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Mapping the Characteristics of Respiratory Infectious Disease
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November 2022 to January 2023

Dazhu Huo"%; Ting Zhang*®; Xuan Han’ Liuyang Yang’ Lei Wang? Ziliang Fan'; Xiaoli Wang’; Jiao Yang’
Qiangru Huang’ Ge Zhang®; Ye Wang’ Jie Qian’ Yanxia Sun% Yimin Qu? Yugang Li%
Chuchu Ye’; Luzhao Feng Zhongjie Li%; Weizhong Yang**; Chen Wang"*

ABSTRACT

Introduction: Infectious diseases pose a significant
global health and economic burden, underscoring the
critical need for precise predictive models. The Baidu
index provides enhanced real-time surveillance
capabilities that augment traditional systems.

Methods: Baidu search engine data on the
keyword “fever” were extracted from 255 cities in
China from November 2022 to January 2023. Onset
and peak dates for influenza epidemics were identified
by testing various criteria that combined thresholds
and consecutive days.

Results: The most effective scenario for indicating
epidemic commencement involved a 90th percentile
threshold exceeded for seven consecutive days,
minimizing false starts. Peak detection was optimized
using a 7-day moving average, balancing stability and
precision.

Discussion: The use of internet search data, such
as the Baidu index, significantly improves the
timeliness and accuracy of disease surveillance models.
This innovative approach supports faster public health
interventions and demonstrates its potential for
enhancing epidemic monitoring and response efforts.

Infectious diseases are a leading cause of death and
disability worldwide, imposing a significant burden on
public health and economic stability (7). The recent
increase in emerging infectious diseases highlights the
urgent need for accurate disease propagation
predictions (2-3). The widespread use of internet data,
particularly from platforms like Baidu, provides
complementary real-time insights that enhance
traditional infectious disease surveillance mechanisms
(4-5). The Baidu index, distinguished by its superior

Chinese Center for Disease Control and Prevention

forecasting accuracy and stability (6), has emerged as
an invaluable asset for enriching existing surveillance
systems.

This study aimed to develop a surveillance model for
epidemiological trends using the Baidu index as a
cornerstone. Precise trend detection promises to
facilitate prompt and effective public health
interventions (/).

METHODS

Data Source

This study utilized data from the Baidu search
engine, extracted from the publicly accessible Baidu
Index website, covering trend analyses across 31
provincial-level administrative divisions (PLADs) in
the Chinese mainland. The research focused on
tracking the keywords “fever,” including “fa re” and “fa
shao” in Chinese, to analyze coronavirus disease 2019
(COVID-19)-related data trends and compiled data
from 255 cities. Notably, China enforced a dynamic
COVID-zero strategy between 2019 and 2022 and
initiated a pivotal policy transition on November 11,
2022, ultimately abandoning the COVID-zero strategy
on December 7, 2022 (8).

Baseline data were established using Baidu Index
data from August to October 2020-2022 for cities
without pandemic activity. The year with the lowest
average index was selected. If outbreaks occurred
during these months, data from May to July were used.

This study investigated the 2023 influenza outbreak
using data collected from November 1, 2022, to
January 2, 2023. Data from the northern city of
Weifang and the southern city of Yichang were used to
identify regional variations. To avoid the influence of
the COVID-19 pandemic, pre-2019 influenza-related
internet search data were used. Data from October to
December 2018 served as the baseline for adjusting
changes in internet usage over time.

CCDC Weekly / Vol. 6/ No. 37 939
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Onset Indicators
thresholds,
consecutive days, were used to pinpoint the precise
start of the influenza epidemic. First, thresholds based
on the 70th, 80th, and 90th percentiles of days with
non-zero values on the Baidu index were established.
These percentiles spanned from August 1, 2020, to
November 1, 2020. The onset criteria were defined as
the Baidu index exceeding the thresholds for at least
three consecutive days or a longer sequence of seven
consecutive days. This criterion was applied
universally, resulting in six scenarios. To mitigate the

Various paired with criteria for

influence of extraneous variables on the search index, a
three-day moving average was incorporated into the
analysis.

Peak Indicators
The real-time Baidu index from November 1, 2022,
to January 2, 2023, was compared to a historical
baseline calculated as the moving average of the Baidu
index from 2020 to 2021. The Baidu Excess Search
index, which measures excess search activity, was
calculated using the following formula:

2[x=[7)

m
Here, x denotes the real-time Baidu index, #

Baidu Excess Search index =

represents the #-day moving average of the Baidu index
for the historical period, and m denotes the m-day
moving average for the same period.

To determine the peak date reflecting the highest
surge in search volume attributable to new cases in the
current outbreak, we adjusted for the influence of
other factors and diseases on the keyword search index.
The optimal “m” value for the moving average was
determined by evaluating three scenarios: m=3, m=7,
and m=3/ (assuming “1” is defined in the context). The
“m” value was selected by comparing the outcomes of
these scenarios. To minimize the impact of extraneous
factors, we applied the “m”-day moving average for the
historical Baidu index.

Subsequently, a city’s peak was identified based on
two criteria, with outcomes compared to render a
judgment: the Baidu Engine Excess Search index
demonstrated an abnormal rise from the start date

followed by a decline for three to five consecutive
days (7).

Study Structure
Baidu index data from 331 Chinese cities underwent
a stringent quality assessment. This process excluded

940 CCDC Weekly / Vol. 6/ No. 37

76 cities based on two criteria. First, cities with a Baidu
index below the 30th percentile were excluded.
Second, cities reporting a zero index for any week
between August 1 and November 31, 2022, were
removed (Figure 1). After establishing the
methodology and confirming its efficacy using the
testing data, influenza search data were used to
corroborate its versatility.

RESULTS

Evaluation and Comparison of

Onset Criteria

Baseline threshold
analysis of the average Baidu index and standard
deviation was conducted across cities without
pandemics during August—October 2020, 2021, and
2022. The year 2020, demonstrating the lowest
average, was subsequently chosen as the reference for
establishing the threshold (Supplementary Figure S1,
available at https://weekly.chinacdc.cn/).

The criterion combining the 90th percentile
threshold with seven consecutive days exceeding this
threshold identified the fewest epidemic onsets among
the six scenarios. Therefore, this combination was
adopted to define the commencement of an outbreak.

Onset criteria evaluation revealed that the epidemic
began on November 9 in more northern cities and
PLADs, while southern cities and PLADs tended to see
an onset date of December 28 (Figure 2A).

assessment. A comparative

Criteria Evaluation for Peak Identification

Daily Baidu engine excess search values and peak
dates were calculated for m-values of 3, 7, and 31. An
m-value of 3 exhibited data fluctuations rather than a
trend  (Supplementary  Table  S1).
Conversely, an m-value of 31 blurred details and risked
distortion. An m-value of 7 provided stable results and
was chosen for its reliable measurement, minimizing
noise and avoiding the loss of significant data
variations.

consistent

Peak criteria evaluation. A criterion of three
consecutive days of decline adequately signaled the
peak in Sanya, Kashi, and Baishan, but five consecutive
days did not. Therefore, a three-day decline was
designated as the criterion. Applying this criterion to
255 cities, eight cities had not reached their peak by
January 2, 2023 (Figure 2B).

Northern cities experienced a median ILI onset date
of December 9 (interquartile range: December 4-10),

Chinese Center for Disease Control and Prevention
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Baidu index of 331 cities at the prefectural level and above Exclude indicator 1: Insufficient data, 99 cities
(excluding Hong Kong special administrative region, Macau Data deficiency refers to cities with cumulative
special administrative region, Taiwan China) search values within P30 for each city from
% Excluding 74 cities that meet August 1, 2020 to December 27, 2022
% 1pd1cators 1 'flnd 2 qt 'the same Exclude indicator 2: Abnormal data, 78 cities.
= Flm.e, excluding .2'01t1§s that meet Data abnormal refers to cities where the daily
indicator 2. 76 cities in total search value appears to be 0 for 7 consecutive
| 255 cities were included in the statistical analysis days from August I to November 31, 2022
v
v
The starting point of
abnormal increase with
reference to the baseline 4
v Peak judgment indicators
Judgment indicators of the
o starting point of abnormal
§ increase
S v
Baidu search abnormal increase starting point, peak time, and
peak duration
v
Infer the starting point, peak time, and peak duration of abnormal
increase of epidemic Establish the relationship between the Baidu
¥ index and the epidemic
g Using influenza epidemic occurred in northern China, southern
g China, and 2 cities in 2023 to test the effectiveness of the method. Exploring the adaptability of the method in
= Determine the onset and peak of the epidemic. The study period other infectious diseases
> is from January 1 to April 1, 2023

FIGURE 1. Study structure.

which was slightly earlier than the median onset date of
December 11 (interquartile range: December 9-13)
observed in southern cities. These data suggest that the
influenza pandemic was initiated earlier in northern
cities than southern cities.

Northern cities peaked around December 18
(interquartile range: December 17-20), whereas
southern cities peaked later on December 20
(interquartile range: December 17-23), indicating
earlier pandemic intensification in the north.

Comparison with official reports. The research
findings indicated a pandemic onset date of December
8, consistent with results from the China CDC that
over 96% of cities passed their peak ILI activity before
January 2023 (9). The results of this study were highly
consistent with nucleic acid assay results. Additionally,
the peak dates for the Beijing (December 13) and
Tianjin (December 17) municipalities aligned with the
China CDC reports in December 14 and 19,
respectively.

Furthermore, the study observed a sharp increase in
search volume starting on December 9 in northern
cities and December 11 in southern cities. This
increase corresponds with the rise in ILI% reported by
the China CDC from 824 sentinel hospitals during the

Chinese Center for Disease Control and Prevention

50th week (December 12-18) (10).

Fever clinic visit data, as reported by the China
CDC, peaked on December 23, 2022 (11). Our study
found that the peak occurred from December 18 to 20,
2022, suggesting that the Baidu Index may be a
leading indicator of healthcare utilization during an
outbreak.

Overall, the China CDC data on ILI percentage and
fever clinic visits support the study’s findings,
validating the methodology and the use of search
engine data as a reliable, real-time indicator of
pandemic spread and intensity.

Validation

To test our model’s effectiveness, we analyzed the
2023 influenza outbreak (January 1 to April 1, 2023)
in northern and southern PLADs, Yichang, and
Weifang to demonstrate its utility across different
regions. We used October to December 2018 as our
baseline to account for changes in internet usage.
Outbreak onset was determined using an 80th
percentile threshold of search volume for seven
consecutive days, a method that proved effective across
all regions. For peak detection, we used a three-day

CCDC Weekly / Vol. 6/ No. 37 941



China CDC Weekly

A Heilongjiang
Jilin
Liaoning
Tianjin
Shandong
Inner Mongolia
Xinjiang
Beijing
Hebei ]
Shanxi
Qinghai
Gansu
Henan
Shaanxi
Anhui
Jiangsu
Shanghai
Zhejiang
Fujian
Guangdong
Hainan
Hubei
Sichuan
Guizhou
Hunan
Guangxi
Yunnan
Chongqing
Nov 9 Dec 20

B Heilongjiang
Jilin
Liaoning
Tianjin
Shandong
Inner Mongolia
Xinjiang
Beijing

Hebei [0
Shanxi
Qinghai
Gansu
Henan
Shaanxi
Anhui
Jiangsu
Shanghai
Zhejiang
Fujian
Guangdong
Hainan
Hubei
Sichuan
Guizhou
Hunan
Guangxi
Yunnan
Chongqing

Dec 8 Dec 28
L

FIGURE 2. Onset dates and peak dates across 255 cities in various PLADs of China. (A) Onset dates evaluation across 255
cities in various PLADs of China; (B) Peak dates evaluation across 255 cities in various PLADs of China.

Note: Each row corresponds to a PLAD, and each colored block represents a city. The color gradient indicates the timing:
shades closer to red represent earlier times, while shades closer to green indicate later times.

Abbreviation: PLAD=provincial-level administrative division.

continuous decline in search activity after an initial outbreak peak.

increase, with calculations based on a three-day moving

average (m-value). This approach allowed for rapid, Validation Results

minimal data analysis while accurately capturing the The onset dates for Northern and Southern China
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were February 20 and February 26, respectively, and
February 25 and February 27 for Weifang and
Yichang, respectively. Table 1 presents the peak dates
for Northern China, Southern China, Yichang, and
Weifang.

Comparison with official reports

ILI percentages reported by the China CDC rose in
Northern and Southern China during week 9 of 2023
(February 27-March 5), remained high in week 10
(March 6-12), and declined in week 11 (March
13-19). The onset and peak dates for ILI activity in
these regions aligned with these results.

Peak dates in Yichang (March 16) and Weifang
(March 10) preceded the dates for the highest ILI%
(March 29 and March 20, respectively). The median
dates for the three highest ILI% (March 26 and March
16) were over 10 and 7 days later, respectively
(Figure 3). Additionally, the epidemic outset period
reported by the Yichang CDC and Weifang CDC was
week 9 in 2023, consistent with our outset dates of
February 27 and February 25.

DISCUSSION

This research underscores the vital role of search
engine analytics in bolstering public health surveillance
and early warning systems. By leveraging internet
search data, this study demonstrates the potential for a
more nuanced and immediate understanding of disease
dynamics, facilitating the early identification of both
pandemic outbreaks and seasonal epidemic patterns.
Using varied threshold levels, this approach discerned
the preliminary and peak phases of disease spread more
rapidly and accurately than traditional methods.

As a potential supplement to traditional surveillance
systems, internet search data has shown promise in
identifying trends and peak timing before official
reports (December 12-18, December 23, 2022) (10).
This earlier detection is attributable to the immediacy

of internet data, which circumvents lengthy processing
and validation steps required for official reporting, and
its ability to reflect real-time shifts in public concern
and interest.

Validation in two cities under seasonal influenza
scenarios in Northern and Southern China has
confirmed that this procedure is extrapolatable for
identifying the onset and peak of respiratory infectious
diseases. The emergence of novel respiratory pathogens
is unpredictable, and traditional surveillance systems
often struggle to adapt quickly when a new pathogen
spreads rapidly and causes a pandemic. Due to the
ready availability of data and the simplicity of the
method, this procedure can serve as an alternative
option. Moreover, it remains timely and effective in
detecting patterns even when epidemiological trends of
seasonal respiratory diseases change.

In application, different thresholds may need to be
adopted based on the actual conditions in areas with
varying population sizes, search behaviors, climates,
and epidemiological characteristics of diseases. This
study analyzed only 255 cities, excluding those with a
continuous Baidu index of zero. This exclusion could
be related to the scale of internet users and their online
habits. The timeliness of detection in northern cities
was earlier than in southern cities, potentially due to
the stable seasonal epidemic trends historically
observed in the north, typically characterized by a
single peak in cases. Additionally, population size
might play a role in the timeliness of detection.
Weifang has a population of 9.4 million compared to
Yichang’s 4 million, suggesting that the earlier
detection in Weifang might also be related to its larger
population size.

This study is subject to some limitations. First, due
to the lack of referential data from surveillance systems
during the pandemic, this study was unable to validate
the results for the 255 cities. Second, as the study
aimed to provide a scalable and simple tool, it did not
account for other factors that could affect Baidu
searches, which may impact the accuracy of the results.

TABLE 1. Evaluation and comparison of criteria for reaching the peak.

m=3 m=7 m=31
Region
Excess search index Peak date Excess search index Peak date Excess search index Peak date
Northern PLADs 36.69 March 10 39.37 March 16 42.11 March 13
Southern PLADs 24.00 March 14 30.70 March 09 24.07 March 14
Yichang 39.87 March 16 36.75 March 10 39.04 March 16
Weifang 32.46 March 10 24.09 March 14 30.66 March 9

Abbreviation: PLADs=provincial-level administrative divisions.

Chinese Center for Disease Control and Prevention
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FIGURE 3. Onset and peak dates of the influenza epidemic in 2023. (A) Onset and peak dates evaluation in northern
PLADs. (B) Onset and peak dates evaluation in southern PLADs. (C) Onset and peak dates evaluation in Yichang. (D)
Onset and peak dates evaluation in Yichang.

Note: The green dotted line represents the outset date identified in this study, while the green block indicates the
corresponding officially reported week. The red dotted line signifies the estimated peak time of the epidemic based on this
study, and the red block represents the officially reported week for the peak.

Abbreviation: PLAD=provincial-level administrative division.
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SUPPLEMENTARY FIGURE S1. Comparison of average Baidu index in different years.
Note: Red refers to the smallest mean and standard deviation.

SUPPLEMENTARY TABLE S1. Comparison of m-value in peak date and comparison peak date in different criteria for
reaching the peak

Comparison peak date in different criteria

Comparison of m-value in peak date for reaching the peak

City Peak date Peak date Peak date Peak date Peak date
m=3 m=7 m=31 3 days decrease 5 days decrease
Beijing 2022/12/13 2022/12/13 2022/12/12 2022/12/13 2022/12/12
Tianjin 2022/12/16 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Shijiazhuang 2022/12/14 2022/12/9 2022/12117 2022/12/9 2022/12/17
Hengshui 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Zhangjiakou 2022/12/17 2022/12/17 202212117 2022/12/17 2022/12/17
Chengde 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Qinhuangdao NA 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Langfang 2022/12/13 2022/12/11 2022/12/12 2022/12/11 NA
Cangzhou 2022/12/17 2022/12/17 202212117 2022/12/17 2022/12/17
Baoding 2022/12/11 2022/12/10 2022/12/11 2022/12/10 2022/12/11
Tangshan 2022/12/17 2022/12/17 202212117 2022/12/17 2022/12/17
Handan 2022/12/9 2022/12/12 2022/12/17 2022/12/12 2022/12/17
Xingtai 2022/12/10 2022/12/8 2022/12/8 2022/12/8 2022/12/8
Taiyuan 2022/12/19 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Datong 2022/12/17 2022/12/17 2022/12/17 2022/12/17 NA
Changzhi 2022/12/19 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Xinzhou 2022/12/17 2022/12/23 2022/12/23 2022/12/23 2022/12/23
Jinzhong 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Linfen 2022/12/22 2022/12/22 2022/12/22 2022/12/22 NA
Jincheng 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
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Comparison of m-value in peak date Comparison peak d.ate in different criteria
City for reaching the peak
Peak date Peak date Peak date Peak date Peak date
m=3 m=7 m=31 3 days decrease 5 days decrease

Shuozhou NA 2022/12/17 2022/12/17 2022/12/17 NA
Yangquan NA 2022/12/17 2022/12/17 202212117 2022/12/17
Lvliang 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Huhehaote 2022/12/17 2022/12/17 2022/12/17 202212117 2022/12/17
Baotou 2022/12/17 2022/12/17 2022/12/18 2022/12/17 2022/12/18
Erdos NA 2022/12/21 2022/12/17 2022/12/21 2022/12/17

Xilinguolemeng NA 2022/12/25 2022/12/18 2022/12/25 NA

Chifeng 2022/12/17 2022/12/17 202212117 202212117 NA
Tongliao NA 2022/12/18 2022/12/18 2022/12/18 2022/12/18

Hulunbeier 2022/12/26 2022/12/26 NA 2022/12/26 NA
Shenyang 2022/12/17 2022/12/16 2022/12/16 2022/12/16 2022/12/16
Dalian 2022/12/17 2022/12/17 202212117 202212117 2022/12/17
Panjin NA 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Anshan 2022/12/17 2022/12/17 202212117 202212117 2022/12/17

Chaoyang NA 2022/12/21 2022/12/17 2022/12/21 NA
Jinzhou 2022/12/17 2022/12/17 2022/12/16 202212117 2022/12/16
Tieling NA 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Dandong 2022/12/16 2022/12/17 202212117 202212117 2022/12/17
Fushun 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Huludao NA 2022/12/20 2022/12117 2022/12/20 2022/12/17
Changchun 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Huainan 2022/12/22 2022/12/18 2022/12/18 2022/12/18 2022/12/18
Lu'an 2022/12/25 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Chuzhou 2022/12/18 2022/12/17 2022/12/18 202212117 2022/12/18
Huabei NA 2022/12/24 2022/12/24 2022/12/24 2022/12/24
Fuyang 2022/12/17 2022/12/17 2022/12117 202212117 2022/12/17
Anging 2022/12/17 2022/12/18 2022/12/17 2022/12/18 2022/12/17

Bengbu 2022/12/17 2022/12/17 202212117 2022/12/17 NA
Wuhu 2022/12/18 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Bozhou 2022/12/17 2022/12/17 202212117 2022/12/17 2022/12/17
Fuzhou 2022/12/26 2022/12/25 2022/12/25 2022/12/25 2022/12/25
Putian 2022/12/22 2022/12/28 2022/12/28 2022/12/28 2022/12/28

Sanming 2022/12/27 NA 2022/12/27 NA NA
Longyan 2022/12/24 2022/12/26 2022/12/27 2022/12/26 2022/12/27
Xiamen 2022/12/25 2022/12/26 2022/12/25 2022/12/26 2022/12/25
Quanzhou 2022/12/26 2022/12/27 2022/12/26 2022/12/27 2022/12/26
Zhangzhou 2022/12/23 2022/12/24 2022/12/28 2022/12/24 2022/12/28
Ningde 2022/12/22 2022/12/25 2022/12/25 2022/12/25 2022/12/25

Nanping 2022/12/16 2022/12/16 2022/12/16 2022/12/16 NA
Nanchang 2022/12/17 2022/12/17 2022/12117 2022/12/17 2022/12/17
Jiujiang 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
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Comparison of m-value in peak date Comparison peak d.ate in different criteria
City for reaching the peak
Peak date Peak date Peak date Peak date Peak date
m=3 m=7 m=31 3 days decrease 5 days decrease

Fuzhou 2022/12/21 2022/12/21 2022/12/21 2022/12/21 2022/12/21
Shangrao 2022/12/25 2022/12/23 2022/12/21 2022/12/23 2022/12/21
Ganzhou 2022/12/22 2022/12/17 2022/12/22 2022/12/17 2022/12/22

Ji'an 2022/12/19 2022/12/19 2022/12/18 2022/12/19 NA

Pingxiang NA NA 2022/12/18 NA NA
Yichun 2022/12/17 2022/12/17 2022/12/17 202212117 2022/12/17
Jinan 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Binzhou 2022/12/17 2022/12/17 202212117 202212117 2022/12/17
Qingdao 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Yantai 2022/12/18 2022/12/18 2022/12/18 2022/12/18 2022/12/18
Linyi 2022/12/22 2022/12/22 2022/12/21 2022/12/22 2022/12/21
Weifang 2022/12/20 2022/12/17 202212117 202212117 2022/12/17
Zibo 2022/12/21 2022/12/20 2022/12/17 2022/12/20 2022/12/17

Dongying 2022/12/22 2022/12/23 202212117 2022/12/23 NA
Liaocheng 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Heze 2022/12/17 2022/12/21 202212117 2022/12/21 2022/12/17
Zaozhuang 2022/12/25 2022/12/25 2022/12/25 2022/12/25 2022/12/25
Dezhou 2022/12/20 2022/12/21 2022/12/20 2022/12/21 2022/12/20

Weihai 2022/12/26 2022/12/26 2022/12/26 2022/12/26 NA
Jining 2022/12/21 2022/12/21 2022/12/21 2022/12/21 2022/12/21
Taian 2022/12/18 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Rizhao 2022/12/19 2022/12/17 2022/12/19 202212117 2022/12/19
Zhengzhou 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Nanyang 2022/12/17 2022/12/16 2022/12117 2022/12/16 2022/12/17
Xinxiang 2022/12/16 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Kaifeng 2022/12/14 2022/12/14 2022/12117 2022/12/14 2022/12/17
Jiaozuo 2022/12/18 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Pingdingshan 2022/12/17 2022/12/17 202212117 2022/12/17 2022/12/17

Xuchang 2022/12/17 2022/12/17 2022/12/17 2022/12/17 NA
Anyang 2022/12/17 2022/12/17 202212117 2022/12/17 2022/12/17
Zhumadian 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Xinyang 2022/12/17 2022/12/17 202212117 2022/12/17 2022/12/17
Hebi NA 2022/12/17 2022/12/16 2022/12/17 2022/12/16
Zhoukou 2022/12/19 2022/12/17 202212117 2022/12/17 2022/12/17
Shangqiu 2022/12/16 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Luoyang 2022/12/13 2022/12/13 202212117 2022/12/13 2022/12/17

Luohe 2022/12/21 2022/12/23 2022/12/17 2022/12/23 NA
Puyang 2022/12/17 2022/12/17 2022/12117 202212117 2022/12/17
Sanmenxia 2022/12/14 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Jiyuan NA NA 2022/12117 NA 2022/12/17
Wuhan 2022/12/14 2022/12/14 2022/12/16 2022/12/14 2022/12/16
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Comparison of m-value in peak date Comparison peak d.ate in different criteria
City for reaching the peak
Peak date Peak date Peak date Peak date Peak date
m=3 m=7 m=31 3 days decrease 5 days decrease
Huangshi 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Jingzhou 2022/12/17 2022/12/17 2022/12/17 2022/12117 2022/12117
Xiangyang 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Huanggang 2022/12/17 2022/12/17 2022/12/17 2022/12117 2022/12117
Jingmen 2022/12/16 2022/12/16 2022/12/17 2022/12/16 2022/12/17
Yichang 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12117
Shiyan 2022/12/15 2022/12/16 2022/12/15 2022/12/16 2022/12/15
Suizhou NA 2022/12/17 2022/12/17 2022/12/17 NA
Enshi 2022/12/11 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Ezhou NA 2022/12/15 2022/12/16 2022/12/15 NA
Xianning 2022/12/20 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Xiaogan 2022/12/14 2022/12/17 2022/12/17 2022/12/17 2022/12117
Changsha 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Yueyang 2022/12/20 2022/12/17 2022/12/17 2022/12/17 2022/12117
Hengyang 2022/12/18 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Zhuzhou NA 2022/12/21 2022/12/21 2022/12/21 NA
Xiangtan NA 2022/12/26 2022/12/17 2022/12/26 NA
Yiyang 2022/12/20 2022/12/20 2022/12/20 2022/12/20 NA
Chenzhou 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Xiangxi NA NA NA NA NA
Loudi 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Huaihua NA 2022/12/20 2022/12/20 2022/12/20 2022/12/20
Changde 2022/12/22 2022/12/23 2022/12/23 2022/12/23 2022/12/23
Yongzhou 2022/12/17 2022/12/17 2022/12/20 2022/12117 NA
Shaoyang 2022/12/24 2022/12/22 2022/12/22 2022/12/22 2022/12/22
Guangzhou 2022/12/17 2022/12/17 2022/12/17 2022/12117 2022/12117
Shenzhen 2022/12/21 2022/12/22 2022/12/21 2022/12/22 2022/12/21
Dongguan 2022/12/21 2022/12/22 2022/12/22 2022/12/22 2022/12/22
Yunfu 2022/12/20 2022/12/27 2022/12/27 2022/12/27 NA
Foshan 2022/12/20 2022/12/17 2022/12/17 2022/12117 2022/12117
Zhanjiang 2022/12/21 2022/12/21 2022/12/21 2022/12/21 NA
Jiangmen 2022/12/25 2022/12/25 2022/12/24 2022/12/25 2022/12/24
Bazhong NA 2022/12/18 2022/12/18 2022/12/18 2022/12/18
Neijiang 2022/12/19 2022/12/18 2022/12/17 2022/12/18 2022/12117
Luzhou NA 2022/12/16 2022/12/17 2022/12/16 2022/12/17
Deyang 2022/12/17 2022/12/16 2022/12/16 2022/12/16 2022/12/16
Leshan NA 2022/12/19 2022/12/17 2022/12/19 2022/12/17
Zigong 2022/12/15 2022/12/17 2022/12/17 2022/12117 2022/12117
Ya'an NA 2022/12/23 NA 2022/12/23 NA
Meishan 2022/12/17 2022/12/17 2022/12/17 2022/12117 2022/12117
Liangshan 2022/12/16 2022/12/16 2022/12/17 2022/12/16 NA
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City for reaching the peak
Peak date Peak date Peak date Peak date Peak date
m=3 m=7 m=31 3 days decrease 5 days decrease
Guiyang 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Qiannan 2022/12/20 2022/12/20 2022/12/20 2022/12/20 NA
Zunyi 2022/12/21 2022/12/20 2022/12/17 2022/12/20 2022/12/17
Qiandongnan 2022/12/18 2022/12/18 2022/12/18 2022/12/18 2022/12/18
Tongren 2022/12/23 2022/12/23 2022/12/20 2022/12/23 2022/12/20
Anshun 2022/12/20 2022/12/19 2022/12/20 2022/12/19 2022/12/20
Bijie 2022/12/25 2022/12/23 2022/12/24 2022/12/23 NA
Qianxinan NA 2022/12/21 2022/12/22 2022/12/21 2022/12/22
Kunming 2022/12/13 2022/12/17 2022/12/16 2022/12/17 2022/12/16
Yuxi 2022/12/19 2022/12/19 2022/12/19 2022/12/19 NA
Chuxiong 2022/12/17 2022/12/19 2022/12/17 2022/12/19 2022/12/17
Dali 2022/12/26 2022/12/26 2022/12/26 2022/12/26 2022/12/26
Zhaotong NA 2022/12/23 2022/12/16 2022/12/23 2022/12/16
Honghe 2022/12/16 2022/12/16 2022/12/16 2022/12/16 NA
Quijing 2022/12/16 2022/12/17 2022/12/17 2022/12/17 NA
Lincang NA 2022/12/26 2022/12/18 2022/12/26 NA
Pu'er 2022/12/27 2022/12/17 2022/12/17 2022/12/17 NA
Dehong NA NA 202212117 NA NA
Xi'an 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Ankang NA 2022/12/21 2022/12117 2022/12/21 2022/12/17
Baoji NA 2022/12/17 2022/12/17 2022/12/17 NA
Jilin 2022/12/17 2022/12/18 2022/12/18 2022/12/18 2022/12/18
Tonghua NA 2022/12/17 2022/12/17 2022/12/17 NA
Baishan NA 2022/12/28 2022/12/20 2022/12/28 NA
Yanbian 2022/12/15 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Harbin 2022/12/18 2022/12/17 2022/12117 202212117 2022/12/17
Daging 2022/12/20 2022/12/21 2022/12/21 2022/12/21 2022/12/21
Qigihar 2022/12/22 2022/12/22 2022/12/21 2022/12/22 2022/12/21
Jiamusi 2022/12/24 2022/12/21 2022/12/19 2022/12/21 2022/12/19
Mudanjiang NA 2022/12/22 2022/12/22 2022/12/22 NA
Jixi NA 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Suihua NA 2022/12/25 202212117 2022/12/25 NA
Shuangyashan NA 2022/12/17 2022/12/20 2022/12/17 NA
Shanghai 2022/12/17 2022/12/17 202212117 2022/12/17 2022/12/17
Nanjing 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Suzhou 2022/12/17 2022/12/17 202212117 2022/12/17 2022/12/17
Wuxi 2022/12/21 2022/12/21 2022/12/21 2022/12/21 2022/12/21
Lianyungang 2022/12/22 2022/12/17 2022/12117 202212117 2022/12/17
Huai'an 2022/12/20 2022/12/20 2022/12/20 2022/12/20 2022/12/20
Yangzhou 2022/12/23 2022/12/22 2022/12/22 2022/12/22 2022/12/22
Taizhou 2022/12/21 2022/12/21 2022/12/21 2022/12/21 2022/12/21
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City for reaching the peak
Peak date Peak date Peak date Peak date Peak date
m=3 m=7 m=31 3 days decrease 5 days decrease
Yancheng 2022/12/21 2022/12/21 2022/12/21 2022/12/21 2022/12/21
Xuzhou 2022/12/17 2022/12/17 2022/12/17 202212117 2022/12/17
Changzhou 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Nantong 2022/12/18 2022/12/23 2022/12/23 2022/12/23 2022/12/23
Zhenjiang 2022/12/22 2022/12/18 2022/12/22 2022/12/18 NA
Sugian 2022/12/18 2022/12/18 2022/12/21 2022/12/18 2022/12/21
Hangzhou 2022/12/21 2022/12/21 2022/12/21 2022/12/21 2022/12/21
Lishui NA 2022/12/27 2022/12/27 2022/12/27 NA
Jinhua 2022/12/27 2022/12/24 2022/12/22 2022/12/24 2022/12/22
Wenzhou 2022/12/24 2022/12/22 2022/12/22 2022/12/22 2022/12/22
Taizhou NA 2022/12/21 2022/12/24 2022/12/21 2022/12/24
Quzhou 2022/12/26 2022/12/27 202212117 2022/12/27 2022/12/17
Ningbo 2022/12/23 2022/12/22 2022/12/22 2022/12/22 2022/12/22
Shaoxing 2022/12/24 2022/12/24 2022/12/24 2022/12/24 2022/12/24
Jiaxing 2022/12/21 2022/12/22 2022/12/22 2022/12/22 2022/12/22
Huzhou 2022/12/18 2022/12/25 2022/12/24 2022/12/25 NA
Zhoushan NA 2022/12/25 2022/12/25 2022/12/25 NA
Hefei 2022/12/17 2022/12/17 202212117 202212117 2022/12/17
Tongling NA NA 2022/12/21 NA 2022/12/21
Huangshan NA 2022/12/17 2022/12117 202212117 NA
Xuancheng 2022/12/19 2022/12/21 2022/12/21 2022/12/21 2022/12/21
Hanzhong 2022/12/20 2022/12/19 2022/12/20 2022/12/19 NA
Xianyang 2022/12/18 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Yan'an 2022/12/17 2022/12/17 2022/12117 202212117 NA
Lanzhou 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Dingxi NA 2022/12/17 2022/12117 202212117 2022/12/17
Pingliang 2022/12/23 2022/12/23 2022/12/23 2022/12/23 NA
Tianshui 2022/12/23 2022/12/23 202212117 2022/12/23 NA
Longnan NA 2022/12/18 2022/12/18 2022/12/18 2022/12/18
Linxia NA 2022/12/21 2022/12/16 2022/12/21 2022/12/16
Xining 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Yinchuan NA NA 202212117 NA 2022/12/17
Shizuishan NA 2022/12/24 2022/12/22 2022/12/24 2022/12/22
Urumgqi 2022/12/18 2022/12/17 2022/12/18 2022/12/17 2022/12/18
Changji 2022/12/21 2022/12/22 2022/12/22 2022/12/22 2022/12/22
Aksu NA 2022/12/17 202212117 2022/12/17 2022/12/17
Kashgar NA 2022/12/17 2022/12/17 2022/12/17 NA
Bayin Goleng 2022/12/25 2022/12/25 2022/12/25 2022/12/25 2022/12/25
Yili 2022/12/26 2022/12/22 2022/12/17 2022/12/22 2022/12/17
Tacheng NA 2022/12/24 2022/12/21 2022/12/24 2022/12/21
Huizhou 2022/12/23 2022/12/22 2022/12/23 2022/12/22 2022/12/23
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City for reaching the peak
Peak date Peak date Peak date Peak date Peak date
m=3 m=7 m=31 3 days decrease 5 days decrease
Zhuhai 2022/12/23 2022/12/23 2022/12/23 2022/12/23 2022/12/23
Shaoguan 2022/12/24 2022/12/24 2022/12/24 2022/12/24 NA
Yangjiang 2022/12/28 2022/12/26 2022/12/26 2022/12/26 NA
Maoming 2022/12/25 2022/12/26 2022/12/27 2022/12/26 NA
Chaozhou 2022/12/25 2022/12/27 2022/12/24 2022/12/27 2022/12/24
Zhongshan 2022/12/17 2022/12/17 2022/12/17 202212117 2022/12/17
Qingyuan 2022/12/26 2022/12/24 2022/12/24 2022/12/24 2022/12/24
Zhaoging 2022/12/24 2022/12/24 2022/12/24 2022/12/24 2022/12/24
Heyuan 2022/12/20 2022/12/22 2022/12/17 2022/12/22 NA
Meizhou NA NA NA NA NA
Shantou 2022/12/25 2022/12/25 2022/12/25 2022/12/25 2022/12/25
Shanwei 2022/12/28 2022/12/28 2022/12/28 2022/12/28 NA
Nanning 2022/12/21 2022/12/21 2022/12/17 2022/12/21 2022/12/17
Liuzhou 2022/12/22 2022/12/22 2022/12/22 2022/12/22 2022/12/22
Guilin 2022/12/20 2022/12/20 2022/12/17 2022/12/20 2022/12/17
Hezhou 2022/12/26 2022/12/26 2022/12/25 2022/12/26 2022/12/25
Guigang 2022/12/17 2022/12/17 2022/12/24 2022/12/17 2022/12/24
Yulin 2022/12/21 2022/12/22 2022/12/25 2022/12/22 NA
Hechi NA 2022/12/22 2022/12/17 2022/12/22 2022/12/17
Beihai 2022/12/17 2022/12/17 2022/12117 202212117 2022/12/17
Qinzhou 2022/12/22 2022/12/22 2022/12/25 2022/12/22 2022/12/25
Baise 2022/12/25 2022/12/25 2022/12/25 2022/12/25 NA
Wuzhou NA 2022/12/23 2022/12/23 2022/12/23 2022/12/23
Chongzuo 2022/12/23 2022/12/23 2022/12/22 2022/12/23 2022/12/22
Haikou 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Sanya 2022/12/19 2022/12/22 2022/12/22 2022/12/22 NA
Chongging 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Chengdu 2022/12/16 2022/12/16 2022/12/16 2022/12/16 2022/12/16
Yibin 2022/12/17 2022/12/17 2022/12/17 2022/12/17 2022/12/17
Mianyang 2022/12/12 2022/12/14 2022/12/15 2022/12/14 2022/12/15
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Methods and Applications

Establishment of a Lateral Flow Dipstick Detection Method for
Influenza A Virus Based on CRISPR/Casl2a System

Xiaoyan Zhao'; Ximing Zheng'; Xiyong Yang'; Qi Guo* Yi Zhang**; Jun Lou'*

ABSTRACT

Objective: This study aimed to develop a rapid,
visual PCR-CRISPR/Cas12-LFD method for detecting
influenza A by utilizing the conserved region of the
matrix protein gene.

Method: We crafted universal degradation primers
and clustered regularly interspaced short palindromic
repeats RNA (CRISPR RNA, crRNA) targeting the
conserved matrix protein gene of the influenza virus
(IFV), integrated with lateral flow dipstick (LFD)
technology. This new PCR-CRISPR/Cas12-LFD
approach was designed to determine its sensitivity and
specificity through the analysis of various clinical
samples collected in 2023.

Results: The developed nucleic acid assay for
influenza A viruses (IAV) demonstrated a sensitivity of
10 copies/pL without cross-reactivity with other
respiratory pathogens. Evaluation of 82 clinical
samples showed high concordance with results from
Chain (PCR),
achieving a kappa value of 0.95.

Conclusion: A highly sensitive and specific PCR-
CRISPR/Cas12-LFD method has been successfully
established for the detection of influenza A, offering a
robust tool for its diagnosis and aiding in the
prevention and control of this virus.

fluorescent  Polymerase Reaction

Influenza (flu) is an acute respiratory illness caused
(IFV), characterized by
symptoms such as fever, cough, headache, and muscle
pain, posing a significant threat to public health (7).

by the influenza virus

The virus falls within the Orthomyxoviridae family,
known for single-stranded, negative-sense RNA viruses
divided into four subtypes — A, B, C, and D (2). The
influenza A virus (IAV) comprises eight distinct RNA
segments and is further subclassified into 16 HA and 9
NA subtypes. The high mutation rates of HA and NA

facilitate recombination and reassortment events,

946 CCDC Weekly / Vol. 6/ No. 37

significantly contributing to IAV’s potential to cause
recurring seasonal outbreaks and pandemics (3-4).
Recent surveillance data from the China CDC
indicates that IAV was responsible for 86.1% of
influenza cases in China in 2023 (hteps://ivdc.
chinacde.cn/cnic/).  The  ongoing ~ COVID-19
pandemic has further exacerbated the incidence of
clustered influenza A outbreaks since 2023,
underscoring the urgent need for enhanced influenza
prevention and control, notably through early
diagnosis and continuous monitoring (5).

Molecular diagnosis is crucial for detecting influenza
A (6). Isothermal methods, characterized by longer
primer lengths, often suffer from non-specific
amplification, leading to false-negative outcomes.
Conversely, gene chips and sequencing require highly
skilled personnel, limiting their utility in standard
laboratory settings (7). Polymerase Chain Reaction
(PCR) remains the preferred method due to its high
sensitivity, specificity, accuracy, and ease of use,
establishing it as the “gold standard” in molecular
diagnostics. The CRISPR/Cas system, a defense
mechanism in bacteria and archaea against phages,
includes CRISPR and associated proteins (Cas). This
system is categorized into two types and six subtypes
based on its components and functions (8). Casl2, a
member of the second type, subtype five, utilizes
crRNA (CRISPER RNA) to locate specific 5-TTTN-
3’ sites in the PAM sequence. It achieves precise
binding via the complementarity between crRNA and
the target sequence, activating Cas12's cleavage activity
to indiscriminately cut trans-acting single-stranded
DNA (ssDNA). Exploiting this mechanism, ssDNA
probes, labeled with fluorescent signals and biotin, can
be tailored for nucleic acid detection (9).

In this study, we developed a PCR-CRISPR/Cas12-
LFD method for detecting IAV by designing
amplification primers and crRNAs targeting the M
gene, as characterized in recent GeneBank entries. This
approach utilized dual-labeled ssDNAs — modified
with fluorescent FAM and biotin motifs — as probes,
integrated with lateral flow dipstick (LFD) technology
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(Figure 1). We further analyzed the sensitivity and
specificity of this method and validated it using clinical
samples.

METHOD

Primer and crRNA Design and Synthesis

The M gene sequences from 126 IAVs,
encompassing various subtypes such as H3N2, HIN1,
HIN2, H5N1, H5N6, HSN8, H7N7, H7N9, HIN2,
H10N3, among others, were retrieved from the NCBI
GenBank database and analyzed individually. Sequence
alignment was conducted using VectorNTI software,
focusing on identifying highly homologous conserved
sequences while avoiding the formation of secondary
and hairpin structures. To target these conserved
regions, multiple sets of primers and probes were

CRISPR/Casl12a reaction system

designed using Primer 5 software and assessed with
Oligo software, incorporating degenerate bases to
accommodate variations among sequences. Specifically,
the M gene of the H3N2 subtype (GenBank:
ORB865615.1) was utilized to design three sets of
primers for both forward and reverse orientations, as
detailed in Table 1. Additionally, for ctRNA design,
the reverse 20 nucleotide segment of the PAM
sequence (TTTN or AAAN) was selected from the
amplified targets, with a backbone sequence of
UAAUUUCUACUAAGUGUAGAU, also listed in
Table 1. The synthesis of all primers and crRNA
sequences was performed by Shanghai Sangong
Biotechnology.

PCR Reaction and Primer Selection
The M gene was cloned into the pUC57 plasmid

C Lateral flow dipstick

Absorpti0n4_—
region

Test line #+— /}lg

Control line 4—u

Conjugated o f/
region =

Sample region+—

™ Mﬂ
L

Target sequence PAM crRNA  Casl2a Probe

’_‘/J (\ c— ¢ *=J)l\

FAM Biotion gold

T T [ %=

;?};}k\

Negative Positive

FAM antibody-  Secondary  Biotin Antibody
antibody to FAM
nanoparticle
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FIGURE 1. Schematic diagram of the PCR-CRISPR/Cas12a-LFD technology. (A) PCR amplification process; (B) the
CRISPR/Cas12a and crRNA reaction system; (C) detection of reaction products using LFD.

Abbreviation: LFD=lateral flow dipstick; crRNA= CRISPER RNA.
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TABLE 1. List of the primers and crRNA sequences.

Primer/crRNA Sequence (5°-3’) Position
F1 GAGGTCGAAACGTATGTTCT 41-60
R1 TCACTGGGCACGGTGAGCGT 218-237
F2 ACCGAGGTCGAAACGTATGT 38-57
R2 CGTCTACGCTGCAGTCCCCG 239-258
F3 CTTCTTACCGAGGTCGAAAC 32-51
R3 CGTAGACGCTTTGTCCAAAA 251-270
crRNA-1 UAAUUUCUACUAAGUGUAGAUCUGGGAAAAACACAGAUCUU 98-117
crRNA-2 UAAUUUCUACUAAGUGUAGAUCCAGCAAAGACAUCUUCAAG 82-101

Abbreviation: crRNA=CRISPER RNA.

vector, and the synthesis was carried out by Shanghai
Sangong Biotechnology. To amplify the cloned
plasmid containing the target gene, three pairs of
primers were utilized. The optimal primer pairs were
determined through PCR. The composition of the
PCR mixture was as follows: 25 pL of 2xEasyTag”
PCR SuperMix, 1 pL of 10 pmol/L forward primer, 1
pL of 10 pmol/L reverse primer, 2 pL of template
DNA, and 21 pL of nuclease-free
(Supplementary Material). The PCR conditions
included an initial denaturation at 94 °C for 30
seconds; followed by 40 cycles of 94 °C for 30 seconds,
58 °C for 15 seconds, and 72 °C for 10 seconds. The

PCR products were analyzed using agarose gel

water

electrophoresis, employing 2 pL of the PCR products
for analysis; the electrophoresis was conducted at 120
V for 40 minutes.

CRISPR/Casl12a-LFD Detection and

CrRNA Selection

The CRISPR/Casl12a reaction setup was as follows:
the reaction mixture contained 2 pL of 10x NEB
buffer, 2 pL of 500 nmol/L crRNA, 2 pL of
500 nmol/L Cas12a, and 11 pL of nuclease-free water.
This mixture was incubated at 25 °C for 10 min.
Subsequently, 1 pL of ssDNA-LFD probe (10 pmol/L,
5-FAM-AAAAAAAA-Bio-3’) and 2 pL of PCR
products were added. The mixture was thoroughly
mixed by shaking, followed by centrifugation, and then
incubated in a 37 °C water bath for an additional
10 minutes. After the incubation, an LFD was inserted
into the reaction tube, and results were typically
observed within 5-10 minutes. The reactions were
conducted separately using crRNA-1 and crRNA-2 to
determine the more effective ctrRNA, as indicated by
the intensity of the test strip’s color.
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PCR-CRISPR/Cas12-LFD Sensitivity

Analysis

The plasmid encoding the M gene template was
synthesized following the previously mentioned
procedures. Nucleic acid concentrations were measured
using a Qubit 2.0 fluorometer, and the copy number
was calculated using the formula: Concentration
(copies/pL) = [(6.02 x 10%3) x Concentration (ng/pL)
x 1077] / [DNA length (bp) x 660]. The plasmid was
serially diluted in tenfold increments from 107 to 10°
copies/uL. PCR  reactions utilized these varying
concentrations of plasmids as templates and were
analyzed through qPCR and CRISPR/Casl2a
diagnostic strips. For each dilution level, 2 pL of the
sample was added to the reaction mix, with eight
replicates conducted for each dilution.

PCR-CRISPR/Cas12-LFD Specificity

Analysis
Nucleic acids from positive samples of common
respiratory viruses, including IBV, RSV, HRV, MP,
HAdV, and 2019-nCoV, were detected using the
established ~ PCR-CRISPR/Cas12-LFD  method.
Additionally, the specificity of this method was
analyzed.

Clinical Detection

Fifty-six IAV-positive clinical samples, along with 26
negative controls, underwent nucleic acid extraction
followed by reverse transcription using the specified
reagents: 4 pL of 5xES RT Bulffer, 1 pL of Total RNA,
1 pL of 10 mmol/L dNTPs, 1 pL of Anchored
Oligo(dT);g Primer, 1 pL of EasyScrl'pt®, and 12 pL of
water.  The
conditions were set at 42

nuclease-free reverse
°C for 30 minutes.

Subsequently, the samples were analyzed using PCR-

transcription
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CRISPR/Cas12-LFD and fluorescent PCR methods.
The concordance between these two methods was then
assessed using kappa statistics.

RESULTS

Establishment of PCR-CRISPR/
Casl12-LFD detection.

The plasmid was identified utilizing three primer
pairs and two crRNAs targeting the M gene, with
results in Figure 2. All primer pairs successfully
amplified the target gene. The two crRNAs detected
the amplification products. Notably, the F2R2 primer
exhibited higher amplification efficiency compared to
the other pairs (Figure 2A), and crRNA-2 produced
the most robust signal (Figure 2B). Consequently,
F2R2 and crRNA-2 were chosen to develop the PCR-
CRISPR/Cas12-LFD method.

PCR-CRISPR/Cas12-LFD Sensitivity

Analysis

The M gene of IAV underwent further sensitivity
analysis and reproducibility evaluation. Eight dilution
gradients from 107 to 10° were established, and
detection utilized both the qPCR and the PCR-
CRISPR/Cas12-LFD method. The detection limit for
the PCR-CRISPR/Cas12-LFD method was identified
as 10 (eight
repetitions per dilution) demonstrated consistent

copies/pL.  Repeated

experiments

results, affirming the method’s superior stability

(Figure 3).

PCR-CRISPR/Cas12-LFD Specificity

Analysis
This study established a PCR-CRISPR/Cas12-LFD

method that successfully detected twenty-six common

%!

B2

]

FIGURE 2. Establishment of the PCR-CRISPR/Cas12-LFD Detection Method. (A) Electrophoretic analysis of PCR products
with three primer pairs; (B) CRISPR RNA (crRNA) selection using the LFD method.

Note: Panel A, 1-3: three replicated amplicons obtained with F1R1 primers; 4-6: three replicated amplicons using F2R2
primers; 7-9: three replicated amplicons generated by F3R3 primers. Panel B, 1-2: two replicates tested with crRNA-1; 3—4:
two replicates tested with crRNA-2.

Abbreviation: LFD=lateral flow dipstick; crRNA= CRISPER RNA.

A Amplification B
1,200 + * * *
1,000 +
800 -
600 4
400 A
200 4
(R

Cycles

FIGURE 3. Sensitivity analysis of PCR-CRISPR/Cas12-LFD for the detection of IAV. (A) Sensitivity of gPCR in detecting
IAV, with three replicates for each of eight dilutions ranging from 107 to 10°% (B) Sensitivity of PCR-CRISPR/Cas12-LFD in
detecting IAV, with eight dilutions from 107 to 10°.

Abbreviation: LFD=lateral flow dipstick; IAV=influenza A virus.

Chinese Center for Disease Control and Prevention CCDC Weekly / Vol. 6/ No. 37 949



China CDC Weekly

respiratory viruses, including IBV, RSV, HRV, MP,
HAdV, and 2019-nCoV, without any false positive
results, demonstrating the method’s high specificity.

Evaluation with Clinical Samples

The practicality of the PCR-CRISPR/Cas12-LFD
method developed in this study was assessed using 82
clinical samples, including 56 IAV-positive and 26
IAV-negative samples identified by qPCR. For
comparative purposes, the Universal Nucleic Acid
Detection Kit for Influenza A Virus from SunSure
Biotechnology was used as a control. Results indicated
a kappa coefficient of 0.95 between the two methods,
indicating identical performance (Table 2).

DISCUSSION

Data show that between November 15, 2023, and
December 30, 2023, the incidence of IFV infection
among outpatients exhibiting respiratory symptoms in
North China, particularly in the Beijing area, ranged
from 20% to 50%. Influenza is expected to continue
its prevalence across different regions, potentially
leading to localized outbreaks. It is anticipated that the
AV, specifically strains H3N2 and HIN1, will remain
predominant in these pandemic occurrences (https://
Concurrently, other respiratory
pathogens such as RSV and mycoplasma infections are
also imposing significant public health challenges
(10-11). Accurate and fast identification of these
pathogens is crucial for effective disease prevention and
control.

The CRISPR/Cas system, renowned for its high
precision and ease of use, has evolved swiftly into an
effective tool for pathogen detection (72). Initial
research primarily concentrated on the CRISPR/Cas9
system, yet the inherent limitations associated with the
Cas9 protein, such as its size, have restricted broader
applications of this technology (73). Recently, the
CRISPR/Cas12 system, also known as CRISPR/Cpf1,
has emerged as a focal area of interest. This system falls
under the V type category and includes Cas proteins

www.nmdc.cn/).

TABLE 2. Comparison of PCR-CRISPR/Cas12-LFD and
gPCR assay results.

qPCR
PCR-CRISPR/Cas12-LFD
Positive Negative Total
Positive 54 0 54
Negative 2 26 28
Total 56 26 82

950 CCDC Weekly / Vol. 6/ No. 37

ranging from Casl2a to Casl2e, with Casl2a being
more extensively utilized in nucleic acid detection.
This interaction activates the RuvC structural domain
of the protein for DNA cleavage and initiates trans-
cleavage activity, a distinct feature of the
CRISPR/Cas12 system (/4-15). The CRISPR/Cas12
system offers advantages such as increased reaction
speed, lower off-target rates, and higher editing
efficiency, making it particularly suitable for the precise
identification of pathogens (16). Moreover, leveraging
the trans-cleavage activity of Cas proteins, CRISPR-
Cas has been integrated with photoelectrochemical
biosensors  for high-throughput detection (77).
Additionally, the high sensitivity of the CRISPR-Cas
system allows for the direct detection of pathogens
using electrochemical methods without the need for
nucleic acid amplification (/8).

LFD has become a commonly employed technique
for nucleic acid detection due to its rapidity,
convenience, and cost-effectiveness (79). In our study,
we utilized double-antibody sandwich
immunochromatography for the swift identification of
nucleic acid amplification products. The front end of
the test strip was pre-coated with a mixture of FAM
antibody and gold nanoparticles, the control line with
a secondary antibody to the FAM antibody, and the
test line with a biotin antibody. We labeled the ends of
the probe with FAM and biotin, respectively. Upon
activation of Casase’s cutting activity, colorful
precipitates were observed at both the detection and
quality control lines. In the absence of probe cleavage,
a precipitate formed only at the quality control line.
This reaction with the amplified product allows for
visual results within 2—-10 minutes (20). Due to the
lower cost of traditional PCR combined with LFD
compared to fluorescence quantitative PCR, it is
especially favored in primary-level laboratories and
field detection.

The CRISPR/Cas12 system holds promise as a
diagnostic tool for pathogen detection (27-23). Recent
advancements have incorporated isothermal detection
combined with CRISPR and test strips to identify IFA
and other prevalent pathogens. However, these
methods face challenges, such as the need for 30-35 bp
primers in recombinase polymerase amplification
(RPA) and 4-6 pairs of primers in Loop-mediated
isothermal amplification (LAMP), complicating primer
design. This complexity can lead to mismatches and
false-positive results, thereby reducing specificity (24).
In contrast, PCR remains a traditional method with
advantages including lower costs for instruments and
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reagents, along with enhanced sensitivity and
specificity. The integration of PCR, CRISPR-Cas12a,
and LFD offers superior sensitivity and specificity,
making it particularly suitable for local primary
laboratories.

Challenges to this combined detection include less
sensitivity than qPCR, and requirement for integrated
microfluidics for portability, in which we will develop
further.

In this study, we developed a rapid diagnostic
method for detecting IAV that integrates the benefits
of PCR, CRISPR/Cas12, and LFD techniques. This
method exhibits high sensitivity and specificity while
eliminating the need for fluorescent PCR instruments
and allowing for visual interpretation of results. When
testing a positive plasmid containing the M gene, the
method achieved a sensitivity of 10 copies/pL. We
evaluated the method on 82 clinical samples, and it
demonstrated a high degree of consistency with real-
time fluorescence PCR, except for two samples not
detected with a qPCR CT value exceeding 35. Tests on
various common respiratory samples indicated no
cross-reactivity, ~confirming the method’s high
specificity. Furthermore, this study innovatively detects
different subtypes of IAV by including degenerate
bases in the primer design and conducts optimized
screening of crRNA to enhance both sensitivity and
specificity of the detection process.
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SUPPLEMENTARY MATERIAL

2x EasyTaq® PCR SuperMix and EasyScript® Reverse Transcriptase were acquired from Beijing TransGen Biotech
Company. The CFX96TM Real-Time System was purchased from Bio-Rad. Rapid Nucleic Acid Extraction Kit
(Magnetic Bead Method) was sourced from BioPerfectus Company, while Tiosbio Cas12/13 Test Strips were
obtained from Nanjing WarBio Technology Company. EnGen® Lba Casl2a was procured from New England
Biolabs and AceQ qPCR SYBR Green Master Mix from Nanjing Vazyme Company. The Influenza A Virus
Universal Nucleic Acid Detection Kit (PCR-fluorescent probe method) was purchased from SunSure Company.
Zhumadian Central Hospital provided samples of several respiratory pathogens, including IAV, influenza B virus
(IBV), human adenovirus (HAdV), respiratory syncytial virus (RSV), human rhinovirus (HRV), Mycoplasma
pneumonia (MP), COVID virus (2019-nCoV), and 26 other common respiratory pathogens. Additionally, 56 IAV
clinical samples were supplied by the Inspection Department of Zhumadian Central Hospital.
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Methods and Applications

Development and Diagnosis Performance of IgM-Based Rapid
Antigen Test for Early Detection of SARS-CoV-2 Infection
in a Large Cohort of Suspected COVID-19 Cases
— USA, Poland, and Sweden, 2021-2022

Yihua Huang"®; Yiyi Pu**; Youhong Weng***; Yahan Wu’ Qing He? Sofia Litchev’; Longyou Zhao';
Haojie Ding’; Yunru Lai'; Jie Li'; Xiaojun Zheng Jinshu Chen® XianqinXiong % Shaohong Lu’;
Fei Gao*’; Meng Gao*; Qingming Kong**

ABSTRACT

Introduction: Antigen testing has been crucial in
effectively managing the coronavirus disease 2019
(COVID-19) pandemic. This study evaluated the
clinical performance of a nasopharyngeal swab (NPS)-
based antigen rapid diagnostic test (Ag-RDT)
compared to the gold standard real-time reverse
transcription-polymerase chain reaction (RT-PCR) for
early detection of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2).

Methods: We developed an IgM-based rapid
antigen test for early detection of SARS-CoV-2
infection. Between July 2021 and January 2022, we
analyzed 1,030 NPS samples from participants at three
centers in different countries, using both antigen rapid
diagnostic tests (Ag-RDT) and RT-PCR.

Results: The Ag-RDT demonstrated minimal
detection limits as low as 0.1 ng/mL for recombinant
N antigen and 100 TCID50/mL for heat-inactivated
SARS-CoV-2 virus. Specificity assessments involving
four human coronaviruses and 13 other respiratory
viruses showed no cross-reactivity. The Ag-RDT assay
(ALLtest) exhibited high sensitivity (93.18%-100%)
and specificity (99.67%-100%) across all centers.
Factors such as cycle threshold (Ct) values and the
timing of symptoms since onset were influential, with
sensitivity increasing at lower Ct values (<30) and
within the first week of symptoms.

Conclusion: The ALLtest Ag-RDT demonstrated
high reliability and significant potential for diagnosing
suspected COVID-19 cases.

Coronavirus  disease 2019 (COVID-19), a
contagious illness caused by the severe acute respiratory
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syndrome coronavirus 2 (SARS-CoV-2), has imposed
an unprecedented burden on public health systems
worldwide. As of mid-July 2023, there have been over
768 million confirmed cases of SARS-CoV-2 infection,
resulting in more than 6.9 million deaths globally (7).
The rapid increase in new cases continues to be fueled
by various genomic variants of the virus. Notably, the
recent emergence of the BA.1 through BA.5 and XBB
(Omicron) variants, classified as the sixth variant of
concern, demonstrates increased transmissibility and
resistance to immunity (2).

SARS-CoV-2 among humans via
respiratory droplets and aerosols during actions such as
sneezing, talking, or coughing (3). The rapid and
widespread dissemination of SARS-CoV-2 across
geographical and species boundaries highlights the
critical need for adopting the One Health approach to
effectively tackle public health emergencies. Central to
managing the COVID-19 pandemic is the
development and implementation of swift and
accessible diagnostic tools. Currently, real-time reverse
transcription-polymerase chain reaction (RT-PCR) is
considered the benchmark for COVID-19 diagnosis;
however, challenges persist in its practical use. Notably,
during the collection of nasopharyngeal secretions, the
recommended one-meter distance between the
healthcare provider and the patient is often not
maintained, potentially heightening the risk of
COVID-19 transmission. Furthermore, RT-PCR can
take several hours to yield results and may result in
false negatives (4). Consequently, developing a rapid
detection method is imperative for timely isolation of
suspected SARS-CoV-2 cases and minimizing the
transmission risk.

The SARS-CoV-2 antigen rapid diagnostic test (Ag-
RDT) has been crucial in the early detection of cases,
containment strategies, and reducing transmission

(5-7). Multiple studies have assessed Ag-RDTs

transmits
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diagnostic accuracy across different populations and
clinical environments, revealing varied results (8—10).
Ag-RDTs demonstrate high sensitivity during the
initial week following symptom onset and exhibit
excellent specificity when viral loads are elevated (5).
Currently, Ag-RDTs are accessible to the general
public, delivering results within 15-30 minutes.
Consequently, they serve as a supplementary method
to RT-PCR for the quick, economical, and
straightforward  identification ~ of ~ SARS-CoV-2
infections. Furthermore, Ag-RDTs are effective as
point-of-care tests (POCT) for diagnosis in the
disease's early stages, providing a significant advantage
in curbing SARS-CoV-2 spread.

In the conceptual design phase, our ALLtest
distinguishes itself from other Ag-RDTs through its
innovative utilization of IgM antibodies targeting the
nucleocapsid (N) protein. The N protein is integral to
various stages of the replication cycle and serves as a
serological marker for SARS-CoV-2 infection (/I).
This technique enhances early-stage infection detection
and provides deeper insights into transmission
dynamics. By incorporating this novel element into
antigen diagnosis, the ALLtest enables a more
comprehensive evaluation of SARS-CoV-2 infection,
thereby  facilitating ~ improved  public  health
interventions and mitigation strategies. In this study,
nasopharyngeal swabs (NPS) were collected from
suspected COVID-19 cases and subjected to diagnostic
RT-PCR in the United States (US), Sweden (SE), and
Poland (PL) from July 2021 to January 2022. All
samples were subsequently analyzed using the ALLtest
to conduct a detailed correlation analysis among
various diagnostic assays. Furthermore, we explore the
challenges and limitations of IgM-based antigen
diagnosis, underscoring the necessity for versatile
diagnostic approaches to effectively address the global
health crisis. By elucidating the details of this
innovative methodology, we not only enhance our
comprehension of COVID-projected diagnostics but
also contribute to establishing a more robust and
proactive global health response.

METHODS

Preparation and Characterization of
Monoclonal Antibodies (mAbs)

Against SARS-CoV-2 N Protein
The nucleocapsid protein (NCBI: NC_045512.2)
was expressed under identical conditions as described
in our previous study (/2). BALB/c mice, ranging in
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age from 4 to 8 weeks, were intraperitoneally injected
with 50 pg of N antigen per mouse for the initial
immunization, followed by 100 pg per mouse for the
second and third immunizations at biweekly intervals.
Spleen cells from mice with high antibody titers were
fused with myeloma cells to produce hybridoma cells.
These cells were then injected into BALB/c mice to
generate mAbs specific for the SARS-CoV-2 N
protein. The titers of these mAbs were evaluated using
indirect ELISA on plates coated with 5 pg/well of N
antigen. We tested 12 distinct mAbs, initially diluted
from 1:10 to 1:10® starting from a concentration of
1 mg/mL. Pair screening of the mAbs was conducted
using the ForteBio Octet” Red96 system, where the
response value (nm) indicative of specific binding to
the SARS-CoV-2 N antigen was recorded for each
mAb pair. High-titer mAbs demonstrating effective
pairing were further characterized for their isotypes
using the multiple antibody isotypes kit from
Proteintech Group Inc., China (Cat No. PK20003),
which includes IgG1, IgG2a, IgG2b, IgG3, IgA, IgM,
kappa light chain, and lambda light chain.

The Design of Ag-RDT Assay for

COVID-19

The SARS-CoV-2 Ag-RDT was developed using the
immunochromatographic method to detect the SARS-
CoV-2 N antigen in NPS samples. The structural
design of the Ag-RDT cassette is principally similar to
that used in the ALLtest for antibody detection (13).
The process begins by placing the sample and buffer on
the sample pad. The fluid then migrates from left to
right, sequentially interacting with the conjugation pad
that contains labeled colloidal gold-mAb17, the NC
membrane where specific antibodies are immobilized
at distinct lines [test (T) line with mAb16 at 1 mg/mlL,
and control (C) line with goat anti-mouse IgG at
1 mg/mL], and finally the absorption pad.

Determination of the ALLtest Ag-RDT
Assay Sensitivity and Specificity

To assess the sensitivity of the ALLtest Ag-RDT
Assay, preparations were made using 1.0x10° median
tissue culture infectious doses (TCID50)/mL of the
SARS-CoV-2 Shenzhen/02/2020 strain and 1 mg/mL
of full-length  nucleocapsid  protein  (NCBI:
NC_045512.2). For specificity validation of the same
assay, samples from four human coronaviruses (HCoV-
229E, HCoV-HKU1, CoV-OC43, HCoV-NL63),
parainfluenza viruses 2 and 3, influenza A and B,
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adenovirus types 3 and 7, human rhinovirus 2, 14, and
16, measles virus, mumps virus, and respiratory
syncytial virus were prepared. Furthermore, to evaluate

interference, substances,

spray,
flunisolide, mupirocin, oxymetazoline, phenylephrine,

potential including

budesonide nasal mucin, dexamethasone,
rebetol, relenza, tamiflu, tobramycin, and whole blood,
were spiked with negative and weak positive SARS-
CoV-2 samples. Swabs spiked with virus tissue
cultures, nucleocapsid protein, various virus strains,
and interfering substances at specified concentrations

were tested under defined reaction conditions.

Evaluation of the Application of the

SARS-CoV-2 Variant Strains

To assess the sensitivity of the ALLtest Ag-RDT
Assay across various SARS-CoV-2 variants, including
Alpha, Beta, VUI-21ARP-03, Gamma, Delta, and
Omicron, these strains were prepared in dilutions
using 0.5% BSA-PBS to create different concentration
solutions. A volume of 30 pL from each solution was
applied to the tip of a nasal swab, subsequently
immersed in extraction buffer. Three to four drops of
this mixture were then placed into the sample well of
the test cassette. Results were visually read from the
cassette after 15 minutes, according to the protocol
specified by the manufacturer.

Validation of Clinical Samples
Antigen tests were conducted on 1,030 individuals

suspected of having COVID-19 three

international centers: Phamatech, Inc. in America (PI-
US), ilab in Sweden (I-SE), and Uniwersyteckie
Centrum Kliniczne in Poland (UCK-PL) from July
2021 to January 2022. Participant data from these
centers is compiled in Table 1. Each participant
provided two NPS specimens. One swab was analyzed
immediately using the ALLtest Ag-RDT Assay or
processed using sample lysates without protein
denaturant and stored at either 4 “C for up to 24 hours
or below —70 °C for extended storage. The second
swab was preserved in universal transport medium and
tested for ORFla/b through quantitative reverse
transcription PCR (qQRT-PCR) within 24 hours. The
Ct values from the qRT-PCR were documented for
subsequent analysis. This research received ethical
approval from the Ethical Committee of Phamatech,
Inc. in America (Approval No. 21-HANG-101) and
Uniwersyteckie ~ Centrum  Kliniczne in  Poland
(Approval No. NKBBN/710/2021). The requirement
for informed consent was waived for the clinical trial
conducted by iLab in Sweden.

across

Statistical Analysis

The sensitivity and specificity served as the primary
metrics for assessing our antigen test. Sensitivity, or the
true positive rate, was determined by dividing the
number of positive cases identified by the ALLtest by
the number of true positive cases confirmed by the
RNA test. Specificity, or the true negative rate, was
calculated by dividing the number of negative cases

TABLE 1. Summary of participant information from three centers.

PI-US I-SE UCK-PL
Parameter RT-PCR positive RT-PCR negative RT-PCR positive RT-PCR negative RT-PCR positive RT-PCR negative
(n=44) (n=247) (n=100) (n=114) (n=223) (n=302)

Age in years, mean (SD) 34.6 (18.9) 33.3(17.5) - - 47.8 (21.7) 46.2 (24.5)
Gender (%)

Male 20.0 (45.5) 99.0 (40.1) - - 115.0 (51.6) 144.0 (47.8)

Female 24.0 (54.5) 148.0 (59.9) - - 108.0 (48.4) 158.0 (52.3)
Cycle threshold (%)

<15 0(0) 1.0 (1.0) 0(0)

15 to <20 5.0 (11.4) 6.0 (6.0) 178.0 (79.8)

20 to <25 12.0 (27.3) 8.0 (8.0) 15.0 (6.7)

25 to <30 20.0 (45.5) 29.0 (29.0) 10.0 (4.5)

30 to <35 7.0 (15.9) 56.0 (56.0) 20.0 (9.0)

>35 0(0) 0(0) 0(0)

Note: “=” means information not recorded.

Abbreviation: PI-US=Phamatech, Inc. in USA; |-SE=iLab in Sweden; UCK-PL=Uniwersyteckie Centrum Kliniczne in Poland; RT-PCR=
real-time reverse transcription-polymerase chain reaction; SD=standard deviation.
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identified by the ALLtest by the total number of true
negative cases. The 95% confidence intervals (CIs)
were derived using exact binomial tests.

To determine factors strongly correlated with
antigen test outcomes, participants were divided into
two categories according to their test results. Factors in
each category were then compared for significance. For
categorical variables such as sex and Ct category,
Pearson’s chi-square test was utilized. For continuous
variables including age, symptom duration, and Ct
value — depending on their distribution — either the
T-test or the Wilcoxon test was employed. All
statistical analyses were performed using R software
(version 3.6.0, R Core Team, Vienna, Austria).

RESULTS

Preparation and Characterization of

mAbs Against N Protein

The PCR amplification of the SARS-CoV-2 N gene
resulted in a 1,200 bp band, as observed through 1%
agarose gel electrophoresis (Figure 1A). Following
immunization and cell fusion, 12 mAbs were produced
against the SARS-CoV-2 N protein (Figure 1B). The
titers for five of these mAbs were notably high,
approximately 1:102,400, whereas the titers for the
remaining mAbs were around 1:25,600 (Figure 1C).
Subsequent to pair-wise screening (Figure 1D), mAbs
N1, N12, N15, N16, and N17 were chosen for further
analysis to identify antibody subtypes and develop the
Ag-RDT Assay, due to their effective pairing
performance and elevated titers. Notably, N16 and
N17 were classified as IgM, while the other mAbs were
identified as IgG1 subtype (Figure 1E).

The Assessment of the Sensitivity and

Specificity of the Ag-RDT Assay

The Ag-RDT assay was constructed using paired
mAbs based on the standard schematic for colloidal
gold test strip assembly, as illustrated in Figure 2A.
One mAb was conjugated with colloidal gold while its
counterpart served as the capture line (T-line)
antibody. Sensitivity varied across different antibody
pairs when assessing both positive and negative
samples. The assay achieved maximal detection
sensitivity and specificity when colloidal gold was
conjugated with N17 and the T-line utilized N16, as
shown in Figure 2B. Testing with the optimized Ag-
RDT assay on virus tissue culture and recombinant
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SARS-CoV-2 N protein antigen at varying dilutions
identified the lowest detection limits: 100
TCID50/mL for heat-inactivated SARS-CoV-2 virus
(Figure 2C) and 0.1 ng/mL for the recombinant N
antigen.

To verify the specificity of the Ag-RDT assay, we
tested it against four other human coronaviruses and
13 viruses that cause respiratory illnesses. The results,
which showed no cross-reactions (Supplementary
Table S1, available at https://weekly.chinacdc.cn/),
confirmed the assay’s specificity for detecting the
SARS-CoV-2 antigen. Additionally, various substances
including  budesonide  nasal spray, mucin,
dexamethasone, flunisolide, mupirocin, oxymetazoline,
phenylephrine, rebetol, relenza, tamiflu, tobramycin,
and whole blood were demonstrated not to interfere
with the Ag-RDT results at the concentrations used
(Supplementary Table S2, available at https://weekly.
chinacdc.cn/).

Performance Evaluation of the Ag-RDT

Assay with SARS-CoV-2 Variants

To assess the detection limit of the Ag-RDT assay
for various SARS-CoV-2 variants, including Alpha,
Beta, Gamma, Delta, and Omicron, each variant was
subjected to  testing. Results  presented in
Supplementary Table S3 (available at https://weekly.
chinacdc.cn/) demonstrate that the Ag-RDT assay can
effectively detect SARS-CoV-2 variants such as
B.1.1.7, B.1.351, B.1.617.3, P.1.2, B.1.617.2,
B.1.1.529, BA.2, BA.4, and BA.5, down to specific

dilution rates and concentrations.

The Clinical Validation of the
Ag-RDT Assay

The ALLtest antigen test was assessed across three
centers, as detailed in Table 2. Within the PI-US
cohort of 291 participants, the ALLtest correctly
identified 41 out of 44 confirmed cases and showed no
false positives among excluded cases, achieving a
sensitivity of 93.18% and a specificity of 100%.
Similarly, the test demonstrated high clinical efficacy
in the I-SE and UCK-PL cohorts, with sensitivities of
100% and 97.31%, and specificities of 100% and
99.67%, respectively. Notably in the PI-US center, the
sensitivity increased to 97.30% (95% CI: 85.84%,
99.93%) for samples with Ct values below 30, and to
96.77% (95% CI. 83.30%, 99.92%) for patients
displaying symptoms within the first week.
Additionally, the UCK-PL center reported a higher
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FIGURE 1. Characterization and paired screening of mAbs against the N protein. (A) Electrophoresis analysis of PCR
products from pET-28a (+)-N. M: marker, L1: SARS-CoV-2 N gene; (B) SDS-PAGE analysis of SARS-CoV-2 N mAbs. M:
marker, L1-L17: purified mAbs of SARS-CoV-2 N; (C) Titer detection of mAbs; (D) Heat map presenting paired results of
mAbs; (E) Histogram of ELISA identification of mAbs subtypes N1, N12, N15, N16, and N17; (F) Identification of SARS-
CoV-2 N mAbs subtypes using a monoclonal antibody subtyping kit.

Abbreviation: PCR=polymerase chain reaction; SARS-CoV-2=severe acute respiratory syndrome coronavirus 2; SDS-PAGE=
sodium dodecyl sulfate polyacrylamide gel electrophoresis; ELISA=enzyme linked immunosorbent assay.

sensitivity of 99.51% (95% CI: 97.29%, 99.99%) for
samples with Ct values below 30.

Factors Correlated with Our
Antigen Results

Clinical factors including age, sex, duration of
symptoms, and Ct values of participants were assessed for
correlations with results from the ALLtest antigen assay,
as shown in Supplementary Table S4 (available at
https://weekly.chinacdc.cn/). Across three centers, results
were consistent. A significant number of participants

Chinese Center for Disease Control and Prevention

exhibited low viral loads that precluded RNA detection
by PCR, regardless of the number of amplification cycles
performed. 'Therefore, artificial cutoff values were
employed to categorize Ct values. In PI-US and UCK-PL
settings, both actual Ct values (Figure 3A and 3B;
P=0.026, P=9.74x107) and categorized Ct values
(Ct<35 versus Ct>35; P<2‘2x10'16) demonstrated a
significant correlation with antigen test outcomes. The
timing of symptom onset correlated with antigen results
exclusively in UCK-PL (P=0.0018; Figure 3C). No
significant correlations between age or sex and antigen
test results were identified.
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FIGURE 2. Sensitivity detection of the Ag-RDT assay for COVID-19. (A) The principal diagram of the colloidal gold test strip
assembly and sample detection process; (B) Detection sensitivity and specificity using colloidal gold labeling and T-line
labeling with various paired monoclonal antibodies (mAbs); (C) Sensitivity detection of the Ag-RDT assay for the heat-
inactivated SARS-CoV-2 virus.

Note: In panel C, Lines 1-9 indicate concentrations ranging from 10° to 10 TCID50/mL; Line 8 indicates that the minimal limit
of detection is 100 TCID50/mL.

Abbreviation: Ag-RDT=antigen early rapid diagnostic test; COVID-19=coronavirus disease 2019; SARS-CoV-2=severe
acute respiratory syndrome coronavirus 2; TCID=tissue culture infectious doses.

transmission rates. Furthermore, its integration with
the One Health approach

interconnection of human, animal, and environmental

DISCUSSION

emphasizes  the
The SARS-CoV-2 pandemic continues to pose

significant challenges, necessitating effective strategies
to curb its spread. Antigen testing has been crucial in
early detection, containment, and the reduction of
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health, highlighting the need for a robust and unified
global health framework. Recent literature indicates
varying findings regarding the application of antigen
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TABLE 2. Sensitivity and specificity of ALLtest.

PI-US I-SE UCK-PL
Antigen test results
+ - Total + - Total + - Total
Positive 41 0 41 100 0 100 217 1 218
Negative 3 247 250 0 114 114 6 301 307
Total 44 247 291 100 114 214 223 302 525

Test evaluation, % (95% CI)
Sensitivity 93.2 (81.3, 98.6)

Specificity 100.0 (98.5, 100.0)

100.0 (96.4, 100.0)
100.0 (96.8, 100.0)

97.3 (94.2, 99.0)
99.7 (98.2, 100.0)

Note: “=” means negative. “+” means positive.

Abbreviation: PI-US=Phamatech, Inc. in USA; I-SE=iLab in Sweden; UCK-PL=Uniwersyteckie Centrum Kliniczne in Poland; RT-PCR=real-
time reverse transcription-polymerase chain reaction; C/=confidence interval.

tests in diagnosing COVID-19. A meta-analysis of
antigen tests developed before September 30, 2020,
showed that under specific conditions, despite varied
sensitivity, rapid antigen tests could serve as
alternatives to RT-PCR (73). Conversely, Greub et al.
reported mixed performances among 30 antigen tests,
advocating for comprehensive validation before official
adoption (8). Similarly, while Navero-Castillejos et al.
recommended using antigen tests solely for identifying
highly infectious individuals (70), Regev-Yochay et al.
observed high sensitivity across symptomatic and
asymptomatic patients alike (/4). Kohmer et al. also
noted a significant correlation between antigen test
outcomes and cell culture infectivity, underscoring
their potential utility in managing COVID-19 (9).
Adding to this body of work, we employed our Ag-
RDT (ALLtest) in a substantial cohort across three
international centers. Our findings revealed high
clinical sensitivities (93.18%—-100%) and specificities
(99.67%-100%) in suspected COVID-19 cases when
compared to RT-PCR. This outperformed six other
commercial  rapid which
sensitivities ranging from 65% to 79% (10). According
to WHO standards — a sensitivity of >80% and
specificity of >97% — our ALLtest demonstrated
excellent efficacy in all three centers, meeting the
criteria for SARS-CoV-2 detection. However, historical

antigen tests, showed

data revealed that ALLtest was grouped among those
with low sensitivity (16.7%) in a review of 122 Ag-
RDTs by Nubling et al. (75). Nonetheless, recent
studies, such as those by Moons et al. and Sivro et al.,
show more promising results, with higher sensitivities
observed in nasal versus saliva samples (83.9%) and
reasonable detection (about 74%) of Omicron BA.4
and BA.5 variants (16-17). Overall, the ALLtest
exhibits generally qualified performance amid evolving
epidemiological landscapes.
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The Ct value, indicative of the quantity of viral
RNA, has been recommended for inclusion alongside
binary RT-PCR outcomes to enhance their clinical
utility (78). Bullard et al. observed that no viable viral
cultures were produced from samples with a Ct value
greater than 24 (79). Additionally, studies have shown
that samples with a Ct value exceeding 30 (2.17x10° E
gene copies/mL) are typically not cultivable (20). The
sensitivity of the ALLtest correlates with viral loads,
consistent with previous findings (2/-22). Similar to
other research (7/4), the sensitivity of ALLtest was
higher in samples with a Ct value of 30 or less
(99.30%, 95% CI- 97.48%, 99.91%) and increased to
100% (95% CI: 98.38%, 100%) in samples with a Ct
value of 25 or less. Significantly lower Ct values were
in ALLtest-positive cases
participants with detectable Ct values across all three
centers (Figure 3A, 3B, and Supplementary Table S4).
According to Kucirka et al., RT-PCR sensitivity and
viral load typically increase within 5-7 days post-

also observed among

infection, stabilize for 1-2 weeks, and subsequently
decrease (4). Furthermore, a significant difference in
the timing of symptoms was found between ALLtest
positive and negative groups, with those displaying
symptoms earlier (2.25 days vs. 2.64 days) more likely
to test positive with ALLtest (P=0.0018).

In this study, we exclusively utilized NPS for both
Ag-RDT and RT-PCR. This limitation may affect the
generalizability of the results, as the performance of the
Ag-RDT could vary with other sample types, such as
oropharyngeal swabs or saliva. And due to the
difficulty of collecting enough number of participants
infected by the recent coronavirus strain, we only
validated the detection effect of ALLtest on those
strains in lab. In the future, multiple commonly used
Ag-RDT will be tested compared with ALLtest on a
larger COVID-19-infected population.
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FIGURE 3. Correlation factors associated with ALLtest results. (A) Ct value distributions among participants from PI-US
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UCK-PL with varying antigen test outcomes (P=0.0018).

Abbreviation: Ct=cycle threshold; UCK-PL=Uniwersyteckie Centrum Kliniczne in Poland; PI-US=Phamatech, Inc. in USA.

We developed and validated the ALLtest antigen test
for the early diagnosis of COVID-19 across three
international centers. Given its high sensitivity and
specificity, we propose that the ALLtest can serve as a
reliable adjunct to the RT-PCR test.
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SUPPLEMENTARY MATERIAL

SUPPLEMENTARY TABLE S1. Verification of specificity for viruses associated with respiratory infections.

No. Virus strains Concentration (TCID50/mL) Result
1 HCoV-229E 5x10° -
2 HCoV-HKU1 1x10° -
3 HCoV-0OC43 1x10° -
4 HCoV-NL63 1x10° -
5 Parainfluenza viruses 2 1.58x107 -
6 Parainfluenza viruses 3 1.58x10° -
7 Influenza A (H3N2) 1x10° -
8 Influenza A (H1N1) 3.16x10° -
9 Influenza B 3.16x10° -
10 Adenovirus type 3 3.16x10* -
11 Adenovirus type 7 1.58x10° -
12 Human Rhinovirus 2 2.81x10* -
13 Human Rhinovirus 14 1.58x10° -
14 Human Rhinovirus 16 8.89x10° -
15 Measles virus 1.58x10* -
16 Mumps virus 1.58x10* -
17 Respiratory syncytial virus 8.89%x10* -

Note: “~” means negative.

SUPPLEMENTARY TABLE S2. Results of the interfering action by the Ag-RDT assay.

No. Analytes Concentration Negative SARS-CoV-2 positive
1 budesonide nasal spray 200 pL/mL - +
2 whole blood 20 pL/mL - +
3 relenza 282 ng/mL - +
4 flunisolide 6.8 ng/mL - +
5 mucin 50 pg/mL - +
6 rebetol 4.5 pg/mL - +
7 tamiflu 1.1 pg/mL - +
8 mupirocin 12 mg/mL - +
9 phenylephrine 12 mg/mL - +
10 tobryamycin 2.43 mg/mL - +
11 dexamethasone 0.8 mg/mL - +
12 oxymetazoline 0.6 mg/mL - +

Note: “=” means negative. “+” means positive.
Abbreviation: Ag-RDT=antigen early rapid diagnostic test; SARS-CoV-2=severe acute respiratory syndrome coronavirus 2.
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SUPPLEMENTARY TABLE S3. Detection of SARS-CoV-2 variants using the Ag-RDT assay.

WHO label Pango lineages N protein mutations LOD
Alpha B.1.1.7 D3L, R203K, G204R, S235F 1:2x10°
Beta B.1.351 T205I 1:2x10°
VUI-21ARP-03 B.1.617.3 P67S, R203M, D377Y 1:2x10°
Gamma P.1.2 P80OR 1:2x10°
Delta B.1.617.2 D63G, R203M, D377Y 1:2x10°
Omicron B.1.1.529 P13L, del31/33, R203K, G204R 1:1x10° (1.61 ng/mL)
Omicron BA.2 P13L, del31/33, R203K, G204R 1:1x107 (0.368 ng/mL)
Omicron BA.4 P13L, del31/33, P151S, R203K, G204R, S413R 1:1x107 (0.29 ng/mL)
Omicron BA.5 P13L, del31/33, R203K, G204R, S413R 1:1x107 (0.368 ng/mL)

Note: LOD indicated by the highest dilution rate of the virus that can be detected.
Abbreviation: Ag-RDT=antigen early rapid diagnostic test; SARS-CoV-2=severe acute respiratory syndrome coronavirus 2; LOD=limit of
detection; WHO=World Health Organzation.

SUPPLEMENTARY TABLE S4. Correlation significance of factors across three centers.

P PI-US I-SE UCK-PL
Sex 0.55 - 0.29
Age 0.78 - 0.42
Symptom time 0.47 0.11 0.0018"
Ct value 0.026" - 9.74x107°"
Ct category* <2.2x107"¢ <2.2x107"¢t <2.2x107"¢t

“~” means significance cannot be calculated on missing data.

Abbreviation: PI-US=Phamatech, Inc. in USA; I-SE=iLab in Sweden; UCK-PL=Uniwersyteckie Centrum Kliniczne in Poland; Ct=cycle
threshold.

* Ct category include: 1) Ct<35; 2) Ct>35.

T P<0.05.
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Methods and Applications

Development and Comparison of Time Series Models in Predicting
Severe Fever with Thrombocytopenia Syndrome Cases
— Hubei Province, China, 2013-2020

Zixu Wang'*%; Jinwei Zhang**; Wenyi Zhang*®; Nianhong Lu'; Qiong Chen'; Junhu Wang'; Yingqing Mao';
Haiming Yi'; Yixin Ge'; Hongming Wang'; Chao Chen'; Wei Guo'; Xin Qi’%s
Yuexi Li”*; Ming Yue*; Yong Qi'*

ABSTRACT

Introduction: Severe fever with thrombocytopenia
syndrome (SFTS) is an emerging infectious disease
caused by the SFTS virus, which has a high mortality
rate. Predicting the number of SFTS cases is essential
for early outbreak warning and can offer valuable
insights for establishing prevention and control
measures.

Methods: In this study, data on monthly SFTS
cases in Hubei Province, China, from 2013 to 2020
were collected. Various time series models based on
seasonal auto-regressive integrated moving average
(SARIMA), Prophet, eXtreme Gradient Boosting
(XGBoost), and long short-term memory (LSTM)
were developed using these historical data to predict
SFTS cases. The established models were evaluated and
compared using mean absolute error (MAE) and root
mean squared error (RMSE).

Results: Four models were developed and
performed well in predicting the trend of SFTS cases.
The XGBoost model outperformed the others, yielding
the closest fit to the actual case numbers and exhibiting
the smallest MAE (2.54) and RMSE (2.89) in
capturing the seasonal trend and predicting the
monthly number of SFTS cases in Hubei Province.

Conclusion: The developed XGBoost model
represents a promising and valuable tool for SFTS
prediction and early warning in Hubei Province,

China.

Severe fever with thrombocytopenia syndrome
(SFTYS) is an emerging infectious disease caused by the
SFTS virus. Since the first confirmed case was reported
in 2009 (1), most cases have been reported in northern

and central China (2-3). The number of reported
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SFTS cases continues to rise, and the areas affected by
the disease are expanding (4-5). Due to its high case-
fatality rate and the possibility of pandemic spread, the
World Health Organization included SFTS on its list
of the top 10 infectious diseases needing immediate
research attention (6). Although China has established
a valuable infectious disease surveillance system to
monitor and assess disease burden, the system cannot
predict future trends or provide early warnings of
outbreaks. Furthermore, the monitoring data obtained
are often delayed. Consequently, there is an urgent
need for a model to predict the number of SFTS cases
in endemic regions.

As a tick-borne disease, the incidence of SFTS
exhibits distinct time-series characteristics, referring to
data points collected and recorded chronologically,
typically at regular intervals. Specialized time-series
analysis techniques are likely suitable for effectively
modeling and forecasting SFTS incidence.

In this study, we utilized various time series
algorithms based on historical data to predict the
occurrence of SFT'S in Hubei Province, one of the first
provinces to report SFTS cases and a province with a
high incidence of the disease in China (7). Predicting
the number of SFTS cases in this region will provide
important insights for developing prevention and
control interventions.

METHODS

Data Collection

The monthly number of SFTS cases in Hubei
Province was obtained from the Public Health Science
Data Center (https://www.phsciencedata.cn/Share/).
Data reported between January 2013 and December
2019 (84 data points total) were used for model
training and development, while the remaining data
from January to December 2020 (12 data points total)
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were used for external validity assessment.

Model Constructions

SARIMA model: Seasonal autoregressive integrated
moving average (SARIMA) is an extension of
autoregressive integrated moving average (ARIMA)
that requires selecting hyperparameters for both the
trend and seasonal elements of the time series. The
formula for SARIMA is as follows:

d D 0(B)0, (B)

(1-B) (1-B) Y, =6, + e M
where Y, refers to the value of the time series at time t,
0, is constant, &, is the white noise value at period 7
and the parameters d and D represent the difference
number and seasonal difference number, respectively.
B is the backshift operator, ¢(B) is the autoregressive
operator, and 6 (B) is the moving average operator.
#,(B) and 0,(B)are the seasonal operators.

Prophet model: The Prophet model provides a
versatile treatment of trends, seasonality, and holiday
effects. The trend component, g(t), is engineered to
capture non-periodic changes in the time series. The
foundational equation of the Prophet model is
expressed as:

7: = gle) + s(2) + h(z) + €, 2
Where y, denotes the predicted value at time 2, 5(2) is
the seasonality component, /4(z) represents the impact
of holidays or specific events on the time series, and &,
is the error term accounting for aspects of the data not
explained by the model.

XGBoost: eXtreme Gradient Boosting (XGBoost)
iteratively constructs a series of short, basic decision
trees. For a dataset with 7 examples and 7 features, a
tree ensemble model in XGBoost predicts the output
using K additive functions:

K
ji=) filv) fie F (3)
k=1

Here, 7 represents the predicted value for the ith
sample, fi is a function corresponding to the kth tree,
and F denotes the space of regression tree functions,
with x; being the feature vector for the 7th sample.

To learn the set of functions used in the model,
XGBoost following  regularized

objective:

minimizes the

L) =" 1)+ Y Q(f) (4)

In this equation, /(yl», j/}) is the loss function that
quantifies the error between the observed and
predicted data, and Q(ff) is the regularization term
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that helps smooth the learned weights. This smoothing
prevents overfitting and encourages the model to select
simpler, more predictive functions. The regularization
term is defined as:

T
1
Q) =T+ Exzwj )
A

Where y and A are regularization parameters, 7 is
the number of leaves in the tree, and w; represents the
score on each leaf.

Bayesian optimization was used to select the optimal
hyperparameters, with the objective function defined
to maximize R2.

LSTM Networks: Long short-term memory
(LSTM) networks incorporate a cell state that acts as a
form of memory. The key feature of LSTM networks
lies in their gating mechanism, which comprises three
types of gates.

The input gate regulates the flow of new
information into the cell state through a two-step
process. First, a sigmoid function determines the
necessary update values, represented by the equation:

=0 (‘Vx,xt + Wb + bz’) (6)

The second step employs a tanh function to generate
a vector of new candidate values that may be added to
the state, given by:

C, = tanh(Wy.x, + W), by + bc) (7)

Here, it is the activation of the input gate, and C, is
the candidate vector for the cell state update.

The forget gate determines which information from
the cell state to retain or discard. It uses a sigmoid
function to evaluate the importance of existing
information in the cell state, defined by:

£=0 (W + Wby + &) ®

The activation vector f; indicates the extent to which
past information should be forgotten or retained.

The output gate regulates the information sent to

the subsequent layer. This gate functions in two stages.

First, a sigmoid function determines which parts of the
cell state are outputted, as shown by:

0, =0 ("onxt + %g}’t—l + bo) ©)

Then, the final output is calculated by multiplying
this activation o, with the tanh of the cell state,
resulting in:

b, = 0, X tanh (C) (10)

The output vector A4, represents the information
transmitted to subsequent layers or units in the
network.
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In the models described above, clipping, a data post-
processing technique, was used to address unrealistic
negative values in the results. A detailed explanation of
each model is provided in Supplementary Material
(available at https://weekly.chinacdc.cn/).

Performance Evaluations
The predictive performance of the models was
assessed using two indices: mean absolute error (MAE)
and root mean squared error (RMSE), defined as
follows:

1< .
ME=ZZ|}/i—}/j| (11)

=1

n

> bi-5f

=1

RMSE =

N

(12)

Software
Descriptive statistics and time series modeling were
conducted using Python (version 3.7; Python Software
Foundation, Beaverton, OR, USA). The SARIMA,
Prophet, XGBoost, and LSTM models
implemented using the statsmodels, fbprophet, scikit-
learn, and Keras packages, respectively. A P<0.05 was

considered statistically significant.

were

RESULTS

General Analysis
A total of 1,695 SFTS cases were reported in Hubei
Province from January 2013 to December 2020,
exhibiting clear seasonal characteristics. More cases

were reported from April to August each year and
fewer from December to February of the following
year. Interestingly, a prominent peak occurred in June
and a smaller peak in October (Figure 1).

Models

In the SARIMA model construction, the augmented
Dickey-Fuller (ADF) test indicated that the time series
data were unstable with a P7>0.05 (Dickey-
Fuller=-1.339, P=0.611). After the first difference, the
original sequence tended to become stationary. The
parameters p and ¢ were determined from the
autocorrelation  function  (ACF) and  partial
autocorrelation function (PACF) plots (Figure 2), and
the final model parameters were determined as
SARIMA (1,1,1), (0,1,1)12 based on the minimum
Akaike information criterion (AIC) (AIC=543.302).
All  parameters significant  with  P<0.01
(Supplementary Table S1, available at https://weekly.
chinacdc.cn/). The residual autocorrelation test
(Ljung-box test) indicated that the residual was not
significantly different from a white noise series (Q-
statistic=0.32, P=0.57), suggesting that the model was
acceptable.

The optimized parameters of the other three models
are summarized in Table 1.

were

Model Evaluation and Comparison
The trained SARIMA, Prophet, XGBoost, and
LSTM models were used to predict the number of
reported SFTS cases in 2020 and were compared with
real external validation data (Figure 3). All four models
performed well in predicting the trends of SFTS cases;
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FIGURE 1. Trends of the actual number of SFTS cases from January 2013 to December 2020 in Hubei Province, China.
Abbreviation: SFTS=Severe Fever with Thrombocytopenia Syndrome.
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FIGURE 2. ACF and PACF charts after the first-order difference. (A) ACF; (B) PACF.
Abbreviation: ACF=autocorrelation function; PACF=partial autocorrelation function

however, the XGBoost model yielded the closest fit to
the actual case numbers (Figure 3). The prediction
performances of the models were then compared using
error indices, including MAE and RMSE. As shown in
Supplementary Table S2 (available at https://weekly.
chinacdc.cn/), the MAE and RMSE of XGBoost were
lower than those of the other three models, indicating
that XGBoost performed best in predicting SFTS
cases, followed by Prophet, LSTM, and SARIMA,

respectively.

DISCUSSION

Previous studies have conducted multivariate
modeling analyses to examine the risk factors
associated with SFTS incidence in Hubei Province (7).
However, to our knowledge, this study is the first to
construct predictive models for the number of SFTS
cases in Hubei Province.

In this study, we developed four models based on

Chinese Center for Disease Control and Prevention

different algorithms to predict SFTS cases in Hubei
Province. Each algorithm has advantages and
disadvantages. SARIMA models are relatively simple,
linear models capable of uncovering dynamic
relationships between historical and predicted data.
However, they require the original sequence to be
stable before modeling and struggle to capture
nonlinear relationships in the data. This limitation
becomes evident when abrupt changes or nonlinear
trends are present in the data, as SARIMA is less
flexible in adapting to these complexities.

In contrast, the Prophet model does not require
consideration of time series data stationarity and offers
greater  parameter  adjustability, enhancing its
flexibility. This model can automatically detect and
handle outliers in the data, making it suitable for noisy
datasets. It
computation, making it appropriate for large datasets

or irregular demonstrates  rapid

and real-time forecasting applications. Prophet has
shown excellent performance in predicting various
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TABLE 1. Parameters of the optimized Prophet, XGBoost,
and LSTM models.

Models Parameters Values
Growth linear
Seasonality mode additive
Prophet Interval width 0.8
Changepoints 24
Changepoint prior scale 0.3
Min_child_weight 9
Estimators 54
XGBoost
Learning rate 0.407
Max depth 6
No. of neurons 201
Layers 1
Learning rate 0.003
Activation tanh
Recurrent activation sigmoid
LSTM
Dropout 0
Loss mse
Optimizer Adam
Batch size 1
Epochs 100
Actual ---- LSTM —-—-
70 A
60 7
50
]
g
o 407
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infectious diseases, including coronavirus disease 2019
(COVID-19) and hand, foot, and mouth disease
(8-10).

XGBoost displays robustness in handling nonlinear
time series data, excelling at forecasting extreme values.
This is likely due to its ability to model complex
relationships through boosting. LSTM features a
memory unit for storing information across time steps,
which is advantageous for modeling long-term
dependencies. It accommodates varying input and
output dimensions for both univariate and multivariate
data. However, LSTM may struggle with predicting
sudden changes due to its reliance on past data
patterns, as seen in our study with the surge in cases
from April to May 2020.

All four models performed well in predicting SFTS
cases and exhibited similar trends to the actual case
counts. XGBoost demonstrated the closest predictions
to the actual values, with the lowest MAE and RMSE
values. Notably, SARIMA, Prophet, and LSTM did
not accurately predict the May case counts (Figure 3).
Additionally, SARIMA and Prophet failed to predict
the peak month, possibly due to the sharp increase in
actual cases from April to May 2020, which may have
introduced challenges in predicting such volatile data.
XGBoost  displayed

excellent  performance in

SARIMA XGBoost

Jan Feb Mar Apr May

T

June

T T T

July Aug Sep Oct Nov Dec

Month (2020)

FIGURE 3. Comparison of the actual SFTS cases with the predicted cases from January to December 2020 by the four

models.

Abbreviation: LSTM=long short-term memory; SFTS=severe fever with thrombocytopenia syndrome; SARIMA=seasonal
auto-regressive integrated moving average; XGBoost=eXtreme Gradient Boosting.
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forecasting extreme values (such as the prominent June
peak and the smaller October peak) and capturing the
overall trend.

Considering that meteorological, geographical, and
human activity factors are considered risk factors for

SFTS (11-13), additional related

external variables could enhance the predictive model’s

incorporating

performance. Furthermore, studies have indicated that
combining linear and nonlinear models may yield
superior predictive performance compared to single
models, such as SARIMA-Prophet (74) and SARIMA-
LSTM (I5), representing a potential avenue for
improvement.

In addition, the best model in the present study was
developed based on data from Hubei Province, so it
may not be suitable for other regions. This limits the
model’s general applicability. However, the study
provides a feasible scheme for other regions to predict
the disease.

In conclusion, we established and evaluated various
time series models. The XGBoost model demonstrated
the best
monthly confirmed SFTS cases in Hubei Province.
This model holds promise for providing valuable

predictive performance for forecasting

information and data for the early assessment of
potential SFTS risks, which is crucial for developing
early warning systems and formulating effective
prevention and control measures.
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SUPPLEMENTARY MATERIAL

Data Preprocessing
Ensuring that all timestamps in the dataset have a consistent format is crucial for accurate data processing and
time series analysis. All timestamps were converted to the YYYY-MM format. This uniformity lays the foundation
for applying various time series models effectively. The data were divided into training data and prediction data.
Data starting from January 2020 to December 2020 were used as prediction data, while the rest as training data.

SARIMA Model

The autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are the most
general class of models for forecasting a time series in theory (/-2). The ARIMA model aims to describe the
autocorrelations in the data by outlining its components, including Autoregression (AR), Integrated (I), and Moving
Average (MA). SARIMA is an extension of ARIMA that explicitly supports univariate time series data with a
seasonal component, adding three new hyperparameters to specify the seasonal component. The SARIMA model
requires selecting hyperparameters for both the trend elements (trend autoregression order p, trend difference order
d, and trend moving average order q) and seasonal elements (seasonal autoregressive order P, seasonal difference
order D, and seasonal moving average order Q) of the series. The formula for SARIMA is as follows:

d D 0(B)o. (B)

(1-B)'(1-B) Y,=6,+ B, (5] (1)
where Y, refers to the value of the time series at time #, 6, is constant, ¢, is the white noise value at period #, and
the parameters d and D represent the difference number and seasonal difference number, respectively. B is the
backshift operator, ¢(B) is the autoregressive operator and 6(B) is the moving average operator. ¢,(B’) and 6,(B) are
the seasonal operators.

The construction process of the SARIMA model is as follows.

Grid Search: The model starts by defining possible combinations of parameters for the seasonal aspects of the
time series. It uses a grid search approach where p, d, and q values (representing autoregressive, differencing, and
moving average terms, respectively) are tested along with seasonal counterparts.

AIC Evaluation: For each combination, a SARIMA model is fitted, and the Akaike Information Criterion (AIC)
is calculated to assess model fit. The combination with the lowest AIC is considered optimal as it suggests a model
that best explains the data with minimal complexity.

Best parameters selection: Use the best parameters determined through grid search, and then fit the SARIMA
model to data before the specified date (in this case, January 2020).

Diagnostic check: Perform the Ljung Box test on the residuals to check for white noise, which indicates that the
model’s residuals have no autocorrelation and the model has fully captured the information in the data.

Prediction: The model performs a step-by-step (single-step-ahead) forecast using the trained model, constantly
updating with actual data as it becomes available. This simulates a real-world scenario where predictions are made as
new data comes in.

Evaluation: As indicated in part “Performance Evaluations” below.

Prophet Model
The Prophet model is a sophisticated method for forecasting time series, particularly tailored for business data and
adept at navigating through complex trends and habitual seasonal variations. It provides a versatile treatment of
trends, seasonality, and holiday influences. The trend component g(%) is engineered to capture non-periodic changes
in the time series. It can employ either a logistic growth model for data with saturation limits or a piecewise linear
model for data without clear saturation points.
The foundational equation of the Prophet model is expressed as:

= gle) +5(e) + hlr) + &, )
Where yt denotes the predicted value at time ¢, s(t) is the seasonality component, h(t) represents the impact of
holidays or specific events on the time series, and &t is the error term accounting for aspects of the data not
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explained by the model. The model also incorporates an advanced feature for automatically detecting change points
in trends.

The construction process for the Prophet model is as follows:

Initiation: Prophet model is initialized with a specific configuration, including Growth Trend, Seasonality
Components, Seasonality Mode, and Regularization Parameters.

Model Training: The Prophet model is fitted on the training data.

Prediction: Future dates are generated (future) for 12 months (periods=12) with monthly frequency (freq="M").
Forecasting is performed [forecast=m.predict(future)], and predictions for the year 2020 are extracted (forc).

Evaluation: As indicated in part “Performance Evaluations” below.

XGBoost

eXtreme Gradient Boosting (XGBoost) is an advanced optimization technique based on Gradient-boosting
decision trees (GBDT). It operates by iteratively constructing a series of short, basic decision trees, each termed as a
“weak learner”. The process begins with the construction of an initial tree that exhibits subpar performance.
Subsequent trees are then trained to correct the errors of their predecessors. This sequence of producing weaker
learners continues until a stopping condition is met, such as reaching a predetermined number of trees. This method
has been demonstrated to be effective in predicting human brucellosis (3) and renal hemorrhagic fever syndrome
(9).

For a dataset with n examples and m features, a tree ensemble model in XGBoost predicts the output using K
additive functions:

K
=) fil) ficF (3)
k=1

Here, jrepresents the predicted value for the i-th sample, fk is a function corresponding to the k-th tree, and F
denotes the space of regression tree functions, with xi being the feature vector for the i-th sample.
To learn the set of functions used in the model, XGBoost minimizes the following regularized objective:

Lig) =Y " lbndi)+ Y, Q(f) @

In this equation, /(yi, yi) is the loss function quantifying the error between the observed and predicted data, and
Q(fk) is the regularization term that aids in smoothing the learned weights to prevent overfitting and encourage the
model to select simpler yet predictive functions. The regularization term is defined as:

T
1
QN =~T+35A) w (5)
A

Where vy and N are regularization parameters, T is the number of leaves in the tree, and wj represents the score
on each leaf.

SUPPLEMENTARY TABLE S1. Parameters of the optimized SARIMA model.

Parameters Coefficient Standard Errors V4 P
ar.L1 0.424 0.133 3.190 0.001
ma.L1 -0.923 0.101 -9.136 <0.001

ma.S.L12 -0.878 0.242 -3.621 <0.001
sigma2 118.976 25.138 4.733 <0.001

SUPPLEMENTARY TABLE S2. Comparison of four models using MAE and RMSE.

Error metrics SARIMA Prophet XGBoost LSTM
MAE 5.47 6.64 2.54 475
RMSE 7.21 8.50 2.89 6.77

Abbreviation: MAE=mean absolute error; RMSE=root mean square error.
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The construction process of the XGBoost model is as follows:

Parameter optimization: Use methods like Bayesian optimization to optimize the parameters.

Model Training: The XGBoost model is fitted on the training data.

Prediction: The model performs a step-by-step (single-step ahead) forecast using the trained model, constantly
updating with actual data as it becomes available. This simulates a real-world scenario where predictions are made as
new data comes in.

Evaluation: As indicated in part “Performance Evaluations” below.

LSTM Networks

Long Short-Term Memory (LSTM) networks, a specialized type of Recurrent Neural Networks (RNNG), excel at
capturing both short-term and long-term dependencies in sequential data. This is primarily due to the unique
architecture of the LSTM, which incorporates a cell state acting as a form of memory. This cell state is crucial for
retaining information across various time steps, addressing the limitations of traditional RNNs. Additionally,
LSTMs effectively alleviate the vanishing and exploding gradient issues commonly encountered in standard RNNG,
particularly in lengthy sequences. The key feature of LSTM networks lies in their gating mechanism, comprising
three types of gates, each with specific roles and formulas.

The input gate in an LSTM is pivotal in regulating the influx of new information into the cell state. This gate
operates in two steps. The first step entails a sigmoid function that determines the essential update values,
represented by the equation:

iy =0 (Wix, + Wihyy + b,) (6)
The second step employs a tanh function to generate a vector of new candidate values that may be added to the
state, given by:
C, = tanh(W.x, + W) by + bc) (7)
Here, it is the activation of the input gate, and C; is the candidate vector for the cell state update.

The forget gate in an LSTM decides which information from the cell state should be retained or discarded. It
operates using a sigmoid function that evaluates the importance of the existing information in the cell state, defined

by:
fi= 0 (Wix + Wy bt + by) ®)
The activation vector ft indicates the extent to which past information is to be forgotten or retained.

The output gate in an LSTM manages the output sent to the next layer. This gate operates in two stages. Initially,
a sigmoid function determines which parts of the cell state will be outputted, as shown by:

0,= 0 (W x, + Wy by + by) )
Then, the final output is calculated by multiplying this activation o, with the tanh of the cell state, resulting in:
h, = 0, X tanh (C) (10)

The output vector ht represents the information transmitted to subsequent layers or units in the network.

The construction process of the LSTM model is as follows:

Network architecture: Build a neural network containing an LSTM layer, which extracts features from the input
sequence, followed by a fully connected layer that outputs prediction results.

Loss function and model training: Use mean squared error as the loss function and use Adam optimizer for model
training.

Early Stopping: To avoid overfitting, the training is stopped when the loss on the validation set no longer
improves.

Parameter optimization: Use methods like Bayesian optimization to optimize the parameters.

Model Training: The LSTM model is fitted on the training data.

Prediction: Rolling prediction of future time points involves using a model to gradually predict future values, and
after each prediction step, the results are fed back into the input data for the next prediction step.

Evaluation: As indicated in part “Performance Evaluations” below.
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In the models mentioned above, a data post-processing technique known as clipping is utilized to handle
unrealistic negative values in the results. This involves adjusting all negative forecast values to zero, ensuring data
consistency and interpretability, and preventing potential analytical errors stemming from impractical negative
predictions.

Performance Evaluations

The predictive performance of the models was assessed using two indexes: mean absolute error (MAE) and root
mean squared error (RMSE).

MAE is a metric used to measure the average absolute errors between actual and predicted values in a dataset. It is
calculated by taking the average of the absolute differences between the actual values and the predicted values. MAE
is often used in regression analysis to evaluate the accuracy of a regression model. A lower MAE indicates better
accuracy of the model, as it means that the model’s predictions are closer to the actual values.

RMSE is another metric used to measure the accuracy of a regression model by calculating the square root of the
average of the squared differences between actual and predicted values in a dataset. RMSE penalizes larger errors
more heavily compared to MAE because it squares the errors before taking the square root. This means that outliers
or large errors have a bigger impact on the RMSE compared to the MAE. Similar to MAE, a lower RMSE indicates
better accuracy of the model. RMSE is often preferred when a small number of large errors are more significant than
a large number of small errors.

The formulas are defined as follows:

MAE= 33 b=,

=1

(11)

(12)

Software
The descriptive statistics and time series modeling were conducted using Python 3.7. The SARIMA model,
Prophet model, XGBoost model, and LSTM model were implemented using the statsmodels package, fbprophet
package, scikit-learn package, and Keras package, respectively. In the analysis, a P<0.05 was considered significant.
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Outbreak Reports

A Norovirus-Related Gastroenteritis Outbreak Stemming from
a Potential Source of Infection — Pudong New Area,
Shanghai Municipality, China, April 2024

Zou Chen'’; Hong Zhang' Yifeng Shen'’ Chuchu Ye'**

Summary

What is already known about this topic?
highly
transmission capabilities, causing illness for an average
duration of 12-60 hours. In China, individuals in

Noroviruses — are infectious with  rapid

educational agencies may return to class 72 hours after
symptom resolution.

What is added by this report?

This outbreak was precipitated by a potential source of
infection in a child resuming class after a 72-hour
quarantine post-symptom resolution, leading to a
cluster of cases within the class.

What are the implications for public health
practice?

While extending the quarantine period for children
may be considered from a safety perspective, it is a
challenge for educational agencies. The outbreak is
deemed a low-probability event; however, further
investigation into the detoxification period of
asymptomatic patients is warranted.

On April 27, 2024, at 13:00, the Pudong New Area
Disease Prevention and Control Center (Pudong
CDC), Shanghai Municipality, China, received reports
from the Market Bureau of multdple children in the
same class at PN Kindergarten exhibiting vomiting.
Pudong CDC promptly collaborated with the
community health service center to conduct an
epidemiological investigation and intervention. The
objectives were to identify the pathogen, delineate the
outbreak’s characteristics and potential transmission
risks, and implement effective control strategies.

INVESTIGATION AND RESULTS

PN Kindergarten, located at 609 LS Road, Pudong
New Area, Shanghai, China, is a public institution
serving 219 children in four grades across nine classes.
The school employs 38 faculty and staff members,

968 CCDC Weekly / Vol. 6/ No. 37

including 2 health teachers. The kindergarten lacks
school buses and on-site accommodations. It features a
teaching building with various public classrooms,
including a reading room, all of which have been in
recent use. The air conditioning system was recently
turned off. The kitchen and canteen provide meals for
both children and staff, who dine separately in
designated areas. Kitchen personnel and teachers
reported good health over the previous two weeks. The
kindergarten provides water cups for student use.
Disinfection practices are well-maintained, with
complete records.

The first case was a 4-year-old child from junior
Class II who began experiencing vomiting, abdominal
pain, nausea, and fatigue at home at 17:00 on April 26.
The child did not exhibit chills or urgency. After
experiencing 10 vomiting episodes, the child was
diagnosed with acute gastroenteritis at the hospital at
20:00 that evening and presented with elevated white
blood cell counts. The parents reported no history of
suspicious food intake, contact with suspected cases, or
recent travel. No similar symptoms were observed in
the cohabiting parents, and the child had no record of
recent vaccinations.

Case definition: According to the 2015 Norovirus
Technical

Guidelines (1), a suspected case of norovirus-related

Outbreak  Investigation —and  Prevention

gastroenteritis is defined as an individual experiencing
vomiting at least twice or diarrhea at least three times
within a 24-hour period. Cases were identified through
classroom-based searches, teacher interviews, and
review of absence records.

As of 16:00 on April 27, 11 cases met the suspect
case definition through case searching, all concentrated
in junior Class II. The attack rate among
schoolchildren was 5.02%, affecting 11 of 219
individuals. Onset times ranged from 17:00 on April
26 to 5:00 on April 27, with all cases occurring at
home. Notably, 10 cases (90.91%) emerged on April
26, and 1 case (9.09%) on April 27. Among the 11
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cases, there were 7 males and 4 females, with a male-
to-female ratio of 1.75:1. Clinical presentations are
detailed in Table 1, with all cases presenting mild
symptoms and no severe conditions reported.

Further investigation revealed that a primary case, a
potential source of infection, experienced three
vomiting episodes at home on Saturday, April 20. The
vomiting consisted of food and lasted for one day,
accompanied by two episodes of diarrhea with sticky
stools, nausea, and weakness. The child rested at home,
and symptoms noticeably subsided by April 21. The
child continued to rest at home for three days, from
April 22 to 24. After 72 hours, the child returned to
kindergarten on Thursday, April 25. According to
parental feedback, the child had not exhibited
symptoms such as vomiting or diarrhea since April 22.
Subsequently, 11 children from the same class
gradually began to experience illness after 17:00 on
April 26.

On April 27, an on-site investigation was conducted,
and 14 samples were collected. These included one
vomit sample from the index case, one anal swab
sample from the suspected source of infection, one
fecal sample from one of the 11 cases, and 11
environmental samples from classrooms, toilets, and
dining tables. The samples were sent to the Pudong
CDC Laboratory for pathogen testing, including
Norovirus, Rotavirus, Astrovirus, Vibrio
parahaemolyticus, pathogenic  Escherichia coli,
Salmonella, and other pathogens, using real-time
polymerase chain reaction or bacterial culture. Testing
revealed that three case samples were positive for
Norovirus GII nucleic acid, while all environmental
samples tested negative.

During the investigation, the Pudong CDC
implemented public  health  responses,
including: 1) strengthening morning checks and full-
day observations at the kindergarten, with immediate
reporting of new cases; 2) quarantining cases at home,
mandating a 72-hour symptom-free period before

several

TABLE 1. Distribution of clinical manifestations.

resumption of activities; 3) setting disinfection
standards for environmental surfaces at 1,000 mg/L for
classrooms and 2,000 mg/L for bathrooms; 4)
suspending collective activities and public classroom
use, and promptly issuing parental notices to manage
public perception; 5) actively promoting awareness of
intestinal infectious diseases and hand hygiene; and 6)
maintaining  close  communication  with  the
kindergarten and Pudong CDC. As of May 6, all cases
associated with this outbreak had recovered and
resumed classes, with no new cases reported. All
control measures have been implemented, and this
outbreak is considered closed.

DISCUSSION

Norovirus is a member of the genus Calicivirus and
is recognized as a significant pathogen causing non-
bacterial acute gastroenteritis (2), as well as a common
agent in foodborne infectious diseases (3). In
developed countries, norovirus is responsible for over
50% of non-bacterial diarrhea outbreaks (4). With
advancements in detection technology, norovirus has
come under increased scrutiny as a key pathogen in
potent
pathogenicity, infection can occur with as few as
10-100 viral particles (5-6), leading to gastrointestinal
symptoms such as nausea, vomiting, and diarrhea.

viral  diarthea.  Characterized by its

These characteristics make norovirus particularly prone
to outbreaks in settings with dense populations, such as
kindergartens, schools, and restaurants.

Norovirus, characterized by its high infectivity and
rapid transmissibility, is a predominant cause of
sporadic and outbreak-related cases of acute
gastroenteritis globally, posing a substantial health
burden. Since 2013 in China, norovirus infection has
been the primary cause of outbreaks of other infectious
diarrhea diseases (infectious diarrhea diseases other

than cholera, bacterial and amoebic dysentery, typhoid

Symptoms  Number of cases (N=11) Percentage (%) Remarks
Vomiting 11 100 Occurred 3 to 20 times
Abdominal Pain 9 82 -
Leukocytosis 9 90 10 cases visited the hospital, 8 cases with white blood cells over 20x10°/L
Nausea 6 55 -
Fatigue 3 27 -
Diarrhea 1 9 Occurred 4 times

Note: the dash indicates no remarks.

Chinese Center for Disease Control and Prevention
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and paratyphoid fever), with a significant increase in
the number of outbreaks compared to previous years
(7-9).

This outbreak event was confirmed based on clinical
symptoms,  epidemiological  investigations, and
laboratory  testing results. Supporting evidence
includes: 1) all cases occurring within the same class; 2)
the synchronized onset of symptoms within a 12-hour
window after returning home, consistent with the
typical norovirus incubation period; 3) no close
contact between the affected class and other classes; 4)
a thorough case search ensuring identification of all
cases; and 5) the prompt response, early reporting, and
effective preventive measures implemented by the
kindergarten.

The outbreak was hypothesized to originate from a
potential source of infection within the class following
an individual's return after the 72-hour quarantine
period post-symptom resolution. This assumption is
supported by: 1) the predominant symptom of
vomiting among the children, corroborated by
laboratory findings confirming norovirus infection; 2)
the timing of the potential source’s return to class
coinciding with the outbreak’s start and genetic
alignment with other outbreak isolates; and 3) the
exclusion of other exposure possibilities, such as dining
conditions and the health status of cooks, teachers, and
children in other classes.

Post-infection, individuals can shed norovirus
during the incubation period, peaking 2—5 days after
symptom onset and persisting for approximately 2-3
weeks, with the longest reported shedding period
exceeding 56 days (/0). Standardized management
protocols are crucial for controlling transmission and
minimizing environmental contamination. The current
guideline in China dictates a quarantine period
extending from the acute phase until 72 hours after
symptom resolution, as viral shedding significantly
decreases  thereafter.
extended shedding time, transmission may still occur
beyond the 72-hour mark, potentially contributing to
the source of infection in this outbreak.

However, this
Although the outbreak was traced to an early case (a
potential source of infection), positive norovirus tests
do not guarantee infectivity, and not all cases
underwent testing, particularly asymptomatic carriers.
Furthermore, the potential source of infection was
asymptomatic upon returning to the kindergarten.
This, along with the lack of positive environmental
findings, suggests that the evidence linking this

However, given norovirus's

investigation had limitations.
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individual to the outbreak is inconclusive.

Norovirus currently comprises at least six
genogroups, further classified into at least 30 genotypes
(11), with GI, GII, and GIV known to infect humans.
The confirmed pathogen of this outbreak is norovirus
GII. Norovirus mutates rapidly, and new variants that
can cause global epidemics emerge every 23 years.

Norovirus infection presents with fever, diarrhea,
nausea, vomiting, and abdominal pain, often
accompanied by secondary symptoms such as
headache, discomfort, and fatigue, typically
manifesting as acute gastroenteritis. Although China
classifies norovirus as a Class C infectious disease for
reporting and management, detection and reporting
may be delayed, particularly when vomiting is the
primary symptom. In this outbreak, vomiting was
ubiquitous, while other symptoms were notably absent,
consistent with literature indicating that children
exhibit vomiting more frequently than adults (12).

In light of the findings, we advocate for further
shedding duration in
asymptomatic norovirus gastroenteritis cases, which is
outbreak detection and

rescarch into the viral
essential for  refining
containment strategies.
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Intelligent Forest Hospital as a New Management System for
Hospital-Acquired Infection Control

Yingxin Liu'; Zhousheng Lin% Guanwen Lin’;, Wanmin Lian’; Junzhang Tian’y Guowei Li'*"*; Hongying Qu"**

ABSTRACT

Hospital-acquired infection (HAI) is a significant
global health concern, elevating the risks of morbidity
and imposing a substantial socioeconomic burden. To
enhance the management of HAI, particularly in
the aftermath of the coronavirus disease 2019
(COVID-19) pandemic, the Guangdong Second
Provincial General Hospital (GD2H) has launched a
new system called Intelligent Forest Hospital (IFH).
Leveraging advancements in artificial intelligence, 5G
technology, and cloud networking, the IFH
implements customized indoor air quality (IAQ)
control strategies tailored to different medical settings.
It utilizes various intelligent disinfection devices and air
purification systems. The IFH features a dynamic 3D
hospital model with real-time monitoring of crucial
IAQ parameters and a risk assessment ranking for
clinical departments, providing timely risk alerts,
communication prompts, and automatic disinfection
processes. The IFH aims to effectively mitigate HAI
post-COVID-19 and other future pandemics, ensuring
a safe and pleasant environment for patients, hospital
staff, and visitors.

Hospital-acquired infection (HAI), or healthcare-
associated infection, is a significant global health
concern linked to increased morbidity and
socioeconomic burden (/). The coronavirus disease
2019 (COVID-19) pandemic has highlighted the
importance of addressing HAI, with reported rates
ranging from 8.3% to 23.4% (2). HAIL including
COVID-19, primarily spread through airborne and
contaminated surface routes (3). Pathogens can persist
in hospital environments for extended periods, with
some resistant microorganisms surviving for years (4).
Traditional cleaning methods often struggle to
eliminate these pathogens effectively (5). Research has
shown that even after four rounds of bleach

972 CCDC Weekly / Vol. 6/ No. 37

disinfection, around 26.6% of hospital rooms
remained contaminated (6). Therefore, adopting new
technologies to maintain a safe hospital environment
and improve indoor air quality (IAQ) is crucial for
HAI prevention and control (7).

In an effort to enhance the control of HAI,
particularly in the post-COVID era, Guangdong
Second Provincial General Hospital (GD2H) has
introduced a novel management system called the
Intelligent  Forest Hospital (IFH). Drawing on
advancements in artificial intelligence (Al), 5G
technology, and cloud networking that have been
effectively integrated into hospital operations at
GD2H (8-10), the IFH has been tailored to manage
IAQ in various medical settings. This system involves
the deployment of specialized disinfection equipment
and air purification terminals in areas such as delivery
rooms, operating rooms, intensive care units,
respiratory and infection wards, and emergency
departments — locations where the risk of HAI for
both healthcare staff and patients is notably high.

While cleaning is crucial for preventing HAIL it is
essential to consider hospital design, disinfection
practices, and surface composition. GD2H utilizes
various equipment
disinfection [e.g., negative air ion (NAI) generator,
plasma air sterilizer, ultraviolet sterilizer], surface
composition (e.g., antibacterial coating, antibacterial
fabric), and detection (e.g., microbial detection
system).  This inhibits
pathogens and controls IAQ parameters such as CO,
levels, formaldehyde, PM;s, and particle mass
concentration. In the outpatient hall of GD2H, where
over 5,000 patients are served daily, around 60 air
purification devices have been installed, including
ceiling oxygen equipment, disinfection lamps, and
plasma disinfection machines (Figure 1). The NAI
hospital
environment standards (>3,000/cm3), with some areas
exceeding 100,000/cm3. Forest environments have
high NAI concentrations known to benefit human
health, including mental health, cognitive and

intelligent categorized  into

combination effectively

concentration in the reaches  forest
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FIGURE 1. Ceiling oxygen equipment in the outpatient hall.

cardiorespiratory function (77-13), which inspired the
IFH concept to create a safe and comfortable
environment similar to a forest sanatorium.

In 2020, GD2H collaborated with Huawei to
develop the Hospital Intelligent Data Twins, which are
essentially digital twins within the framework of
Industry 4.0. These twins function as an integrated
system to facilitate the seamless exchange of digitalized
and visualized data. At the core of the Intelligent Data
Twins lies cloud services that leverage Al techniques to
enhance data utilization (/0). All data gathered by the
intelligent equipment at GD2H are concurrently
transmitted to a virtual cloud platform within the
hospital ~ premises for IAQ monitoring and
management. The central management hub, serving as
the hospital’s smart brain, continuously monitors IAQ
across all areas of GD2H round the clock. By
harnessing Al, 5G technology, cloud services, and a
virtual platform, the Intelligent Data Twins effectively
process and receive vast amounts of data from all
intelligent equipment, transmitting this information to
the cognitive center for real-time IAQ visualization at
GD2H (10). The primary interface of the cognitive
center exhibits a dynamic 3D model diagram of the
hospital, providing real-time monitoring of critical
IAQ parameters such as pathogenic microorganisms,
carbon dioxide, formaldehyde, PM, s, and negative
ions (Figure 2). Moreover, the cognitive center
conducts a comprehensive analysis of the continuously
updated real-time data, evaluating HAI risks from

Chinese Center for Disease Control and Prevention

various sources. It generates a risk ranking index for
clinical departments on screen, enabling prompt risk
alerts and initiating automated disinfection measures
when necessary. For example, upon detecting
abnormal TAQ parameters in infection wards, the
cognitive center promptly assesses the situation and
triggers the automatic disinfection equipment in the
affected area. Simultaneously, it communicates the
IAQ status to the nurse stations in the infected wards
to inform healthcare providers and patients about
potential contamination and the ongoing automated
disinfection process.

There are various challenges that need attention in
the integration of IFH using technologies like Al and
5G. These challenges include the high costs and energy
consumption, the absence of medical standards and
regulations, ethical concerns regarding patient privacy,
societal acceptance, real-time monitoring difficulties,
and the general applicability of 5G and virtual cloud
platforms. The IFH requires enhancements such as
regular system updates for real-time data processing,
improved data privacy and security measures, and
further assessments of costs and benefits. Specific
training and adjustments are necessary to ensure the
system’s effectiveness in various contexts and to
improve its generalizability. Despite these challenges,
integrating IFH with Al and 5G technologies shows
promise in enhancing the prevention and management
of HAI, particularly in the context of post COVID-19

and future pandemics, aiming to create a safe and
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FIGURE 2. The dynamic 3D hospital model diagram displaying real-time monitoring of key indoor air quality parameters on

the main screen of the smart brain.

pleasant environment for patients, hospital staff, and
visitors.
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