beyond moderately worried, while in
reality, it is a complex concept involving many
emotions-including anxiety, depression, post-traumatic
stress disorder, and psychological stress triggered by
extreme events (e.g., COVID-19, weather disasters)
(25-26). Importantly, excepting worry, other
sentiments related to risk perception may have
different temporal dynamics and attributes. This study
caveats researchers to be cautious about their
conclusions when using the framework in this study.
Fifth, this study runs 100 stochastic simulations and
uses medians of risk perception across all agents across
simulations to calibrate the model (Supplementary
Material, calibration). More
simulations may have a direct impact on the range of
simulation outputs, but a limited impact on the
medians. As such, this study reminds researchers to be
careful when they use the range of the study model,
rather than only medians. Despite these limitations,
the close matching of model output with human
collective behavior of Google search data and surveyed
risk perception data suggests that the capacity of

section  parameter
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individual-based human collective behavior model in
capturing the actual population behaviors.

The current socio-political and economic dilemma
caused by a pandemic call for decision-makers to focus
beyond the number of cases reported. The fluctuation
of human collective behaviors online reflects people’s
social, emotional, and mental health needs, impacted
by external situations. To maintain people’s risk
perception of COVID-19 on a high level, global
leadership may need to reinvigorate the public by
engaging people as part of the solution, understanding
their needs, acknowledging their hardship, and
empowering them to live their lives with reduced risk
(19,27).
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SUPPLEMENTARY MATERIAL

Data

Epidemic data. This study collected the daily data of all newly confirmed coronavirus cases (by reporting date) in
Hong Kong from January 31 to June 28, 2020 () to denote the impact of external situations on Hong Kong
residents.

Google search data. This study collected the daily data of search interest for the disease of COVID-19 in Hong
Kong during the period of January 31 to June 28, 2020 from Google Trend (2) using URL (https://trends.google.
com/trends/explore’geo=HK&q=coronavirus) to denote the online behavior dynamics of Hong Kong residents.
This study normalized the daily values between 0 and 1 and used them for model parameter calibration.

Survey data. In each monthly/weekly survey from February 1 to June 20 in 2020, this study contacted either 500
or 1,000 local residents through random digit dialing of landlines and mobile telephones (using age, gender,
education, and employment information to weight response frequencies relative to the adult population in Hong
Kong) (3). Then, 8,593 local residents were interviewed through these 10 cross-sectional telephone surveys. During
these calls, this study asked each participant about their perception of the risk of being infected by COVID-19.
Specifically, to assess the risk perception, participants were asked whether they were worried about being infected
with COVID-19 (with a spectrum of response options including: not at all, mildly, moderately, very much, and
extremely worried). Then, this study defined the overall risk perception each week as the proportion of weekly
surveyed residents who are beyond moderately worried.

Methods

General formulation for modeling collective behaviors. Combining the mapping between multiagent systems and
social networks (4), we extend multiagent systems to a network-based agent-based model, which contains three basic
parts: 1) an environment for both serving as a platform and communication channels for agents, 2) autonomous
agents that react to each other in their local environment based on local behaviors and updating rules involved in
their own decision-making process, following the general framework of collective behaviors during extreme events
(%).

Modeling human responses, especially two types of feedback loops underlying the decision-making process in an
uncertain environment, is an open and non-equilibrium system. Through implicitly incorporating certain global
influences or biases (e.g., uncertainty reduction theory in our study) into local behaviors, the whole system can
achieve a desired global state (i.e., collective regulation of information-related behaviors and anxious emotion in our
study). Here, we would highlight the effects of two conditions on collective regulation based on the methodology of
complex behavior characterization.

As a sufficient condition to realize self-organized computation, agents should implicitly incorporate certain global
influences into local autonomy. When agents perform certain behaviors in an uncertainty situation, their profiles
(measured by parameters) can be dynamically updated based on the interactions with other agents. Each local agent
a;makes a decision for a certain behavior in terms of a design-making mechanism for each neighbor of 4;. Before 4
makes a decision, it will first estimate the influences from its neighbors 4 because of the content diffusion. Then, 4
makes a decision by aggregating all impact factors in order to implement the exploit or explore behaviors with
different probabilities based on their own decision-making mechanism.

Modeling collective behaviors during extreme events. Following external situation reports, individuals perceive
risks, experience different emotional reactions, and further affect their behaviors following the strengthening process.
Inversely, resulting behaviors would reduce individuals’ emotions (e.g., anxiety and stress) and risk perception, with
respect to the weakening process.

In our case study of Hong Kong, we consider 1,000 agents with weighted links. Each agent has a profile of six
attributes, including individual behavior (/B), emotional intensity (£7), risk perception (RP), personality
characteristic (PC), open level (OL) and expression level (EL), represented by ib; (1), ei;(2), rp;i(2), pei(2), ol;(#), and
el; (#), respectively, which are all in the range between 0 and 1 for agent 4, at time step ¢. Agent 4; with larger ib; (#)
and ¢i; (¢) would perform more behaviors and emotions to other agents respectively. 7p, (#) indicates how sensitive
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agent 4; is to external situation at time step z. pc; (2), o/;(2), and ¢/; (#) characterize how much this agent would weaken
the impact of negative information, be impacted by other agents, and affect others, respectively. The collective
responses, represented by ib, (#), ¢i, (#), and 7p, (#) at time step ¢, denote the mean estimates of b, (#), ¢i; (#), and rp; (#) of
all agents.

Given /B and EI have the same updating equations, we use S to denote /B or £/, and s to represent the b or ei.
Agents are affected by the local environment/social network (denoted as Fgy) and the psychological mechanism after
obtaining the latest public news (denoted as Fpy). The agent 4; is updated over time by

5; (£ +1) = nFsn (s:(2)) + (1= ) Fom (5 (1) (1)
Fox (s:()) = )y x [flsi )5 (0) = 5 ()], @

where 7 is a scaling factor. w; indicates the link weight between agents 4; and 4;. 5;(#) represent the normalized
diffusion strength of the neighbors of agent 4; at time step #, estimated by

Zﬁ:l‘ wi; X 5 (t)
Zj;ei Wij

The coupling function (5, (#) , 5; (#)) is typically used to estimate the influence of selective parameters on a decision-

5i(7) = 3)

making process (6):

SGi (8) (1) = s () X [1= (1=5;(2)) X (1= s ()] + (1= 7 (1)) x5, (1) X s (1) 4)

Fou (i6; (£ + 1)) and Fpy (e7; (£ + 1)) are estimated by:
Fong (i; (14 1)) = i (= 1) [1= (1 = 1(u)) x (1= ef; (1)) % (1= p; (1))] Q)
Fona (ei; (£ +1)) = \ei; (£ = 1) [1 = (1= 1(w)) % ib; (2) (1= 1p: (1)) ], (6)

where « = ((£))” and B is a scaling factor. Higher RP and external influence 7(«) denote the impact of public reports
7(2) on agents, thus capturing the gradually unfolding COVID-19 events in the studied period. We give the square
root to ib; (t—1) and ej; (£ — 1), resulting in better fitting performance than not. /() is given by:
In(1+ Au)
I(u) = ST @)
The RP of agents is affected by £7 and the external related information and the constant y is used to measure the
weight of these two factors. 7p; (¢ + 1) is updated as:
1

7"Di(l'+ 1) = (1 - V)F’P + VWF,P,

®)

where the value of the second part of the formula will rise rapidly when ¢, () exceeds the threshold 7. The £, is used
to measure the impact of external information on the RP of agent 4,. /(x) would increase individuals’ risk perception
and reduce uncertainty of extreme events. And pessimists (i.e., pc; is low) will amplify the impact of negative public
news (i.e., p is low), and vice versa. F,, is therefore expressed as follows:

Fyy = 1p; (8) x [1 = ib; (2) X (1= I(2)) X (1= pe; X p = (1= p;) x (1= p))].- )

The strengthening and weakening processes are reflected by the positive and negative relationships in the above
equations.

Parameter calibration. To reduce the impact of data noise, we would fit a curve 7¢(#) from model to the external
situation reports following ref. (2). To introduce the stochasticity into simulations, 7¢(¢) is based on 7(z) with random
noise following the uniform distribution «(-¢, ¢):

() =r() +u(=¢,0). (10)

We ran 100 simulations, each with a different time series of 7(#) following this sampling method. § is chosen as
the best value of resulting in the least root mean square deviation between the normalized daily Google search
behaviors in Hong Kong and the medians of normalized averaged levels of individual risk perception across all
agents across 100 stochastic simulations. ¢ is chosen as 0.14 by experience to balance the width of 95% Crl of
individual behaviors in the model.
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Methods and Applications

High-Resolution Data on Human Behavior for Effective
COVID-19 Policy-Making — Wuhan City, Hubei Province, China,
January 1-February 29, 2020

Jingyuan Wang'***; Honghao Shi'; Jiahao Ji'; Xin Lin'; Huaiyu Tian**

ABSTRACT

Introduction: High-resolution data is essential for
understanding the complexity of the relationship
between the spread of coronavirus disease 2019
(COVID-19), resident behavior, and interventions,
which could be used to inform policy responses for
future prevention and control.

Methods: We obtained high-resolution human
mobility data and epidemiological data at the
community level. We propose a metapopulation
Susceptible-Exposed-Presymptomatic-Infectious-
Removal (SEPIR) compartment model to utilize the
available data and explore the internal driving forces of
COVID-19 transmission dynamics in the city of
Wuhan. Additionally, we will assess the effectiveness of
the interventions implemented in the
administrative  units  (subdistricts)  during  the
lockdown.

Results: In the Wuhan epidemic of March 2020,
intra-subdistrict transmission caused 7.6 times more
infections than inter-subdistrict transmission. After the
city was closed, this ratio increased to 199 times. The
main transmission path was dominated by population
activity during peak evening hours.

Discussion: Restricting the movement of people
within cities is an essential measure for controlling the
spread of COVID-19. However, it is difficult to
contain intra-street transmission solely through city-
wide mobility restriction policies. This can only be
accomplished by quarantining communities or
buildings with confirmed cases, and conducting mass
nucleic acid testing and enforcing strict isolation
protocols for close contacts.

smallest

In the ongoing coronavirus disease 2019 (COVID-
19) pandemic (Z), human mobility has been identified
as a key factor in the spread of the disease (2) and in
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shaping its transmission dynamics (3—4). From a global
perspective, cross-border travel can be used to predict
the potential trajectory of global transmission (5-6).
From a country-wide scale, studies have shown that
human mobility from Wuhan City to other cities in
China had a significant impact on the epidemics in
these cities during the first wave of the outbreak (7-8).
Control measures implemented in China, as well as in
other countries, were successful in substantially
suppressing the transmission of COVID-19. The
transmission between subdistricts in a city is usually
responsible for most of the disease transmission across
spatial scales, but it is rarely measured (9).

We will demonstrate how different types of human
mobility can affect transmission dynamics in a city.
Therefore, we can identify social behaviors that are
strongly associated with the epidemic trajectory in a
metropolis of 10 million residents.

METHOD

The calibration of parameters is performed with the
Python (version 3.6.0, Python Software Foundation,
Wilmington, US) and the Python package PyMC
(version 2.3.8). The data of COVID-19 cases (high-
resolution) were sourced from the large epidemic
network of China Electronics Technology Group
Corporation (CETC), which was obtained indirectly
from the front-line hospitals and disease control
departments in Wuhan. Population mobility data was
derived from China Mobile’s cell phone signaling

records.

Model Development
We adopt a metapopulation model to simulate the
transmission of COVID-19 in Wuhan City.
Supplementary Figure S1 (available in https://weekly.
chinacde.cn/) shows the schematic diagram of the
model. Our model treats each subdistrict as a
metapopulation. For each subdistrict, the model

Chinese Center for Disease Control and Prevention
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divides the whole population into five compartments,
i, the susceptible population ,
population F, the pre-symptomatic infectious
population P, the infectious population 7, and the

the exposed

effectively removed population R. Therefore, our
model is named as a metapopulation Susceptible-
Exposed-Presymptomatic-Infectious-Removal (SEPIR)
model. The equations of transition relationships

between the five populations are given as follows.

dS T/f]lt C iSi
dt Zkl(ﬁllaszI N, )_52ﬁi]i_

(1
3 i Siel Thﬂf C; S;
Zh:l (Qﬁl,hEZFlTij - 95 JVZ»P’
d 1 Tyie G i Si
Zkl(ﬁthZﬂ N, )+/82Ni[i+ o
Z P ke A PO Wy
h=1{4 1/7N j=1 1\/} q ZM i eLoi
dP;
7; = OLZEZ' - OLPPZ (3)
dl;
2= 0, = 1, @
dR;
e L (5)

where i denotes the subdistrict index. The variables S,
E;, P, I; R, denote the corresponding compartments’
population of the i-th subdistrict. The parameter § is
the transmission rate between susceptible and
infectious populations. «, is the transition rate from
the population £ to P, a, is the incidence rate, and v is
the removal rate.

Parameter Setting

The transition rate «, is set as the inverse of the
average period between exposure and presymptomatic
infectious (the incubation period minus 2.3 days), and
the incidence rate «, is set as the inverse of the average
presymptomatic infectious period (2.3 days). The
removal rate v was dynamically set as the inverse of the
average duration from symptom onset to confirmation
for every day. As shown in Supplementary Figure S2
(available in https://weekly.chinacdc.cn/), this duration
substantially reduces as a result of intervention policies.

In our model, we set the transmission rates 3 to be
dynamic. Given a subdistrict 7, there were four
transmission rates, namely B{',l, ﬁiz, 5{73, Bé. For any
one of the four transmission rates, denoted as 3., we
set it as By = fy - M, on the day t, where 3, was a basic
transmission rate and M. was the total volume of

Chinese Center for Disease Control and Prevention

resident mobility in the subdistrict 7 on the day #. The
M. was calculated as M. = (Xl.].wi]-, + by, + 1) [ N;, where
wy;;; was the amount of inter-subdistrict mobility from
subdistrict i to subdistrict j during the morning-peak
(to-workplace) period, 4,; was during the evening-peak
was during the off-peak

ijt
(to-home) period, and 7y
period.

We derived the effective reproduction number R, of
the metapopulation SEPIR model by the next
generation matrix. Suppose a model with m
metapopulations, let x= (£, E,...,E, P, DPs,.... D0,
L.L,...,1,)" be the number of individuals for each
infected compartments, ;= S ,82 0=y B S Thﬁ

> NP2 0= Ly N
The detailed calculation process is shown in

Supplementary Material (available in https://weekly.
chinacdc.cn/).

Evaluation Experiments
We adjusted the parameters of the calibrated model
to estimate the effectiveness of different interventions
and their interactions with the effective reproduction
number R,. Using the calibrated model parameters on
January 23, 2020 as the benchmark, we adjusted the

resident mobility intensity, i.e., Wies Py and Tijrs 1O

i
simulate the effectiveness of the mobility restriction
policy, as well as adjusted the average duration from
symptom onset to isolation, i.e., 1/7, to simulate the
effectiveness of the policies aiming to reduce the
infectious period. We construct the contour plot of R,
in Figure 1A through traversing the relative resident
mobility intensity and the average duration from
symptom onset to isolation to generate corresponding
effective reproduction numbers.

We designed two evaluate the
effectiveness of non-pharmaceutical interventions. In
the first scenario, we set the mobility volume after the
Wuhan lockdown to the same level as the last day
before the lockdown (January 22, 2020), while the
infectious period is reduced to reflect reality. This
scenario aims to simulate the condition where only
interventions to reduce the infectious period are
implemented (Scenario 1). Alternatively, in Scenario 2,
we simulate the condition where only the intra-city
mobility restriction is implemented. In this scenario,
the duration from symptom onset to isolation after the
Wuhan lockdown was set as 15.7 days (the average
time on January 22, 2020) and the mobility volume
was reduced to its lowest level.

We re-conducted experiments in Figure 1A with the

scenarios to
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FIGURE 1. Simulation experiments on transmission dynamics and non-pharmaceutical interventions from January 1 to
February 29, 2020 in Wuhan, China. (A)The contour plot between effective reproduction number R, and the two categories
of interventions implemented. (B) The number of cumulative exposed cases caused by intra- and inter-subdistrict
transmissions.

Note: two categories of interventions implemented in Wuhan included mobility restriction (corresponding to relative mobility
volume) and infectious period reduction (corresponding to duration from symptom onset to isolation). The color on the
contour plot represents the value of R, of corresponding relative mobility volume and duration from symptom onset to
isolation. The line formed by blue dots reflects the R, from January 1 to February 29, 2020.

parameters from Zhang et al. (/0) to simulate the
impact of the COVID-19 Delta variant B.1.617.2.

transmission dynamics using a multi-phase framework.

The first wave of COVID-19 in Wuhan can be divided

Specifically, the incubation period was uniformly set to
4.4 days, and all the transmission rates were set to
twice those fitted by the data. Supplementary Figure
S3 (available in https://weekly.chinacdc.cn/) showed

the contour plot of R, under the Delta variant.

RESULTS

We first analyzed the intra-city human mobility and
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into three phases: 1) From January 1 to January 23,
2020, there were nearly no interventions; 2) On
January 23, 2020, mobility
implemented; and 3) On February 3, 2020, in
addition to mobility restrictions, large-scale centralized

restrictions  were

isolation policies for suspected, mild patients, and close
contacts were implemented to reduce the duration of
the infectious period (11).

Based on the above framework, we further analyzed
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the role of resident mobility in intra- and inter-
subdistrict transmission. We used the mobility network
phone data to establish a
metapopulation model to simulate the spread of the
disease between  subdistricts
(Supplementary Material and Supplementary Figure
S1). Since different travel purposes may lead to

measured by cell

within and

different behaviors that could impact transmission, we
further divided residents’ inter-subdistrict mobility
into three categories based on the hours of a day
(Supplementary Figure S2C and Supplementary Figure
S4, available in https://weekly.chinacdc.cn/):  the
morning-peak period (7 a.m. to 9 a.m.), the evening-
peak period (4 p.m. to 6 p.m.), and the off-peak period
(the remaining hours of the day). Therefore, in our
model, the infection rate of a contact is determined by
subdistricts, mobility type (intra- and inter-subdistrict),
and mobility purpose (during morning-peak, evening-
peak, and off-peak periods). Our model accurately
captured the daily number of onset cases in all 99
subdistricts, with a mean absolute percentage error
(MAPE) of 7.04% (see Supplementary Figures S5 and
S6, available in https://weekly.chinacdc.cn/). We
investigated the influence of intra- and inter-subdistrict
mobility on COVID-19 transmission using the model.
Before intra-city mobility was restricted, the volume of
intra- and inter-subdistrict mobility was 71.9% and

A
B
1,600,000
1,400,000 [ Inter—subd%strl'ct transm%ss%on
mmm [ntra-subdistrict transmission
1,200,000
g 1,000,000
% 800,000
>

600,000
400,000
200,000

0

28.1%, respectively. This indicates that intra-
subdistrict mobility was about 2.5 times higher than
inter-subdistrict mobility. Our model indicated that
the number of infections caused by intra-subdistrict
transmission in the first phase was 20,011 [95%
confidence interval (CI): 18,556-21,967], which was
approximately 7.6 times (95% CI: 6.9-8.4) that caused
by inter-subdistrict transmission (2,650, 95% CI:
2,209-3,164).

We analyzed the relationship between inter- and
intra-subdistrict transmission. In the second phase, the
inter-subdistrict mobility was suppressed by 98.9% due
to mobility restrictions (Figure 2), resulting in almost
termination of the inter-subdistrict
transmission  (Figure 1B).  The  intra-subdistrict
mobility decreased by 84.0% (Figure 2), yet the intra-
subdistrict transmission persisted until the centralized
isolation policy was implemented
(Figure 1B). Our model showed that the intra-
subdistrict transmission caused 23,321 (95% CI:
21,097-25,350) infections after the mobility
restrictions, accounting for 99.5% (95% CI.
99.5%-99.5%) of the new infections. According to

individual-level clinical data, the average time from

complete

onset to isolation of a case was more than 15 days in
the first phase, reducing to less than 3 days in the third
phase (Supplementary Figure S2).

¥ Daily volume of inflow

0 100 1,000 34,000
H™ T
C
500,00 ; i
Morning-peak period
mm Evening-peak period
400,00 Off-peak period
2 300,00
=
o
= 200,00
100,00

FIGURE 2. Dynamics of intra-city mobility from January 1 to February 29, 2020 in Wuhan, China. (A) The heatmaps of
average daily inflow mobility volume for each subdistrict in Wuhan with different dates among the three phases. (B) Changes
of intra- and inter-subdistrict mobility volume in Wuhan during the outbreak. (C) Changes of inter-subdistrict mobility during

different peak periods of one day.
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DISCUSSION

Since 2021, the COVID-19 Delta variant B.1.617.2
has spread rapidly around the world, posing a serious
challenge to containing the pandemic. We designed a
scenario to simulate the case of the Delta variant
transmitting in Wuhan in early 2020, and investigated
the impacts of the interventions discussed above using
parameters obtained from Zhang et al. (10)
(Supplementary Material).  Under this  scenario,
mobility restriction alone is unable to reduce R, to 1
due to the high transmissibility of the Delta variant,
and containment of the epidemic could only be
achieved by a 30% relative mobility volume, together
with a short infectious period (less than 2.5 days)
(Supplementary Figure S3). There would be an
estimated 3.81 million (95% CI: 3.54—4.02 million)
cases as of March 1, 2020, if the same interventions
were implemented in Wuhan under the Delta variant.
This result indicates the difficulty of containing this
new variant, and underscores the importance of
reducing the infectious period.

Our work also investigated the effectiveness of non-
pharmaceutical interventions implemented in Wuhan.
Although travel restrictions could reduce the number
of new cases in the short term, they were not sufficient
to terminate transmission. Strict isolation policies in
exchange for a relaxation of traffic control have been
helpful in restoring the economy damaged by the
epidemic. In fact, this was the policy that the Chinese
government adopted to reduce the spread of the virus.
During several rounds of cluster outbreaks after May
2020 in China, the government blocked communities
and buildings with confirmed cases, implemented
large-scale nucleic acid tests, and enforced strict
isolation policies to reduce the duration of the
infection (12-13). Comprehensive and precise control
measures can contain the outbreak while minimizing
its impact on people’s daily lives and the economy.

In summary, we completed a review of the Wuhan
COVID-19 outbreak using a refined metapopulation
model. Based on this, we can make counterfactual
inferences about policies that are more beneficial for
decision-making in advance than the predictions and
analyses of similar work (10,14).

However, the metapopulation model used in this
work has limitations in terms of generalizability. First,
this model requires high-quality raw data and refined
population flow data. Second, the number of
parameters is large, and when the preset parameters are
significantly different from the original data, effective
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fitting cannot be achieved.
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SUPPLEMENTARY MATERIAL

Epidemiological and Demographic Data of Wuhan

The epidemiological data of Wuhan were extracted from the Notifiable Disease Report System of China. This
study used anonymous individual coronavirus disease 2019 (COVID-19) case data, including residential subdistrict,
date of onset, and date of confirmation, from January 1, 2020 to March 1, 2020, for analysis. The demographic
data for the subdistricts in Wuhan City, including population and geographical boundaries, were obtained from the
Sixth Census conducted by the National Bureau of Statistics. We matched the epidemiological cases to the
subdistricts. A total of 161 subdistricts with COVID-19 cases were used for further analysis. Since there were
subdistricts with insufficient cases of COVID-19 to be modeled, we merged the epidemiological and demographic
data of these subdistricts into the geographically closest subdistricts. Lastly, there are #=99 subdistricts for model
simulation.

Proxies for Human Mobility Data in Wuhan
We used cell phone signaling data as a proxy to measure population mobility in Wuhan during the epidemic. The
anonymous cell phone mobility data, provided by a major mobile carrier in China, covered approximately 51.9%
(5.82 million/11.21 million) of the population in Wuhan. The raw cell phone signaling data records the visiting
trajectories of cell phone users at each cellular base station. We integrated the raw data as travel flow of phone users
between 500 m x 500 m grids for each hour. We further integrated the data as travel flow between subdistricts by
merging the flows of grids in the same subdistrict together.

Periods Division of Residents’ Mobility in One Day

Supplementary Figure S4 illustrates the average hourly volume of inter-subdistrict mobility on workdays prior to
January 23, 2020. As shown in the figure, there is a morning peak at 8 a.m. and an evening peak at 5 p.m.,
reflecting the temporal rhythm pattern of residents’ mobility behaviors on workdays. Based on this, we classified
residential mobility in one day into three categories based on the time of departure. The first category is the mobility
from 7 a.m. to 9 a.m.,, i.e., the morning rush hour when people commute to work from their homes. The second
category is the mobility from 4 p.m. to 6 p.m., i.e., the evening peak period when people are returning home from
their workplaces. The last one is mobility during off-peak periods, excluding morning and evening rush hours. The
mobility during the off-peak period is relatively random.

——— Inter-subdistrict visiting Mobility restriction
— State transition Infectious period
______ - Infection reduction
Subdistrict i
b
T T T T T T -~
s, E %) p |2 1 2R
|§\,_‘]ﬂ: _--
[ -
:/))1 S~
-~
‘/ ] _‘ q/)) 1 Ir hY _I
| 1/31 | | P/'Zi |
- _
Other Subdistrict j

SUPPLEMENTARY FIGURE S1. Schematic diagram of the metapopulation SEPIR model.
Abbreviation: SEPIR=Susceptible-Exposed-Presymptomatic-Infectious-Removal
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SUPPLEMENTARY FIGURE S2. COVID-19 cases by date of symptom onset and by date of diagnosis from January 1 to
February 29, 2020 in Wuhan, China.

Note: Changes in the average duration between symptom onset and laboratory-confirmed.

Abbreviation: COVID-19=coronavirus disease 2019; C/=confidence interval.

1 Jan 4

Relative mobility volume

25 50 75 100 125 150 17.5 20.0
Duration from symptom onset to isolation (days)

SUPPLEMENTARY FIGURE S3. Simulation experiments on transmission dynamics and non-pharmaceutical interventions
under the Delta variant.

Note: The contour plot between effective reproduce number R, and the two categories of interventions implemented in
Wuhan, i.e., mobility restriction (corresponding to relative mobility volume) and infectious period reduction (corresponding to
duration from symptom onset to isolation) with the parameter of Delta variant. The color on the contour plot represents the
value of R, of corresponding relative mobility volume and duration from symptom onset to isolation. The line formed by blue
dots reflects the R, from January 1 to February 29, 2020 in Wuhan.

Metapopulation SEPIR Model
In order to study the impacts of different patterns of resident mobility on intra-city epidemic transmission, our
model refines the transmission process into two parts, namely the intra-subdistrict transmission and the inter-
subdistrict transmission, and further divides the inter-subdistrict transmission into three categories, i.e., transmission

in the evening-peak, morning-peak, and off-peak periods. As shown in Formula 1, for the intra-subdistrict

transmission, the number of newly exposed population for metapopulation 7 in one day is 8 ﬁl,[i’ which is the same
7

as the definition of the standard SEIR model. For the inter-subdistrict transmission, the increment of the exposed
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SUPPLEMENTARY FIGURE S4. Changes in the average amount of inter-subdistrict traffic at different times of the workday
before January 23, 2020.
Note: Shadowed regions in different colors denote the split of time.
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SUPPLEMENTARY FIGURE S5. Observation and model simulation of onset cases for Wuhan City.
Note: The shadowed regions represent the 95% confidence interval of model simulation.

Si

population in the metapopulation 7 caused by the inflow mobility from the metapopulation j is expressed as 3 ~ o
Thir - C: !

where Ijz,:%lj, i.e., the infectious population traveled from the metapopulation j to 7 is calculated using 7; and

scaled by human mobility data. Here, N; represents the population of subdistrict j, which is obtained from the
census data. 7} is the amount of inter-subdistrict mobility from the subdistrict j to i in the period 4 of the day 7
where /=1 for the morning-peak, /=2 for the evening-peak, and /=3 for the off-peak period. The parameter C; the
ratio of N, and the number of cell phone users in subdistrict 7, which is used to calibrate the mismatch between cell
phone users and the population.

As different patterns of mobility should have different effects to transmission of COVID-19, we set the
transmission rate 3 as four types in Formula 1. Specifically, ﬂf’l, ﬂf,z, ﬁfﬁ denote the transmission rates for the inter-
subdistrict transmission in the evening-peak, morning-peak, and off-peak periods in the metapopulation i,
respectively, while 3 denotes the transmission rate of intra-subdistrict transmissions in the metapopulation 7. The

Chinese Center for Disease Control and Prevention CCDC Weekly / Vol. 5/ No. 4 S3



China CDC Weekly

presymptomatic infectious population may have different infectiousness with infectious population (1), we multiply
/8 with a factor ¢ for the transmission between presymptomatic infectious population and susceptible population.

Parameter Setting, Calibration and Epidemic Dynamic Simulation

In the epidemiological data, the original record of each infected case includes two dates: the date of symptom
onset and the date of laboratory confirmation. We sampled an incubation period from a Weibull distribution, as
reported in a previous study (2). By using the sampled incubation period and the symptomatic onset date, we can
approximate the exposure date for each case. Moreover, we set the last 2.3 days of the incubation period as the
presymptomatic infectious period according to previous studies (3). In this way, the timeline for an infected case is
divided as five periods, i.c., the Susceptible period (before the date of exposure), the Exposed period (from the date
of exposure to 2.3 days before the date of onset), the Presymptomatic infectious periods (the last 2.3 days before the
date of onset), the Infectious periods (from the date of onset to the date of confirmation), and the Removal periods
(after the date of confirmation). We set a confirmed case as a removed one since all infected persons will be
immediately quarantined once they get confirmation in China and therefore would not cause secondary infections
anymore. We calculate the size of population E;, P;, I; R; in Formula (1) using the number of cases on each day for
each subdistrict 7, and calculate the size of the susceptible population as §; = N, - E; = P, - I, - R,.

In Formula (1), the transition rate ¢, is set as the inverse of the average period between exposure and
presymptomatic infectious (the incubation period minus 2.3 days), and the incidence rate a,, is set as the inverse of
the average presymptomatic infectious period (2.3 days). The removal rate ~ is dynamically set as the inverse of the
average duration from symptom onset to confirmation for every day. As shown in Supplementary Figure S2, this
duration substantially reduces as a result of intervention policies.

In our model, we set the transmission rates 5 in a dynamic way. Given a subdistrict 7, there are four transmission
rates, namely nyl, 6{72, ﬁfﬁ, 35, For any one of the four transmission rates, denoted as 35, we set it as 85 = 3 - M, on
the day 7 where [, is a basic transmission rate and A, is the total volume of resident mobility in the subdistrict i on

. , Zl]u/,ﬁ + by + 1y
the day 7. The M, is calculated as M, = —
subdistrict 7 to subdistrict j during the morninlg—peak (to-workplace) period, 4
home) period, and r;, is during the off-peak period.

, where w;;, is the amount of inter-subdistrict mobility from

it
s is during the evening-peak (to-

The basic transmission rates nyl, Bf’z, Bfé, B3, and the presymptomatic infectiousness discount factor ¢ are
calibrated by the Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm (4), with the state P, I; R,
for each day as supervisions. The process of the parameter generation is performed separately for each subdistrict and
for three phases. For each phase, after a burn-in of 1,000 iterations, we run the MCMC simulation for 10,000
times, with sampling at every 50th step. The average root mean square error (RMSE) for each subdistrict is 4.35,
and the simulation results are shown in Supplementary Figure S5. The calibration of parameters is performed with
the Python (version 3.6.0, Python Software Foundation, Wilmington, US) and the Python package PyMC (version
2.3.8) (5).

Estimation of Effective Reproduce Number from Model Parameters
We derive the effective reproduce number R, of the metapopulation SEPIR model by the next generation matrix
(6). Suppose a model with 7 metapopulations, let x = (£, Es, ..., E,,, P\, Py, ..., Py L I, . .. .I,)" be the number of
S; i S T
individuals for each infected compartments, », = ﬁll Br1, i =) 0 ,,N’i ch]

Furthermore, we have
% < F4- Vil
Where F;(x) is the rate of generating new infections in the i-th compartments of vector x, V;(x) is the transition
rate of infections in the 7-th compartments of vector x by all other means, F(x), V(x) € R, and based on the
ordinary differential equations in Formula (7), we can derive the formulation of F(x) and V(x) as

F(x) = ([Fs (9], [Fp (0], [ (9]
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With Fy(x) = [Zjﬁqvﬁf} + gu;P; + Zj#”ji]j + ui[i]217 Fp(x) = Fi(x) = OmX1,

V) = ([Ve @1, [Ve (1,2 ()"
With Vi (x) = [0, E]L, Vo (%) = [—aoE + o, 2] Vilx) = [~ P+ L]
Next, we have the matrix
_[0F (] _ | 9Fx(x) OF; (x) OFy () 0F; (x) OF (x) OF, (x) OF; (x) OF (x) OF; (x)
F(x)‘[ ]" dE, 0P, o, 9E op, o, 0 o ol

J J J J J

%

OFg () N )6 L , —
Where [ o | {qui, i = jqvy;, i # j, o |” {;,i = jv;,i # j, and other sub-matrixes are 0™,

Similarly, we have

Vi) [avz-(x)} [avg'(x)avg(x)aVé(x)av;(x)8v,i(x)av;(x)8v;(x)av;<x)8v;(x)}

x) = = -

% 0E, 0P, 0, 0OE 0P, 0l OE or, 0l
[[ael]mxmOmxmOmxm[_ael]me[apl]meOmxmOme[_aPl]me[,_Yl]mxm]

and
~1 -1 MXM S~ mXm -1 mxXm -1 mXm _gpxml —1 mXmp -1 mXmp -1 mXm
174 (x)=[[at -1] OXOX[aP-l] [ap-l] OX['y -1] ['y -1] ['y -1} ]
Where 1 denotes identity matrix.
Based on this, we can derive the next generation matrix for the metapopulation SEPIR model as

FV' = [ABCDEFGHI]
9w i Yo g% w9V Vi
Where A_{a_+7’l_]a_],+7’l¢]’8_{ +—i=j—+ = i¥j,C={=,i=

i Yji
Q, vy Q, v’

,i#j, and other sub-

matrixes equal to 0.

Finally, by Driessche and Watmough (6), the effective reproduce number R, can be derived as
R.=p(FV7),
Where p(A) represents the spectral radius of a matrix 4. According to the property of matrix computation, this is
equivalent to the maximum of absolute eigenvalues of the matrix

g9 1 .o
A= (L4 2t

Evaluate on the Effectiveness of Non-Pharmaceutical Intervention
We adjust the parameters of the calibrated model to estimate the effectiveness of different interventions and their
interactions to the effective reproduce number R,. Using the calibrated model parameters on January 23, 2020 as the
benchmark, we adjust the resident mobility intensity, i.e., Wiies hies and Tijes 1O simulate the effectiveness of the

mobility restriction policy, as well as adjust the average duration from symptom onset to isolation, i.e., 5 to

simulate the effectiveness of the infectious period reduction policies. We construct the contour plot of R, in
Figure 2 through traversing the relative resident mobility intensity and average duration from symptom onset to
isolation to generate corresponding effective reproduction numbers.

We design two scenarios to evaluate the effectiveness of non-pharmaceutical interventions. In the first scenario,
we set mobility volume after the Wuhan lockdown to be the same as the last day before the lockdown (January 22,
2020), while the infectious period declines as the reality. This scenario is set to simulate the condition where only
the interventions to reduce the infectious period are implemented, which is called Scenario 1. Oppositely, in the
second scenario (Scenario 2), we simulate the condition where only the intra-city mobility restriction is
implemented, where the duration from symptom onset to isolation after the Wuhan lockdown is set as 15.7 days
(the average time on January 22, 2020) in the model, and the mobility volume drops to its lowest level as the reality.

To simulate the impact of the COVID-19 Delta variant B.1.617.2, we reconducted the experiments in Figure 2
with the parameters from Zhang et al. (7). Specifically, the incubation period was set to 4.4 days uniformly, and all
the transmission rates were set to 2 times of those fitted by data. Supplementary Figure S3 shows the contour plot of
R, under the Delta variant.
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Methods and Applications

Optimization of Population-Level Testing, Contact Tracing, and
Isolation in Emerging COVID-19 Outbreaks: a Mathematical
Modeling Study — Tonghua City and Beijing
Municipality, China, 2021-2022

Zengmiao Wang"®; Ruixue Wang**; Peiyi Wu'; Bingying Li'; Yidan Li';
Yonghong Liu* Xiaoli Wang’; Peng Yang’ Huaiyu Tian"

ABSTRACT

Introduction: The transmissibility of the severe
acute  respiratory  syndrome  coronavirus 2
(SARS-CoV-2) Omicron variant poses challenges for
the existing measures containing the virus in China. In
response, this study investigates the effectiveness of
population-level testing (PLT) and contact tracing
(CT) to help curb coronavirus disease 2019
(COVID-19) resurgences in China.

Methods: Two transmission dynamic models (i.e.
with and without age structure) were developed to
evaluate the effectiveness of PLT and CT. Extensive
simulations were conducted to optimize PLT and CT
strategies for COVID-19 control and surveillance.

Results: Urban Omicron resurgences can be
controlled by multiple rounds of PLT, supplemented
by CT — as long as testing is frequent. This study also
evaluated the time needed to detect COVID-19 cases
for surveillance under different routine testing rates.
The results show that there is a 90% probability of
detecting COVID-19 cases within 3 days through daily
testing. Otherwise, it takes around 7 days to detect
COVID-19 cases at a 90% probability level if biweekly
testing is used. Routine testing applied to the age
group 21-60 for COVID-19 surveillance would
achieve similar performance to that applied to all
populations.

Discussion: Our analysis evaluates potential PLT
and CT strategies for COVID-19 control and

surveillance.

Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is one of the most dangerous infectious
diseases of the 2Ist century. Its rapid and global

82 CCDC Weekly /Vol. 5/ No. 4

emergence is due in part to its large reproduction
number as well as its significant levels of transmission
by pre-symptomatic and asymptomatic hosts (7).
Undetected asymptomatic cases are dangerous because
they may trigger flare-ups that circulate in the
community (2). All of this was greatly exacerbated by
Onmicron, a variant that emerged in 2021 with a high
degree of transmissibility (3). To effectively identify
asymptomatic infections and prevent rampant disease
transmission, it is critical to broadly test all at-risk
communities (4).

SARS-CoV-2 testing has been emphasized since the
beginning of 2020. Although many studies showed the
positive impacts of testing on coronavirus disease 2019
(COVID-19) control (5-9), they initially primarily
examined cost-effective rapid antigen testing (5), mass-
testing methods that only cover 5% of the population
(6), routine PCR testing for specific subsets of at-risk
groups [e.g., health workers (7) or quarantined persons
(9)], symptomatic cases (8), and the effect of testing on
reducing quarantine lengths (70). However, as
knowledge increased about SARS-CoV-2, testing was
expanded to cover a broader population: testing to
detect symptoms (e.g., fever), testing regardless of
symptoms, community-testing (/7), population-level
testing (12), and mass-testing (6).

Many countries employed community-level and/or
population-level testing to better prevent COVID-19
transmission. In England, 8 rounds of community-
level PCR testing were carried out to investigate
symptom profiles at different ages (77). Slovakia
conducted population-wide rapid antigen testing and
found that two rounds of testing reduced the
prevalence of COVID-19 by 58% (12). However, the
investigation of PLT on the suppression of COVID-19
flare-ups has been scant, especially for the Omicron
variant. Preventing COVID-19 resurgence is a moving
question in the face of emerging variants and the many
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possible interventions.

The COVID-19 resurgences in Tonghua City, Jilin
Province (B.1.1 variant) and Beijing Municipality
(Omicron variant) provide a valuable opportunity to
study the effectiveness of PLT and CT, as multiple
rounds of PLT and CT were performed in both cities.
PLT and CT facilitated fast case identification and
alleviated the effects of underreporting in China. With
these features in this dataset and transmission-dynamic
models of infectious diseases, the strategies for
COVID-19 control and surveillance are quantified.

METHODS

Data Collection
The daily infection data were collected from the
Beijing and Tonghua health commission websites. The
population size was obtained from the local Statistics
Bureau or government census data.

Transmission Models

To evaluate the effectiveness of population-level
testing (PLT) and contact tracing (CT) strategies, two
transmission models were developed in this study.
First, a transmission model incorporating PLT and CT
was introduced to set up the context of modeling.
Then, the model was extended to take age structure
into account. Please see the Supplementary Materials
(available in http://weekly.chinacdc.cn/) for more
details on this.

Modeling the Probability of Detecting
COVID-19 Cases for Surveillance Under

Routine Testing

The probability of detecting COVID-19 cases under
routine testing is a function of the sensitivity of PCR
tests, the testing rate, and the particularized dynamics
of the outbreak. To model the dynamic of an outbreak,
an extended Susceptible-Exposed-Infectious-Removed
(SEIR) model was developed. Please see the
Supplementary Materials for more details on this.

Simulation Set-up
A PLT strategy was one of the combinations: the
time lag between the date of the first case identified
and the date of the PLT launched (ranging anywhere
from 1 to 7 days), population-level testing intervals
(i.e. the time to complete 1 round of testing, including
sample collection and reporting results, set to be either

Chinese Center for Disease Control and Prevention

2, 3, 4, 5, 7, or 10 days) and the break intervals
between sequential rounds of testing (set to be either 0,
1, or 2 days) — which are often needed as a break for
the testing staff. The total days considered to complete
1 round of testing was the testing interval plus the
break interval. The outbreak duration divided by the
total days needed to complete 1 round of testing was

calculated as the rounds of PLT.
RESULTS

COVID-19 Resurgence in Tonghua
and Beijing

Resurgences of SARS-CoV-2 occurred in Tonghua
(B.1.1 variant) in Jan-Feb of 2021, and Beijing
(Omicron variant) in April-Jun of 2022. Once an
index case was identified, CT was launched. To rapidly
detect SARS-CoV-2 infections, the cities launched
population-level PCR  tests. To contain the
transmission, Tonghua performed 3 rounds of testing
— whereas Beijing conducted 26 rounds. After
multiple rounds of PLT, there were no new cases
reported, with the recurrence ultimately seeing 318
cases in Tonghua and 2,230 cases in Beijing.

The Population-level Testing and Contact
Tracing Model Without Age Structure

A transmission-dynamic model without age

structure (Figure 1) was fitted using the daily new
infections identified from both PLT and CT in
Tonghua. The model assumed all infected individuals
were identified either from CT or PLT, and were then
quarantined and removed from the transmission chain.

Using the estimated parameters for Tonghua, this
study evaluated the effectiveness of different PLT
strategies in the containment of COVID-19 flare-ups.
The required number of rounds of testing increased
with the decreasing success fraction of CT if the testing
interval remained unchanged (Figure 2A). If the
success fraction of tracing remained unchanged,
decreasing the testing interval not only reduced the
necessary number of testing rounds, but also shortened
the outbreak duration (Figure 2B).

Our analyses show that the time lag, the testing
interval, and the break interval have important effects
on outbreak control. For a given testing interval,
longer time lags necessitate more rounds of testing and
result in longer durations of flare-ups (Figure 3A and
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: removing rate for a traced contact is in compartment S at the time of tracing.

FIGURE 1. Simplified illustration of models. (A) A schematic of coronavirus disease 2019 (COVID-19) outbreak control and
surveillance in China. (B) The transmission-dynamic model.

Note: In the transmission dynamic model, the following compartments are considered: susceptible (S), exposed (E),
infectious pre-symptomatic (P), infectious asymptomatic (A), infectious symptomatic (/), and recovered (R). Compartments
for infections identified through population-level testing (T) or contact tracing (C) as well as healthy individuals in quarantine
(Q) are also included. The infections in T and C are isolated. B,, 85, B,are the transmission rates for infectious asymptomatic,
pre-symptomatic, and symptomatic cases, respectively. p, is the proportion of asymptomatic cases.1/y; is the latent period.
1/ye is the pre-symptomatic period for symptomatic cases. 1/y, and 1/y, are the time to recover for asymptomatic and
symptomatic cases, respectively. 1 represents the rate of population-level PCR tests. 1/q is the time for quarantine. w is the
decay rate of antibodies for the individual in R. For further details, please refer to the methods section.

Abbreviation: PLT=population-level testing; CT=contact tracing.
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FIGURE 2. The effects of PLT strategies, CT, and asymptomatic proportion on mitigation of COVID-19 flare-up outbreaks in
Tonghua City. (A) The number of rounds of tests required to contain transmission for the B.1.1 lineage. (B) The
corresponding outbreak duration (days) in (A). (C) The effects of the proportion of asymptomatic cases on the required
rounds of testing for the B.1.1 lineage. (D) The corresponding duration of flare-up outbreaks in (C).

Note: For panels A-D, the break interval is 2 days and the time lag is 3 days. For panel B, columns correspond to the
success fraction of CT: the fraction of contacts that were successfully traced (k). Rows correspond to the number of days
needed to complete a population-level round of testing. For panels C-D, the success fraction of contact tracing is set to
0.35. Grey areas represent parameter combinations by which outbreaks would not be controlled. This study defined that the
outbreak was under control if the daily new infections were zero for 2 successive days. The number of rounds of PLT was

calculated as the days to control the outbreak divided by the total days to complete 1 round of testing.
Abbreviation: COVID-19=coronavirus disease 2019; PLT=population-level testing; CT=contact tracing.

D). Similar issues are predicted for increasing testing
intervals if the time lag is fixed (Figure 3).

The Population-Level Testing and
Contact Tracing Model with
Age Structure

We then extended the previous model to include age
structure using the Omicron infection data from
Beijing.

Based on the estimated parameters for Beijing, the
effects of different testing rates for different age groups
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were explored (Figure 4). Overall, the simulation
showed that the Omicron resurgence in a city could be
controlled by multiple rounds of PLT. However,
variations in the average number of tests needed per
individual under different testing strategies were observed
(Figure 4). The 21-60 age group has an important role
in COVID-19 transmissions (Figure 4B). The
modeling results demonstrate that, taking the average
number of tests per individual as a benchmark, an
appropriate frequency of tests for all age groups would
be the best testing strategy to combat Omicron
outbreaks.
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FIGURE 3. The effects of time lag, testing interval, and break interval on mitigation of B.1.1 outbreaks in Tonghua. (A)
Rounds of PLT required to contain transmission at Break interval=0. (B) Rounds of PLT required to contain transmission at
Break interval=1. (C) Rounds of PLT required to contain transmission at Break interval=2. (D) The corresponding outbreak
duration (days) in (A). (E) The corresponding outbreak duration (days) in (B). (F) The corresponding outbreak duration
(days) in (C).

Note: In panels A—C, the number in each cell represents the rounds of PLT needed to control the outbreak. The success
fraction of CT is set to 26% for (A) to (F). Rows correspond to the time lag between the date of the first case identified and
the date of launching PLT. Columns correspond to the population-level testing interval. The break interval represents the
break time between 2 sequential PLTs. The total time to complete 1 round of testing is the testing interval plus the break
interval. The grey represents the PLT strategy by which the outbreak would not be sustained.

Abbreviation: PLT=population-level testing; CT=contact tracing.
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FIGURE 4. The needed total tests per capita to control Omicron wave under different testing strategies in Beijing
Municipality. (A) The testing frequency for ages 0-20 years. (B) The testing frequency for ages 21-60 years. (C) The testing
frequency for ages >61.

Note: The testing frequency for other age groups is smaller or equal to that for ages 0—20. Each cell represents the total
tests per capita.

The Probability of Detecting COVID-19 surveillance. The routine testing rate and the targeted

population for testing have impacts on the time it takes
to detect a COVID-19 flare-up. We developed a

Routine Testing Rates for Beijing model to estimate the cumulative distribution of time
Routine testing is critical for COVID-19 needed to detect COVID-19 cases since an undetected

Cases for Surveillance Under Different
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FIGURE 5. The cumulative distribution of time (days) needed to detect coronavirus disease 2019 (COVID-19) cases under
different routine testing strategies in Beijing for surveillance. (A) Testing all age groups. (B) Testing the ages 0-20. (C)

Testing the ages 21-60. (D) Testing those aged >61.

Note: This study assumes that the first imported case was under exposed status and no reported SARS-CoV-2 infections
occurred before the imported case. The duration is defined as the time interval from the date of importation of a COVID-19
case to the date of detecting at least 1 COVID-19 case by routine testing.

SARS-CoV-2 infection was imported. If routine testing
is applied to all age groups, there is a 90% probability
of detecting COVID-19 cases within 3 days using daily
testing. Otherwise, it takes 7 days to detect COVID-19
cases with a 90% probability level under biweekly
testing schemas (Figure 5A). If routine testing is
applied to the 0-20 and >61 age groups, respectively, a
longer delay to detect COVID-19 cases is observed
(Figure 5B and 5D). However, the cumulative
distribution of time needed to identify COVID-19
cases when testing the 21-60 age group is similar to
that when testing all age groups (Figure 5C). This
indicates that routine testing applied to the 21-60 age
group for COVID-19 surveillance can achieve similar
performance to that applied to all populations.

DISCUSSION

Using the data from SARS-CoV-2 flare-up
outbreaks, this study evaluated the effects of PLT and
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CT on curbing COVID-19 resurgences. It showed that
different combinations of PLT and CT lead to
dramatically different scenarios of control. Considering
the cost of PLT, there is both an economic and public
health benefit to launching testing as early as possible
and shortening testing intervals.

Testing capacity may be a challenge for some cities.
However, a certain level of testing should be
guaranteed given the dramatically enlarged capacity of
polymerase chain reaction (PCR) tests and the new
rapid testing methods made available since the start of
the pandemic (73). Although the sensitivity of rapid
antigen testing is lower than PCR tests, recent studies
found that test sensitivity is secondary to frequency
and turnaround time for COVID-19 screening (/4).
In regions with constrained resources, optimal pooled
testing strategies may be employed (15).

The Omicron variant poses a great challenge for
COVID-19 control. This study found that Omicron
outbreaks could be controlled using multiple rounds of

CCDC Weekly / Vol. 5/ No. 4 87



China CDC Weekly

PLT. If new variants with higher transmissibility
emerge, more rounds of PLT and a higher success
fraction of CT would be needed to contain the
outbreak. The PLT strategy can also be optimized
among different age groups if the average tests per
individual is used as a benchmark. Considering the
importation of COVID-19 cases, this study also
evaluated time needed to detect COVID-19 cases
under different routine testing rates and different
targeted testing populations for surveillance. The
results indicate that testing the 21-60 age group for
COVID-19 can achieve similar performance to that of
testing all populations.

There are a few limitations to this study. In this
model, no spatial heterogeneity is assumed. In reality,
populations living in residential areas with high-rise
housing would be priority tested multiple times.
Further, individuals in high-risk regions would be
tested first. Therefore, the necessary rounds of PLT
would be smaller than the prediction in this research.
In addition, the model with the constancy of
population size is formulated because no travel in and
out is assumed. This assumption thus implies that
there are no imported COVID-19 cases after the
outbreak was detected. In reality, Omicron outbreak is
harder to control compared to the B.1.1 variant.
However, the results for these two variants based on
our analysis cannot be compared directly because the
parameters for them are quite different. Next, due to
the insufficient surveillance of SARS-CoV-2, the
reproduction number, proportion, and clinical and
immunological profiles of asymptomatic infections are
still not clear (I16-17). More studies about the
immunity profile (induced by primary infection and
vaccines) and the protection of different vaccines
against different lineages are needed to calibrate such
calculations in the future. Finally, the age distribution
of imported COVID-19 cases is assumed based on the
age structure of Beijing. However, the deviation of
imported COVID-19 cases from this assumption
would have influences on the effectiveness of routine
testing — especially for the different target testing
populations.

In summary, our modeling analysis provides insights
to local governments on what is necessary to control
COVID-19  resurgences in regards to
population-level testing and contact tracing. Further
investigation is required to understand whether the
outcomes of frequent population-level testing can be
replicated outside the context of China.
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SUPPLEMENTARY MATERIAL

This section will introduce the models applied to the coronavirus disease 2019 (COVID-19) data in Tonghua
City and Beijing Municipality, China.

Population-Level Testing and Contact Tracing Model Without Age-Structure

Basic notations and set-up: We developed a transmission-dynamic model that incorporated the asymptomatic and
symptomatic cases. Specifically, we considered susceptible (S), exposed (E), pre-symptomatic (P), infectious
asymptomatic (4), infectious symptomatic (), and recovered (R) individuals (see the model illustration in Figure 1).
Control measures [population-level polymerase chain reaction (PCR) testing and contact tracing] were
implemented, and the infected individuals were identified through either population-level testing (PLT) (7) or
contact tracing (CT) (C). Therefore, they would be quarantined and exit the transmission chain. Healthy
individuals may also be traced and quarantined (Q). Although the contacts detected by CT were large, they account
for quite a small proportion of the overall population given the millions of people in Tonghua. The proportion of
susceptible persons didn’t change a lot. 0 daily infections for 2 successive days was used as an index of a controlled
flare-up. In this study, 1 round of PLT is defined as everyone tested 1 time in a population. The rounds of PLT
needed to control resurgences was quantified.

Population-level testing and contact tracing in the model: Let 7 (the proportion of population tested per day)
represent the testing rate for a city. To simplify the model, the spatial heterogeneity of testing was not included.
Further, the tracing and quarantining of secondary contacts were not modeled for simplicity. Due to the detailed
epidemiological investigations available to learn from, onwards infections could be identified relatively effectively
from CT and PLT even in individuals without overt symptoms. Once an infection was identified, the contacts
would be in different compartments at the time of tracing. Therefore, traced individuals are removed through
different compartments (see the model illustration in Figure 1). To model the contact tracing in a detailed way, the
contact tracing rate, the contact tracing precision (i.e. the proportion of traced contacts who were infected), and the
probability that a contact traced through an infection from compartment 7 had progressed to compartment j at the
time of tracing was formulated.

Considering that the sensitivity of PCR testing depends on the disease’s progress, the PCR test sensitivities for
different compartments were included. Specifically, 7z, 74, 7p, 7; represent the sensitivity of PCR tests for the
individuals in compartments £, A, P and /, respectively. This study then modeled the CT like those in the study of
Davin Lunz et al. (7) with extension. The contact tracing rate «; for compartment 7,7 € {E, A, P, I} is given by the
testing rate 7, the sensitivity of PCR test, the fraction of contacts that were successfully traced «, the contact
number per day M, and the pre-defined CT time window (L days), which is o; = z,;7kLM. k represents the
strictness and capacity of CT in a city. L depends on the specific infectious disease. The contact tracing precision 6;
for the primary cases from compartment 7 is defined as the proportion of traced contacts through compartment 7
that were infected. It is related to the average transmission rate and the proportion of susceptible persons in the
population, which is 6; = S3;/(N x M). N is the population size. For compartments A and P, 34 = B4 and B» = fp.

Bplyp+ 7 721?)_1 + B+ 751)_1

( T - . B3; is the transmission rate
Yp+TEp) It T

For compartment /, the average transmission rate is 3, =

for an individual in compartment 7. Note that the individuals in £ are not infectious and the contact precision for
compartment £ is 0. The contacts who were traced through infections in compartment 7 are removed at the rate of
a;0;i and removed from compartment j with the proportion of p;, where ) (. , » 5 p; = 1. Note that p; depends on
dynamic of COVID-19. Note that the contacts traced through the individuals in compartment 7 may be either not
infected, or were infected by someone else rather than the identified cases. Therefore, they are removed at the rate
a;(1 - 6,)i. The full set of equations representing the transmission is given by

S(z+1) = S(#) = A+ wR(z) + qQ(7) - Mil\;)
Er+1) = He) + A = (17g + (1 = T72g)ve) E(8) = a0i()p 1 — pbpP)ppr — s 4 A()pag — M%

Chinese Center for Disease Control and Prevention CCDC Weekly / Vol. 5/ No. 4 S1



China CDC Weekly
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R(t+1) = R(2) + v4(1 = 77 4)A(#) + vl = 777)(2) — wR(2)

Qe +1) = QU - 40U + 42

Cle+1) = ) + afylld) + onbpP() + g () + p AW ;P(”) + 1)
T(l’+ 1) = T(t) + 7'(7ZEE(Z') + EAA(Z) + 7ZpP(l‘) + 7[[](1’))

where

=l =0)1(2) + cp(l = 0p)P2) + a1 = 04)A(7) + apE(2)
A =20 50-+ 8000+ Butel)

ZjG{E,A,P,I}Pij =lLie{4,P ]}
N = 8(2) + E(2) + A(2) + P(2) + 1) + R(2) + Q(#) + Cl#) + T(#)

In this study,p,is the proportion of asymptomatic cases. 1/ y g is the latent period. 1/ 7y p is the pre-symptomatic
period for symptomatic cases. 1/ 7y 4 and 1/ 7y jare the time to recover for asymptomatic and symptomatic cases,
respectively. B4, Bp, B; are the transmission rates for asymptomatic, pre-symptomatic, and symptomatic cases,
respectively. This model takes 8, for infectious asymptomatic individuals to be \;8; and S for pre-symptomatic
individuals to be X\,4; similar to the setting of (2). Due to other detailed epidemiological investigations, onwards
infections could be identified relatively effectively from CT even in individuals without overt symptoms. In the
model, traced individuals are tracked through different compartments. Similar to CT, the infections can also be
identified through different compartments by population-level PCR tests, regardless of presence or absence of
symptoms. For the individuals in R, they will enter the state of § due to the decay of antibodies at a rate of w. It is
set to be 0 unless otherwise stated. The quantities @ ;, §; depends on the disease dynamic, 3; and k. For p;;, it also
depends on the disease dynamic and the CT delay (%) and can be derived from the model. Please refer to the
following sections for more details about p;. According to the next generation matrix,

Ba Br Bi

Ry = pax, * (1- pa)% +(1- pd)%. B, is used to represent the reduced percentage of transmission rates due to other

NPIs (for example, wearing face masks and following social distancing guidelines). Therefore, the actual
transmission rate for symptomatic cases would be /1 - ,). The unknown parameters for this model are the
reduced percentage of transmission rate (3,), the fraction of contacts that were successfully traced ( « ), and the
initial values for A, P, [, and E.

The model fitting: This study has two sets of observations: the daily new infections identified from CT and the
daily new infections identified from PLT. It models the number of daily new infections identified by CT and the
number of new infections identified by PLT as a random variable following Poisson distribution with expectation
ASand )/, respectively. Specifically,

E(2) + A(2) + P(2) + I(2)
N

A = @,0,0(0) + apbpP(r) + b A1) +

A = 7 {mB(0) + maA(2) + mpPlt) + 7l(1)}

a0,0(2) + apfpP(2) + ay0,4A(2) represents the infected contacts traced through infections in compartments A, P and
E) + A?) + P(2) + 1(2)
I p ~

cases. Therefore, A is the mean of daily infections identified by CT. 7 is the proportion of population tested per
day and ) is the mean of daily infections identified by PLT. This study fitted the model to 2 sets of observations

with a 3-day rolling mean. Model fitting was performed using the Metropolis—Hastings Markov chain Monte Carlo
(MCMC) algorithm with the MATLAB (version R2020a) toolbox DRAM (Delayed Rejection Adaptive
Metropolis). 100,000 iterations were set for burn-in. After that, another 100,000 iterations were performed.

represents the traced contacts who were infected by someone else rather than the identified
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The calculation of p;: This section calculates the probability that a contact who was traced through an infection
in compartment i has progressed to compartment j at the time of tracing, i€ {A,P,I}, j€{E,A,P,I}. The
calculation process is similar to that in (/), but expanded to A, P and / compartments from different age groups.
Note that the age group g should be omitted in the model without age structure. The full descriptions with age
structure are given here. For readability, the details are described here. The transition probability is introduced

Pg 14,5, = P(individual in B at t =S, |individual in A at t =, ),

by assuming the individual progresses along a continuous-time Markov chain following the disease’s progress.
With time-homogeneity, Pg g4, s, = Ps, 5,-5,14,0 = Pia(S2 = Si). Defining the time #=0 as the time of obtaining the
positive PCR tests report for the tested case of age group g in compartment i € {A, P, I}, this study calculates the
probability (p‘é) that a contact traced through this case is in compartment j € {E, A, P, I} at t = t; = 0. # represents the
contact tracing delay. It is set to be 0 unless otherwise stated. Let Q be the probability density of an individual
infecting a contact (given the individual tests positive at time #=0).

1/2, = IP(a contact traced through /inj at z = 0)

tL
= / P; 1B, Q(infecting the contact at £ = —s)ds

r= —5)
OC/ Py (10 +9) Z Pg(t— —s +]g(t— - )PK’_’“’0 ds

Ke{P,I}
K(r=—s) P(individual in K¢ at 7 = —5)
/ e (f0 ) PE(t = —s5) + —-)P’~°'Kv“ P(individual in Z at 7 = 0) as
Ke{P[} t=—s t=—s individual in & at ¢ =
K(r = —) K(r = —s)
ty+5) P (s) ds
/ e (o Kem P(r=—5)+ E(r=—s) " K= 0)
K(r = —) K(r =)
ty+s Ppx (s)
2 e (o KE{XP’I} P(r=—) + Er= —s) "R =0)
Similarly, there is
o, = P(a contact traced through Pin j at # = 0)

B

tL
= / P; 4 |£,-s Q(infecting the contact at z = —s)ds
0

tL
OC/O Pyg(to + 5)Pp_ypo ds

_ / i Py (10 + )P () ]P’(i.ndi.vi.dual i.n Pat t = —) S
0 P(individual in /% at £ = 0)
Z e t+5PP|P()%
and
zfij = IP(a contact traced through A in j at # = 0)

tL
= [ P 1B~ Q(infecting the contact at z = —s) ds
0

tL
OC/ Pyg(ty + )Py a0 ds

P(individual in 4° at £ = —)
P(individual in 4 at 7 = 0)

/ 15 (f0 + 5) Py (s)

At =—s)

Z 16t + 5)Paya (s )m
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Above equations are continue-time. To be compatible with the model, 1}; will be calculated in discrete time way

with step 1. At last, by normalizing, p‘f;- = ﬁ, i€e{A,P1}. p‘fj depends on the disease dynamic, testing rate

ey !

( 7) and contact tracing delay (%). Here we assume #, = 0. zL represents the entire period of COVID-19 and is set to
25 days.

Transition probability Py,: In this section, we will calculate the transition probability. The derivation is same
with that in (). For readability, we write down the details. The transition probability is defined as

Ppj4(s) = P(individual in B at 7 = s|individual in A at 7= 0) .

For the simplification, the transition rate from compartment K by ~x is defined as vx = v¢ + 7. Note that 7 may
be changing during the flare-up in reality. However, to facilitate the computation, we used the average of 7.
Starting and finishing in the same compartment is

Pk(s) =1—P(leave Kby =15 =1~ ’y]*(/ e_v’*(rdr = e_w'*(.
0

For the transition from / to X, the fraction of individuals who leave / that reach Kasq;,x. These are given by

Gion = PaVE (L= p)ve drot = P _ _ 4
E->A =~ T _x 2YE-P — T % Y4P-1 T T xsYISR T T ¥ YA-R T T«
VE F T 7 Vi

Each transition requires a new integration and a reduction by the fraction of arrivals. So, we have

Pye(s) = qE_,A/ Q(leave Eat £ = 7)(1 — P(leave A by ¢ = s|enter A at ¢ = r))dr
0

Lk =yt i) * T
=qp-a | vee e dr = gesaVe—————
0 Y4~ Vg
Similarly,
~VES _ s
e — €
Ppi(s) = qsrvE————
r~VE
RS _ I
e 4
Ppp(s) = gpor————
T
* X i s YES _ IS
YEOP € -
Pye(s) = qesrgpsi ( - )
! N G- %

Population-Level Testing and Contact Tracing Model with Age-Structure

In this section, we extended above model and introduced the age-stratified population-level testing and contract
tracing model. Specifically, we considered susceptible (S;), exposed (Ej), pre-symptomatic (), infectious
asymptomatic (A4y), infectious symptomatic (/;), recovered (R;) individuals for age group 4, 6=1, ..., G. The
infected individuals in age group & would be identified through population-level testing (7}) and contact tracing
(Cp). Healthy individuals may also be traced and quarantined (Qy). Next, we described how the contact tracing rate,
the contact tracing precision and the probability that a contact traced through compartment 7 has progressed to
compartment j at the time of tracing was formulated in details for age group 4.

The contact tracing rate « 4 is given by the testing rate 7 (the proportion of population tested per day), the
fraction of contacts that can be successfully traced r, the contact number per day A, with other age group g, and
the pre-defined contact tracing time window (L days), which is a,=r;7kL (Zngl Mbgij. K represents the strictness
and capacity of contact tracing in a city. The contact tracing precision ng for the primary cases from compartment 7
in age group g contributing to age group & is defined as the proportion of traced contacts through compartment i of
age group ¢ were infected. It is related to the average transmission rate in age group g contributing to age group &
and the proportion of susceptible in the population of age group 4, which is 02g= Sb@g /(N x My,). Ny is the

population size for age group 4. For compartment A4 and P, BZ = ¢y 4M,, and BZ = ¢y3pMj,. For compartment 7,

S4 CCDC Weekly /Vol. 5/ No. 4 Chinese Center for Disease Control and Prevention



China CDC Weekly

Bplyp + ﬂPT)_l + By + 7117')_1

. . et mpr)” oyt mr) A .
group & and f3; is the probability of getting infected for each effective contact with individual in compartment i.

the average transmission rate is ﬂgg = ¢, My,. ¢, is the susceptibility to infection for age
Note that the individuals in £}, are not infectious and the contact precision for compartment £}, is 0. The contacts
. G i
traced through compartment 7 are removed from age group & at the rate of z,7xL {Zg=1 M;,gzge,,g} and removed from
, . . g g _ g .
compartment j of age group & with the proportion of pj;, where } (s ;4 » 47, = 1. Note that pj; depends on dynamic
of COVID-19 in age group g. The full set of equations representing the transmission is given by

5310 = 500~ Ay ) 9, ) - L1

115,54 (2)
Ey(t+1)= E () + Ny = (Trp + (1= Trg) vp) Ey (8) = ————

N, (1)
—TrKL {Z; Mbg[goigpfjf} - TapkL {Zgil My,P, gegjgpiE} TrakL {Zg—l MbgAgabgP AE}
Ay (t+1) = Ay () + p2 (1 = 778) YeEp (&) = (r7ea + (1 = 774) va) Ay (£) - sy o
N, (2)
—raL{Y oy Myl 305, } = 7piL{Y & My Py} = Trean L {Y & My A0, }
P,
Py(e+1) =Py (1) + (1 —Pz)(l — 72g) YeEy (1) = (T72p + (1= T72p) vp) Py (1) = #15\2—(;()

G G
i LY g Mil o} = TR L{Y o Myl o) = a3 o MigAf 6}

p-sply (2)
N (1)

G 7 G P G
=Tkl {Zgzl M/ag]gelggpfl} — TapkL {251 Mbgpgebg/’il} = TagRL {Xg=1 MbgAgengil}

Ry (e+1) = Ry (1) + (1= 77a) 4y (&) + (U= 771) vl (£) = wRy (1)

L (e+1) = I, () + (1 = 772p) ypPy (8) = (T7es + (1 = T721) 7)) I, (2) =

Q(t+1) = Q1) — gQu (1) + gy
Cy(e+1) = Gy () + Tl { Y 0y Myl 0y} + Trpi L {§ 0y My Pt} + eanL{Y oy MyAgt )
Ty (e +1) = T, (1) + 7(rpE, (1) + mady () + 7Py (2) + 71l (1))

where

[y = mmL{Z[1 Myl (1= 03)} + wpr L {T 2 My P(1 = 03 )} + TranL{Y oy MypAyl1 = 0,)} + nprkL{Y ) My )

A, = d’b N zg—1 Mbg (5/11‘1 (1) + ﬂpPg(t) + /Bllg(t))
Bolyp + 7p7) ™ + Bilys + )
' (’YP+7ZpT)1+(71+7Zﬂ_)1 bg
Zje{E,A,P,[}Pfj =1,i€{A,P, I}

Ny =S, (1) + Ey (6) + Ay () + Py (2) + I, (1) + Ry (1) + Q (1) + G (1) + T}, (1)

2

4

In our analysis, 2 is the proportion of asymptomatic cases for age group 4. The quantities a 5, ng depend on the
disease dynamic, 8; and « . For p‘f‘j, it also depends on the disease dynamic and the contact tracing delay (%) and can
be derived from the model.

Similar to previous model, we modeled the number of daily new infections as a random variable following
Poisson distribution with expectation A{ and ), for contact tracing and population-level testing, respectively.

Specifically,
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G
c G psp{Ey (1) + Ay (1) + P(1) + 1, (4)}
A=) Tkl ZMéglgebg ¥y rrpkl ZMbngehg ¥y ) Tkl XMbgAgebg +y AT

b=1 =1

)\tT = XZIT(nEE,, () + mady (2) + mpPy (2) + 771, (2)) -

Modeling the Probability of Detecting the First Case Under Routine Testing

We estimated the probability of detecting the first case z for each day under routine testing since one SARS-
CoV-2 infection was imported. Assuming the ﬁrst detected case is found on the day #, it means that no infections
have been detected in the past #—1 days. Z = P,JT/(1~ P;). Hence, we first formulated the probability for detecting
at least one case P, for day .

Assuming the total number of cases tested for day 7 is B;, We considered the number of cases tested positive as a
binomial distribution with parameter B, and p,. p, represents the probability of success for each trial. Therefore, the
probability for detecting at least one case for day #is P, = 1 - (1 - p,)”. The success probability p, of having a positive
PCR test for each tested case is a function of the testing sensitivity of PCR tests and the dynamics of outbreak. To
simulate total number of cases tested B,, we also developed a transmission-dynamic model with age structure, which
incorporated susceptible (§), exposed (£), pre-symptomatic (P), infectious asymptomatic (A4), infectious
symptomatic (/), recovered (R) compartment. It is important to note that no control measures were implemented to
cut the transmission chain because of no reported cases. The full set of equations representing the transmission is
given by

Sp(z+1) = Sp(8) = Ay + wRy(2)

Ey(z+1) = Eyfe) + Ay = ()

Aple+1) = Ayle) + poveBile) = 1aAnls)
Pyfe+1) = P0) + (1= p)veEsl) = vpP1)

(e +1) = L(2) + vpPy(2) = vily(2)
Ry(£+1) = Ry(2) + v4Ay(2) + vil(2) — wR(2)

where

M= sl M8, 5o+ )

Ny, = Sy(2) + Ey(2) + Ay(2) + Py(2) + 1,(2) + Ry(2)
Considering that each tested case may be in any state of £, A, P, I, and the sensitivity of PCR testing in each

status is different, we estimated daily average positive probability p, weighted by the proportion of population for
each status for day # Specifically, we have

B, = ZbG:lTb{Eb(t) + Ay(2) + Py(2) + I,(4)}
= B%tz?:]{m@(f) s Ay) + 7 Py0) + 7m0}
P=1-(1-p)"

where 7, is the routine testing rate for age group 4. We considered that the first imported infection is at the exposed
(E) status and distributed among the age groups according to the age proportion of Beijing.
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Methods and Applications

Knowledge Graph: Applications in Tracing the Source of
Large-Scale Outbreak — Beijing Municipality, China, 2020-2021

Ying Shen'; Yonghong Liu'; Xiaokang Jiao% Yuxin Cai'; Xiang Xu'; Hui Yao'; Xiaoli Wang"**

ABSTRACT

Introduction: Tracing transmission paths and
identifying infection sources have been effective in
curbing the spread of coronavirus disease 2019
(COVID-19). However, when facing a large-scale
outbreak, this is extremely time-consuming and labor-
intensive, and resources for infection source tracing
become limited. In this study, we aimed to use
knowledge graph (KG) technology to automatically
infer transmission paths and infection sources.

Methods: We constructed a KG model to
automatically extract epidemiological information and
contact relationships from case reports. We then used
an inference engine to identify transmission paths and
infection sources. To test the model’s performance, we
used data from two COVID-19 outbreaks in Beijing.

Results: The KG model performed well for both
outbreaks. In the first outbreak, 20 infection
relationships were identified manually, while 42
relationships were determined using the KG model. In
the second outbreak, 32 relationships were identified
manually and 31 relationships were determined using
the KG model. All discrepancies and omissions were
reasonable.

Discussion: The KG model is a promising tool for
predicting and controlling future COVID-19 epidemic
waves and other infectious disease pandemics. By
automatically inferring the source of infection, limited
resources can be used efficiently to detect potential
risks, allowing for rapid outbreak control.

Knowledge graphs (KGs) have been widely used in
the construction of knowledge bases for search engines
since their inception by Google. During the
coronavirus disease 2019 (COVID-19) pandemic, KGs
have played an important role in areas such as the
construction of COVID-19-related knowledge bases
(I-2), bibliometrics, drug information management,

90 CCDC Weekly /Vol. 5/ No. 4

drug repurposing (3—4), auxiliary diagnosis and
treatment, and knowledge surveys. However, their
application has been limited in exploring infection
paths among cases (5-7) and identifying infection
sources.

Tracing transmission paths can help to promptly
identify the source of infection, detect high-risk areas
that may otherwise be overlooked, and facilitate the
identification of key populations, important sites with
high infection risk, and possible superspreaders, thus
allowing for timely actions to cut off the transmission
chain and effectively contain the spread of an outbreak.
However, in the face of the current COVID-19
pandemic and possible future pandemics with a huge
number of infected cases, it is extremely time-
consuming and  labor-intensive  to  conduct
epidemiologic  investigation,  identification, and
management of close contacts, thus further limiting the
resources allocated to tracing transmission paths and
identifying infection sources. It is difficult to manually
extract key information and trace infection paths
among cases from the vast amount of unstructured
textual data in case reports. Therefore, the use of
information technology is important to quickly extract
demographic and epidemiologic information, infer
transmission paths and infection sources, identify key
populations and key sites of high risk, and prevent
further transmission at the community level.

To improve the effectiveness of epidemiological
investigation and facilitate tracing of an infection
source, we used natural language processing (NLP) and
KG technologies to automatically extract structured
data from case reports, determine the infection
relationships among cases, trace the sources of
infection, and construct a directed KG to identify
infection
relationship intensity and transmission intensity.

sources using parameters including

METHODS

Study Design
Epidemiological data for COVID-19 cases in two
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clusters involving severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) wild-type strain and
Alpha variant were obtained from the Beijing Center
for Disease Prevention and Control (Beijing CDC).
Transmission chains were determined for each cluster
by health professionals at the Beijing CDC, which
served as the gold standard in the KG model.

KG Model Framework
Using NLP reports

automatically structured and data were extracted,

technology, case were

including sociodemographic characteristics,
epidemiologic information, and case relationships.
Epidemiologic information included the time of
exposure, time of onset, time of first positive nucleic
acid test, and time of diagnosis. Case relationships
included both clear contacts between cases (e.g., living
in the same household, dining together, contacts
during medical visits, working or studying in the same
room, and traveling in the same vehicle) and unclear
contacts, such as being in the same location at the same
time. Unclear contacts served as a supplement to clear
contacts.

The possibility (intensity) of each edge in the
calculated extracted

network  was using  the

Unstructured case
reports

information. Edges with the highest intensity were
preserved in the KG model, which was then presented
with three components: 1) name of the infected
individual (or individuals); 2) transmission paths
(relationships among cases); and 3) intensity of
A preliminary directed KG was
constructed using the above data, and the source of
infection was identified through pruning and
reconstruction of the directed KG (Figure 1).

transmission.

Preliminary Construction of Directed
Knowledge Graph

The directed KG was constructed in five steps: 1)
inferring the viral shedding period of infectors; 2)
inferring the infection time of infectees; 3) calculating
the transmissibility in each case; 4) tracing the
transmission paths between cases; and 5) constructing
the directed KG. The details of each step are outlined
below.

The viral shedding period of infectors was inferred.
We assumed that cases are most contagious two days
prior to and five days after symptom onset (8).
Therefore, given onset time t, the most highly
contagious period would be [t-2, t+5]. The time of the
last positive nucleic acid test was denoted as NAT _end.

/\

Structured epidemiological |
information

Case relations I

\

J

Y

knowledge graph

Construction of directed

|

Estimation of edge
weights

|

Pruning and
reconstruction

l

Inferring infection source

FIGURE 1. Flow chart of knowledge graph construction.

rl: intensity of contacts
r2: intensity of infectiousness

I

Inference engine ’

Note: This figure depicts the process of knowledge graph construction. Epidemiological information and case relationships
were first retrieved from unstructured case reports. This information included cases' sociodemographic characteristics, time
of exposure, time of onset, time of first positive nucleic acid test, time of diagnosis, and symptoms. Case relations included
clear contacts such as sharing the same household, dining together, contacts during medical visits, working or studying in
the same room, and traveling in the same vehicle, as well as unclear contacts such as appearing in the same location at the
same time. Edge weights were then inferred based on the intensity of contacts and infectiousness. Finally, pruning was
conducted according to the edge weights and inferred infection source.

Chinese Center for Disease Control and Prevention

CCDC Weekly / Vol. 5/ No. 4 91



China CDC Weekly

If t+5<NAT end, the case would still be infectious to a
certain extent during the [t+5, NAT_end] time
interval.

The infection time of each confirmed case was
inferred by tracing the transmission paths among cases.
The infection time of each infectee was set as (date of
onset — incubation period), which was approximately 3
to 14 days before symptom onset. For asymptomatic
cases, the infection time was defined as 3 to 14 days
before the first positive nucleic acid test result.

The transmissibility of each case was calculated,
assuming that asymptomatic cases are less infectious
than symptomatic ones.

Transmission paths among cases were traced and all
possible relationships between a case and all other cases
were calculated. As a result, multiple relationships may
be found between two cases. Unclear contacts were
assumed to have a lower probability of causing
infection than clear contacts.

A preliminary directed KG was constructed. Based
on the transmission paths discovered in the previous
steps, a directed KG was constructed with cases as
nodes and relationships as edges in the form of A — B.
The establishment of edges took time factors into full
consideration, i.e., a case with an earlier onset was
more likely to be a spreader and the infection time of
infectees had to fall within the viral shedding period of
the infectors.

Pruning and Reconstruction of Directed
Knowledge Graph

Given that there may be multiple relationships
between two cases in the directed KG, pruning of
edges based on their respective weight w was required
for construction of the transmission paths:

w=rlXr2Xrp

with 7/ representing the coefficient for viral
shedding, 72 the coefficient for the likelihood of case
relationships, 7p the individual characteristics, and w
the weight of the edges. The edge with the highest w
was taken as the most likely relationship between the
two cases.

The value of 71 was determined primarily by the
time point of exposure to infectors, i.e., how infectious
was the infector when the infectee was exposed?
Because concrete time points of exposure and viral
shedding were difficult to determine, the model
classified case infectiousness using three scales where
the infectiousness 5 days after symptom onset & > the

92 CCDC Weekly /Vol. 5/ No. 4

infectiousness 2 days prior to symptom onset # > other
time window c¢. As a result,

r=t_end sum (Patient( t))

I=LSITT [o (Inféctor( t))’

In which, patient (1) represents the whole set of
infectees and infector (¢) represents the whole set of
infectors who have caused secondary cases in  days.

R(t start,t end) = Rule(X

Function Rule is the pre-defined infectiousness scale.
Here, we defined #=1.3 and #=2¢. When the calculated
relationship between @, &, and ¢ was larger than zo/ [for
instance, if 6> (1.3 + t0l) x a or b< (2 - tol) x ], the
model would constrain the iteration of 4, 4, and ¢ until
the constraint condition was met.

The value of 72 represents the intensity of the
relationships extracted from case reports. The model
classifies the intensity of relationships into different
categories based on the frequency and duration of
contacts. For instance, the transmission likelihood
could be assumed to be as follows: living together >
working together > dining together > traveling in the
same vehicle > living in the same community. The
value of 72 was further standardized between 0 and 1.

Compared with symptomatic cases, asymptomatic
cases may have a longer incubation period but lower
infectiousness. On the basis of the literature, we
assumed that the infectiousness of asymptomatic cases
was 30% (rp) of the infectiousness of symptomatic
cases (9).

By taking the aforementioned steps, preliminary
pruning of the directed KG was performed. However,
direct
transmission may coexist between cases. For instance,
transmission paths of A — B — Cand A — C might
both be reasonable. In such a situation, the model

in  practice, transmission and  indirect

would consider both edge weights and case onset dates
to determine whether an edge should be pruned or not.
Specifically, edges with lower weights were pruned
first; if two edges had the same weight, the model
would further compare the time points at which the
infectee was exposed to the infector. If the time points
were the same, no edges would be pruned and all
transmission paths would be retained.

described

guarantee that there is only one relationship (edge)

The process above can essentially
between two cases (nodes). However, some nodes may
be left on their own. In such cases, the model would
select one edge with the highest w value from those
pruned to reconstruct a relationship between cases,

with the aim of linking as many cases as possible.
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Identifying the Source of Infection

Depth-first search (DFS) was conducted starting
from a random node s and running through all other
nodes, generating a list L of all traversed nodes. With
DES performed on all nodes, the starting node S with
the longest L was identified as the source of infection.
That is, the case with the most comprehensive
transmission paths was selected as the infection source.

RESULTS

In the knowledge graph generated by the KG model,
COVID-19 cases were represented by entities, the
transmission paths (relationships) between cases were

represented by edges, and infectors’ onset time and
viral shedding duration comprised entity attributes.
With this structure, a complete knowledge graph with
transmission information was generated automatically.
To compare the transmission paths between the KG
model and professional determination more directly,
illustrations were drawn manually in the same style
(Figures 2 and 3).

A cluster of COVID-19 cases caused by the wild-
type strain of SARS-CoV-2 occurred in Shunyi
District, Beijing in 2020, involving a total of 42 cases.
Through
professional judgment, 20 infection relationships were

identified manually. The KG model identified 42

epidemiological ~ investigation  and

A: KG model result for Shunyi cluster -
42 relationships identified

/
i ms e
Gur Gt Cond Goes Gl

9 relationshipslaggregated

Comih Cld CHS15 i Con 17 o5 Gl G20 Can® G Candl it G Gt G
Caess /-\--- Cose 37 Com38 Cam30 Casedl

8 relationships aggregated

B: Manual result for Shunyi cluster -
20 relationships identified -

Unclear source

FIGURE 2. Transmission paths for Shunyi cluster. (A) A total of 42 relationships were identified in the knowledge graph (KG)
model for the Shunyi cluster. (B) A total of 20 relationships were identified by public health professionals for the Shunyi
cluster. Sources for Cases 12, 34-36, and 30—40 were unclear and were presented separately.

Note: Red arrows represented additional relationships identified by the KG model; black arrows represented different
relationships between the KG model and manual determination; gray arrows represented the same relationships. For
illustration purposes, 9 relationships from Case 10 to Case 16-24 were aggregated and presented in a gray square; 8
relationships from Case 12 to Case 34—41 were aggregated and presented in a gray square. The edge weights for Case 13
— Case 32 and Case 14 — Case 32 were the same thus both were kept. Sources for Cases 12, 34-36, and 30—40 were
unclear and were presented separately. or illustration purposes, 9 relationships from Case 10 to Case 16-24 were
aggregated and presented in a gray square; 8 relationships from Case 12 to Case 34-41 were aggregated and presented in
a gray square. The edge weights for Case 13 — Case 32 and Case 14 — Case 32 were the same thus both were kept.
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A: KG model result for Daxing cluster

31 relationships identified Case 1
Case 2 Case 3 Case 4 Case 5 Case 6
Case 7 Case 8 Case9  Case 10 Case 11 Case12 Case13 Casel4 Casel5

— 1 !

Case 16 Case 17 Casel8

6 relationships aggregated 4 relationships aggregated

Case 19  Case 20 Case 27 Case 31 Case 32
Case21  Case22 Case 28

Case 23  Case 24 Case 29

Case 30
Case 25 Case 26 Case 33
B: Manual result for Shunyi cluster
32 relationships identified Case 2 Case 1
Case 10 Case 8 Case 7 Case 9 Case 4 Case 3 Case 6 Case 5

Case31 Case32 Case27 Case20 Casel9 Case26 Casell Casel3 Casel7 Casel4 Casel8 CaselS

Case28 Case22 Case2l Case25 Case 12 Case 16

Case29  Case24 Case23
Case 30

Case 33

FIGURE 3. Transmission paths for Daxing cluster. (A) A total of 31 relationships were identified in the KG model for the
Daxing cluster. (B) A total of 32 relationships were identified by public health professionals for the Daxing cluster.

Note: Red arrows indicated additional relationships identified by the KG model; black arrows indicated different relationships
between the KG model and manual determination; gray arrows indicated the same relationships; and orange arrows
indicated relationships omitted by the KG model. For illustration purposes, 9 relationships from Cases 7 to 21-24 were
aggregated, and four relationships from Case 8 to Cases 27-30 were aggregated. The infection source for Case 33 was
unclear. For illustration, 4 relationships from Cases 8 to 27—30 were aggregated; 8 relationships from Cases 7 to 19-23 and
25-26 were aggregated; and 4 relationships from Cases 6 to 11-12 and 16-17 were aggregated. The infection source for
Case 33 was unclear, while Cases 1 and 2 were both possible sources.

Abbreviation: KG=knowledge graph.

other. Among the seven edges, five were related to the
identification of index cases in households. The model

relationships, and an additional 22 relationships were
found to be possible after one-by-one deduction,

which could serve as an important supplement in the
judgment of the epidemic's development. One
relationship was different between the KG model and
manual determination, but both were found to be
possible (Figure 2).

An outbreak of the SARS-CoV-2 Alpha variant
occurred in Daxing District, Beijing in 2021, involving
33 cases in total. Manual tracing identified 32
relationships, while the KG model identified 31. Of
these, 24 edges were the same as those traced manually,
7 were different, and 1 edge was omitted. In manual
deduction, both infection paths were deemed possible;
thus, both were preserved, while the KG model only
kept the most likely infection path and pruned the
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suggested that, compared to family member B, family
member A had a greater likelihood of introducing the
virus into the household. The other two edges were
identified after a detailed analysis of case reports

(Figure 3).

DISCUSSION

The KG model described herein was able to
automatically extract data from unstructured text in
epidemiologic case reports and sort out complex
infection relationships. A directed KG that depicted
the identified case relationships and infection sources
was successfully constructed through a detailed

Chinese Center for Disease Control and Prevention



China CDC Weekly

pruning and reconstruction process. We tested the KG
model using two actual COVID-19 outbreaks that
occurred in Beijing, China, and the model was proven
effective in targeting the infection source.

Using the KG model to deduce transmission
pathways, “Case Zero” can be quickly identified,
allowing the government to direct limited resources
and determine the possible infection source (6).
Furthermore, the KG model can be used to identify
key transmission sites and key spreaders, which can
then inform the detection of populations at higher risk,
improve the efficiency of case screening, and help
contain the spread of an outbreak in a timely manner.
Additionally, a could be
organized for lonely nodes in the KG (i.e., cases whose

focused  investigation
transmission paths were not clear) to identify hidden
infection sources in a timely fashion. This could help
to quickly review the overall epidemic prevention and
control direction and address potential issues rapidly,
thus avoiding worsening of a current outbreak and
preventing future outbreaks. Although the prevention
and control strategy for COVID-19 has changed
substantially, the KG technology presented in this
paper could still enrich the current toolbox of public
health countermeasures and offer insights for future
epidemics caused by other emerging or existing
infectious diseases.

This study has some limitations. First, the KG
model is a tool for analyzing infection sources, and its
performance is largely affected by the completeness of
epidemiological case reports. To be used in future
epidemics, essential information from case reports
must be clarified in advance. Second, this model was
tested in small outbreaks, with good performance;
however, the model requires further validation in larger
outbreaks.
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