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Commentary

Pathogen Access and Benefit-Sharing: Can the WHO Pandemic
Agreement Bridge the Equity Divide?

Long Chen1,2,#

 

ABSTRACT

The  adoption  of  the  WHO Pandemic  Agreement
in  May  2025  marks  a  pivotal  shift  toward
institutionalizing  global  pandemic  governance.
Anchored  in  principles  of  equity,  solidarity,  and
human  rights,  the  agreement  establishes  a  Pathogen
Access  and  Benefit-Sharing  (PABS)  System,  which
aims  to  ensure  equitable  access  to  pandemic-related
health  products  (PRHPs).  However,  operational
ambiguities — particularly in defining pathogen scope,
integrating  traditional  knowledge,  enforcing
manufacturer  obligations,  and  coordinating  with
multilateral  frameworks  like  the  Convention  on
Biological  Diversity  and the Nagoya Protocol — pose
significant  implementation  risks.  Crucially,  the
agreement’s  effectiveness  is  intertwined  with  broader
health  system  resilience.  However,  specific  provisions
for  PABS  integration  within  a  strengthened  health
system architecture remain underdeveloped. Moreover,
critical  gaps  persist  regarding  financing,  compliance,
One  Health  integration,  digital  governance,
community  engagement,  and  alignment  with  broader
health systems. The success of the agreement hinges on
resolving these gaps through subsequent protocols and
sustained political commitment. 

 

The  coronavirus  disease  2019  (COVID-19)
pandemic  has  exposed  some  critical  flaws  in  global
health  security,  such  as  fragmented  supply  chains,
vaccine  nationalism,  and  systemic  inequities  in
accessing  diagnostics,  therapeutics,  and  vaccines  (1).
Consequently,  World  Health  Organization  (WHO)
member  states  initiated  negotiations  for  a  legally
binding  Pandemic  Agreement  in  December  2021.
After  extensive  deliberations,  the  agreement  was
adopted  at  the  78th World  Health  Assembly  on  May
20,  2025  (2).  Its  mandate  is  clear:  transform  ad  hoc
crisis  responses  into  a  cohesive,  equity-driven

framework for pandemic prevention, preparedness, and
response.  However,  the  success  of  this  framework  is
intrinsically  linked  to  underlying  health  system
capacities and a broader preparedness ecosystem.

This  commentary  examines  critical  ambiguities
within  the  Pathogen  Access  and  Benefit-Sharing
(PABS)  mechanism  established  by  the  Pandemic
Agreement.  Key  unresolved  issues  include  defining
pathogen  scope  (particularly  those  with  zoonotic
sources),  enforcing  manufacturer  obligations  for
equitable  product  allocation,  establishing  transparent
benefit-distribution  criteria,  and  harmonizing  the
system  with  multilateral  regimes  such  as  the
Convention  on  Biological  Diversity  (CBD)  and  the
Nagoya  Protocol.  Furthermore,  it  explores
foundational  yet unaddressed issues,  including specific
compliance  and  financing  models,  the
operationalization  of  One  Health  and  digital  equity
principles,  community-centric  engagement
frameworks,  and  mechanisms  for  resolving  legal  and
ethical  dilemmas arising from implementation.  Future
negotiations  on  the  PABS  operational  protocol  must
urgently  address  these  gaps  to  strengthen  the
mechanism and ensure effective implementation of the
agreement. 

Pathogen Access and Benefit-Sharing
(PABS) System under the Pandemic

Agreement
The  Pandemic  Agreement  established  the  PABS

system to  advance  global  solidarity  and address  health
equity  challenges.  Article  12  of  the  agreement
mandates  that  parties  rapidly  share  “materials  and
sequence  information  of  pandemic-potential
pathogens” and equitably distribute associated benefits
based  on  the  principles  of  justice  and  fairness.  To
operationalize  this,  the  agreement  implements  a
mechanism  for  allocating  pandemic-related  health
products  (PRHPs),  contingent  on  a  pandemic
emergency  declaration,  as  outlined  by  the  following
guidelines:  1)  participating  manufacturers  must
prioritize supplying 20% of the real-time production of
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vaccines,  therapeutics,  and  diagnostics  targeting
pandemic  pathogens  to  the  WHO  under  legally
binding  contracts;  2)  this  provision  further  specifies
that  no  less  than  10%  of  this  allocation  shall  be
donated,  with  the  remainder  provided  at  affordable
prices  commensurate  with  manufacturers’  capacities.
Critically,  distribution  must  prioritize  countries  based
on  public  health  risk  assessments,  with  explicit
consideration for developing nations’ needs.

However, the agreement establishes these obligations
without  specifying  the  requisite  funding  mechanisms
to  support  LMIC  implementation,  nor  does  it  define
clear  enforcement  or  incentive  structures  for
manufacturer  compliance,  raising significant  questions
regarding its feasibility. 

Core Implementation Challenges and Key
Ambiguities in the Pathogen Access and

Benefit-Sharing (PABS) Mechanism 

Ambiguity  in  pathogen  scope  and  the  need  for  one
health  integration:　 Despite  setting  minimum
standards  for  the  PABS  framework,  Article  12  of  the
Pandemic Agreement fails to clearly define the scope of
“materials  and  sequence  information.”  Current
negotiations  have  predominantly  focused  on  human-
derived  pathogens  and  their  genetic  sequences.
However,  approximately  75%  of  emerging  infectious
diseases  are  zoonotic  [e.g.,  severe  acute  respiratory
syndrome (SARS) (3), Influenza A(H1N1) (4), Middle
East  respiratory  syndrome  (MERS)  (5),  Ebola  virus
disease (6), mpox (7), anthrax (8), and brucellosis (9)].
Consequently,  it  remains  unclear  whether  the  PABS
system  encompasses  animal-sourced  pathogens  (e.g.,
wildlife  and  livestock)  and  broader  microbiological
agents  (viruses,  bacteria,  fungi,  and  parasites).  This
narrow-scope  risk  undermines  the  agreement’s
preventive  potential.  Embedding  an  explicit  One
Health  framework,  mandating  cross-sectoral  data
sharing, and joint risk assessment between the human,
animal, and environmental health sectors is imperative
to  strengthen  spillover  prevention  and  comprehensive
surveillance,  which  must  explicitly  delineate  the
covered  pathogen  types  to  ensure  comprehensive
surveillance. 

Weak  oversight  and  enforcement  of  manufacturer
obligations:　 Under  the  obligations  framework,
Article  12  imposes  two  core  requirements  on
manufacturers  when  a  pandemic  emergency  is
declared:  donating 10% of  their  PRHP production to
the  WHO,  and  supplying  an  additional  10%  at
affordable  prices.  Notwithstanding  these  legally

binding  contractual  commitments,  one  critical
limitation  is  the  agreement’s  lack  of  mechanisms  to
monitor compliance and define enforcement protocols.
To  ensure  accountability,  the  operational  protocol
must  establish  an  independent,  multidisciplinary
monitoring  body  with  the  authority  to  audit
manufacturers’  contributions  and  supply  chains.  This
could  be  complemented  by  a  tiered  system  of
consequences for non-compliance, ranging from public
reporting  and  financial  penalties  to  exclusion  from
future  publicly  funded  research  and  development
partnerships,  along  with  positive  incentives  such  as
preferential  access  to  pathogen  data  or  technology
transfer  pools  for  high-performing  entities.
Consequently, the current ambiguity risks inconsistent
implementation,  while  simultaneously  undermining
accountability for equitable PRHP allocation. 

Deficiencies  in  benefit-allocation  equity  and
sustainable  financing:　Regarding  benefit-distribution
mechanisms,  the  PABS  system  exhibits  critical  flaws
despite  mandating  manufacturers’  contributions.
Fundamentally,  the  “public  health  risk  and  need”
principle  lacks  quantified  parameters  such  as
transmission  coefficients  and  healthcare  capacity,
thereby  enabling  subjective  interpretations.
Furthermore,  resource  allocation  faces  ethical  tensions
between  prioritizing  high-transmission  urban  zones  to
curb  the  spread  and  vulnerable  regions  to  prevent
system  collapse  —  a  dilemma  compounded  by  the
absence  of  triage  guidelines.  Most  critically,  political
capture  risks  emerge  as  high-income  countries  may
leverage  their  bargaining  power  to  divert  resources.  A
fundamentally  unresolved  question  is  how  to  secure
sustainable financing. The operational protocol should
mandate the establishment of a dedicated, multi-source
PABS  implementation  fund,  potentially  financed
through  assessed  contributions  from  states;  levies  on
manufacturers benefiting from PABS-shared materials;
and multilateral donor funds, specifically earmarked to
build  regulatory,  surveillance,  and  health  system
capacities  in  LMICs.  The  agreement  also  lacks
sustainable financing mechanisms to support LMICs in
implementing PABS obligations. 

Challenges in multilateral framework complementarity
and  dispute  resolution:　 Concerning  institutional
coherence,  achieving  complementarity  between  the
PABS  system  and  existing  regimes  presents  several
challenges.  The  primary  focus  of  the  negotiations  has
been  the  relationship  with  the  CBD  and  the  Nagoya
Protocol,  given  the  latter’s  requirements  for  prior
informed  consent  and  benefit-sharing  of  genetic
resources. Defining the complementarity between these
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systems  is  crucial  to  avoid  legal  uncertainties,
particularly regarding pathogen sovereignty and access.
Subsequently,  jurisdictional  overlap  occurs  in  DSI
governance;  both  the  CBD’s  multilateral  mechanism
(Decision  16/2)  and  PABS  claim  authority  over
pathogen  digital  sequence  information,  potentially
fragmenting  the  data  infrastructure.  Additionally,  the
agreement  does  not  specify  how  equitable  digital
infrastructure and governance will be ensured, nor does
it  include  clear  dispute  resolution  mechanisms  for
conflicts  between  legal  frameworks.  Critically,  the
agreement  lacks  a  dedicated  mechanism  for  resolving
conflicts  that  will  inevitably  arise  between  its
provisions, the Nagoya Protocol, and the International
Health Regulations. The establishment of an impartial
technical arbitration panel or the referral of intractable
legal  disputes  to  an  agreed-upon international  judicial
body  should  be  considered  to  provide  legal  certainty
and  prevent  diplomatic  gridlock.  Furthermore,  the
protocol  should  institutionalize  a  standing  ethics
advisory  group  to  guide  allocation  decisions  and
resolve  the  ethical  dilemmas  inherent  in  prioritizing
scarce resources. 

The Path Forward: Addressing Critical
Gaps Through Subsequent Negotiations
The Pandemic Agreement undoubtedly represents a

pivotal  moment  for  global  health  governance  (10);
nevertheless,  its  transformative  promise  remains
contingent  upon  imperative  actions  that  extend
beyond  its  current  text.  First,  finalizing  the  PABS
operational  annexes  must  specifically  define  the
pathogen  scope  within  an  explicit  One  Health
framework.  Second,  establishing  robust  and
transparent  monitoring  and  enforcement  mechanisms
for manufacturer obligations is  non-negotiable.  Third,
creating  a  clear  framework  for  complementarity  with
the  Nagoya  Protocol,  coupled  with  a  formal  dispute-
resolution  mechanism,  is  essential.  Moreover,  the
operational  protocol  must  be  considerably  more
ambitious,  incorporating  1)  legally  binding  and
innovative  sustainable  financing  mechanisms  for
LMICs; 2) mandates for equitable digital infrastructure
and  data  governance;  3)  operational  frameworks  for
community  engagement,  trust  building,  and  dynamic
risk  communication  to  counter  misinformation  and
hesitancy;  and  4)  concrete  obligations  for  upstream
capacity  building,  including  mandatory  intellectual
property  sharing  through  multilateral  pools  and
technology  transfer  initiatives  to  empower  LMICs’
production of PRHPs, thereby addressing inequities at

their source. Critically, without these foundational and
interconnected steps,  the agreement risks  perpetuating
the  health  inequities  that  it  seeks  to  resolve,  thereby
undermining its core mandate. 
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ABSTRACT

Introduction:  This  study  analyzed  the
epidemiological characteristics of rabies and the causes
of  post-exposure  management  failure  in  Hunan
Province  from  2019  to  2024,  providing  evidence  for
rabies prevention and control strategies in China.

Methods:  Data  on  reported  human  rabies  cases,
exposures,  and  post-exposure  prophylaxis  (PEP)  were
analyzed using descriptive epidemiological methods.

Results:  240  rabies  cases  were  reported  in  Hunan
Province  (2019–2024)  with  an  average  annual
incidence  rate  of  0.0592  per  100,000  people.  A
significant  decreasing  trend  was  observed
(χ2

trend=32.72,  P<0.05).  Five  factors  showed
statistically significant differences in their effects on the
incubation  period:  site  of  exposure,  wound
management,  vaccination  after  exposure,  passive
immunization  preparations,  and  sources  of  animals
causing  exposure  (all  P<0.05).  In  the  last  six  years,
there  was  no  increasing  trend  in  the  proportion  of
failed PEP as a percentage of all rabies cases in that year
(χ2

trend=1.809,  P=0.86).  The  median  incubation
period was 16.0 (Interquartile Range, IQR 14.0–22.0)
days for failed PEP cases with exposed areas, including
to  the  head  and/or  face,  compared  to  31.0  (IQR
24.0–50.0) days for those without such exposure. The
difference  was  statistically  significant  (U=20.50,
P=0.025).

Conclusions:  The  current  situation  of  rabies
prevention  and  control  in  Hunan  Province  remains
dire.  Therefore,  comprehensive  measures  should  be
implemented  to  help  reduce  the  incidence  of  rabies.
These include adopting standardized dog management
practices,  strengthening  control  measures  in  high-risk
areas, and improving public awareness of PEP. 

 

Rabies  is  an  acute  zoonotic  disease  caused  by  the
rabies  virus,  clinically  characterized  by  specific
symptoms such as hydrophobia, aerophobia, agitation,
and  progressive  paralysis.  Once  developed,  the  disease
fatality  rate  is  100%  (1).  Rabies  is  highly  endemic  in
Hunan  Province,  China.  Although  its  incidence  has
decreased  in  recent  years,  the  annual  number  of  cases
has  always  been  among  the  highest  in  China,
indicating  a  serious  situation  (2).  Standardized  and
timely post-exposure wound management, vaccination,
and  the  use  of  passive  immunization  preparations,  if
necessary,  are  key  measures  for  preventing  rabies.
However,  instances  of  post-exposure  prophylactic
failure  (PEP)  occasionally  occur  because  of  various
influencing factors (3).

To understand the epidemiological characteristics of
rabies  and  PEP  failure  cases  in  Hunan  Province  in
recent years, information on rabies cases from 2019 to
2024  was  organized  and  analyzed  to  provide  a
reference for future rabies prevention and control. 

METHODS
 

Data Sources
Case  data  were  derived  from  surveillance  data

reported to the China Information System for Disease
Control  and  Prevention  (CISDCP)  and  rabies  case
investigation records (2019–2024) in Hunan Province.
When  receiving  reports  of  rabies  cases  from  medical
institutions, the local disease control center conducted
epidemiological investigations on the cases and fills out
the “Rabies  Case  Investigation Form,” which  includes
the following:  demographic  characteristics;  degree  and
location of wound exposure and disposal measures; use
of rabies vaccine prophylaxis and passive immunization
preparations; and characteristics of the animals causing
exposure.  Demographic  data  were  obtained  from  the
Hunan Statistical Compendium. 

China CDC Weekly

58 CCDC Weekly / Vol. 8 / No. 3 Copyright © 2026 by Chinese Center for Disease Control and Prevention



Definitions
Rabies  diagnosis  adhered  to  the  Diagnostic  Criteria

for  Rabies  (WS  281-2008).  The  exposure  severity  was
categorized  according  to  the  Work  Specification  for
Rabies  Exposure  Prophylaxis  and  Disposal  (2023
Edition)  (4).  A  case  of  PEP  failure  was  defined  as  a
rabies death occurring despite receiving at least one of
the  following  medical  interventions  after  exposure:
wound irrigation, rabies vaccination, or administration
of passive immunizztion preparations (5–6). 

Statistical Analysis
Data  on  rabies  cases  (2019–2024)  in  Hunan

Province  were  collected  and  entered  using  EpiData
software  (version  3.1,  Epidata  Association,  Denmark)
and  processed  in  Microsoft  Excel  2021  (Microsoft
Corporation,  Redmond,  WA,  USA).  SPSS  Statistics
(version  26.0,  IBM,  NY,  USA)  was  then  used  to
statistically  describe  and  analyze  the  characteristics  of
rabies  incidence  and  PEP  failure  cases.  The  overall
incidence  of  rabies  and  the  percentage  of  PEP  failure
cases  were  tested  using  the  Cochran-Armitage  trend
test.  The  incubation  period  was  described  using
median  (Q1,  Q3),  and  a  comparative  analysis  was
performed using the non-parametric Mann-Whitney U
test. Statistical significance was defined as P<0.05. 

RESULTS
 

Epidemiological Profile
Hunan  Province  reported  240  rabies  cases  between

2019 and 2024, including 128 clinically diagnosed and
112  laboratory-confirmed  cases.  The  average  annual
incidence  was  0.0592  per  100,000  individuals.  A
significant  downward  trend  was  observed  over  the

study period (χ2
trend=32.72, P<0.05) (Figure 1). 

Distribution of Disease
The  highest  number  of  cases  was  reported  between

July  and  October,  with  102  cases  accounting  for
42.5%  of  the  total.  Cases  were  reported  across  all  14
prefectures,  predominantly  clustered  in  Shaoyang (77,
32.08%),  Yongzhou  (72,  30.00%),  and  Loudi  (21,
8.75%).  Males  (n=170)  outnumbered  females  (n=70)
(male-to-female ratio: 2.43∶1). Their ages ranged from
2  to  90  years,  with  65.42%  (157/240)  being
concentrated  in  the  50–79  years  age  group.  The
majority  comprised  farmers  (184,  76.67%),  followed
by  students  (26,  10.83%)  and  non-institutionalized
children (13, 5.42%). 

Characteristics of Animals
Causing Exposure

Among  the  240  cases,  dogs  accounted  for  218
exposures  (90.83%)  and  cats  for  8  (3.33%),  with  the
source  unknown  in  14  (5.83%)  cases.  Animal  origins
included  household-owned  (121/240,  50.42%),  stray
(63/240,  26.25%),  and  neighbor-owned  (30/240,
12.50%)  animals.  Animal-initiated  attacks,  playing
with animals, and animal self-defense injuries were the
primary causes of injury, accounting for 35.42% of all
injuries. 

Exposure and Wound Management
Bites  were  the primary route  of  exposure (184/240,

76.67%),  followed by scratches (20/240, 8.33%).  The
exposure  severity  was  predominantly  category  III
(156/240,  65.00%)  or  II  (16/240,  6.67%).  The
exposure  positions  were  categorized  as  such:  hands
(131/240,  54.58%);  lower  limbs  distal  to  the  knee
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FIGURE 1. Trend of rabies incidence in Hunan Province, 2019–2024.
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(35/240,  14.58%);  and  head/face/neck  complex
(15/240,  6.25%).  Wound  management  status  was  as
follows:  no  intervention  (141/240,  58.75%);  self-
managed (77/240,  32.08%);  and clinical  management
(22/240, 9.17%).
 

Post-exposure Prophylaxis
Among  the  235  cases  investigated  for  exposure

immunization,  none  had  a  history  of  pre-exposure
immunization.  Eighteen  (7.66%)  patients  were
vaccinated  with  the  human  rabies  virus  vaccine  after
exposure.  For  category  III  exposures,  11/156  cases
(7.05%)  were  administered  passive  immunization
preparations.
 

Incubation Period Analysis
Among  the  177  cases  with  confirmed  incubation

periods,  the  incubation  period  showed  a  right-skewed
distribution  (range:  1–1,774  days;  median,  60  days).
Non-parametric  tests  were  used  to  analyze  the
influencing  factors  on  the  incubation  period.  The
results showed that differences in the influences of five
factors  on  the  incubation  period  —  exposure  site,
wound  management,  vaccination  after  exposure,
passive immunization preparations,  and the sources  of
the  animal  causing  exposure  —  were  statistically
significant (P<0.05) (Table 1). 

Analysis of PEP Failure Cases
Among  the  240  rabies  cases  (2019–2024),  22  PEP

 

TABLE 1. The distribution of incubation period of rabies cases in Hunan Province, 2019–2024 (n=177).

Variables
Number of

rabies cases
(n)

Proportion
(%)

Incubation period
Mean rank Statistic

(H/U) P
Median (day) Q1–Q3

Exposure type

Bite 154 87.01 65 30–133 90.52

4.169 0.244
Scratch 14 7.91 60.5 32.5–150 88.75

Lick 4 2.26 23 † 37.88

Not specified 5 2.82 75 30–85 83.9

Exposure category

Category Ⅲ 135 76.27 58 31–124.5 87.44

1.431 0.489Category Ⅱ 14 7.91 90 51.75–196.75 104.64

Not specified 28 15.82 65.5 31–99.75 88.7

Exposure site

Hands 113 63.84 64 37–150 96.56

28.763 <0.001*

Lower limbs below knee 25 14.12 42 24–71 64.22

Head and/or face 15 8.47 16 14–22.5 26.67

Lower limbs above knee 9 5.08 64 50–157 102.5

Trunk 3 1.69 60 † 99.33

Not specified 12 6.78 42 30–165 83.63

Wound management

No intervention 88 49.72 73 39–150.25 100.24

25.507 <0.001*Self-managed 68 38.42 60 32–120 90.36

Clinical management 21 11.86 22 14–31 37.50

Post-exposure
vaccination

Yes 17 9.60 63.5 34–150 95.12
381.500 <0.001*

No 160 90.40 16 14–24 31.44
Post-exposure injection
of passive immunization

preparations

Yes 11 6.21 60 32–141.5 92.32
362.500 0.001*

No 166 93.79 16 14–36 38.95

Types of animals
causing exposure

Dog 171 96.61 60 31–129.5 88.35
402.000 0.368

Cat 6 3.39 77 50.75–133.25 107.50

Sources of animals
causing exposure

Household-owned 95 53.67 65 39–135 95.51

13.707 0.003*
Neighbor-owned 24 13.56 55 23.25–152.5 83.67

Stray 51 28.81 39 30–67 72.54

Not specified 7 3.95 210 150–438 138.93
* There are statistically significant differences between different groups of variables.
† The interquartile spacing could not be determined because the sample size was extremely small.
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failures (9.17%) occurred, primarily in Shaoyang (nine
cases) and Loudi (four cases). There was no increasing
trend  in  the  proportion  of  PEP  failure  in  the  last  six
years  as  a  percentage  of  all  rabies  cases  in  that  year
(χ2

trend=1.809, P=0.86).
Of  the  22  cases  of  PEP  failure,  15  were  clinically

diagnosed,  seven  were  laboratory-confirmed,  18  were
category  III  exposures,  and  four  were  of  unknown
exposure levels. There were 11 cases (50.00%) of head
and/or  face  exposure,  seven  cases  (31.82%)  of  hand
exposure,  and  four  cases  (18.18%)  of  lower  extremity
exposure above and below the knee. Among all cases of
PEP  failure,  18  were  vaccinated  and  15  did  not
complete  the  full  vaccination  because  they  died  after
the  onset  of  the  disease.  Additionally,  three  cases  of
category  III  exposure  were  involved  in  all  aspects  of
PEP  (wound  management,  vaccination,  and
administration  of  passive  immunization  preparations).
The distribution of the PEP interventions by calendar
year is shown in Table 2.

We  also  investigated  the  time  from  exposure  to
wound management  in  cases  of  PEP failure.  Eighteen
cases  (81.82%)  were  treated  on  the  day  of  exposure,
while the remaining four cases were treated within 2–3
days after  exposure.  The shortest  incubation period of
PEP  failure  cases  was  two  days,  the  longest  was  209
days,  and  the  incubation  period  was  within  three
months  in  16  cases  (88.89%),  with  a  median
incubation  period  of  23.0  (14.0,  31.0)  days.  The
median  incubation  period  of  failed  PEP  cases  with
exposed  areas  including  head  and/or  face  was  16.0
(14.0,  22.0)  days,  while  it  was  31.0  (24.0,  50.0)  days
for  those  without  such  exposure,  with  a  statistically
significant difference observed (U=20.50, P=0.025).
 

DISCUSSION

In  this  study,  we  retrospectively  analyzed  the  trend
of rabies incidence and the characteristics of cases with
PEP  failure  from  2019–2024  in  Hunan  Province.
Consequently,  we  found  that  the  rabies  epidemic  in
Hunan  was  in  line  with  the  development  trend  of
rabies epidemics in China (2).

Notably,  the  temporal  distribution  of  rabies  in
Hunan  Province  between  2019  and  2024  was
consistent  with  other  researchers’  findings,  with  a
higher  number  of  cases  occurring  in  summer  and
autumn (7).  The  regional  distribution  was  dominated
by  traditional  rabies-endemic  cities  such  as  Shaoyang,
Yongzhou,  and  Loudi.  Among  these  cases,  most
comprised farmers, with the age range mostly above 60
years.  These  characteristics  are  consistent  with  those
reported  by  other  scholars  in  China  (8)  and  may  be
related  to  residents’  limited  knowledge  of  rabies
prevention  in  rural  areas  and  their  reduced  ability  to
avoid animal attacks.

The  cases  were  dominated  by  bites,  followed  by
scratches, which is consistent with domestic studies (9).
Among  these,  category  III  exposures  accounted  for
65.00%,  which  was  considerably  higher  than  that
reported  for  wounds  treated  at  canine  outpatient
clinics  in  China  (10).  The  exposure  sites  were  mainly
the hands and the lower limbs, which may be related to
the  defensive  posture  adopted  when  attacked  by
animals  (11).  In  terms  of  wound  management,  over
90%  of  the  patients  did  not  visit  medical  institutions
for  treatment.  Similarly,  more  than  90%  of  the
patients  were  not  vaccinated,  and  among  those  with
category  III  exposure,  the  proportion  of  patients  not
receiving  passive  immunization  preparations  exceeded

 

TABLE 2. The distribution of PEP interventions among PEP failure cases in Hunan Province, 2019–2024.

Year Total
cases

PEP
failure
cases

Proportion
of cases in

the
current
year (%)

PEP interventions

Wound
management

only

Wound
management +

Not fully
vaccinated

Wound
management +
Full vaccination

Wound management +
Passive immunization

preparations + Not fully
vaccinated

Wound management +
Passive immunization

preparations + Full
vaccination

2019 55 4 7.27 2 0 0 2 0

2020 59 5 8.47 1 0 0 4 0

2021 50 4 8.00 1 2 0 1 0

2022 41 5 12.20 0 4 0 0 1

2023 16 1 6.25 0 0 0 1 0

2024 19 3 15.79 0 1 0 0 2

Total 240 22 9.17 4 7 0 8 3

Abbreviation: PEP=post-exposure prophylaxis.
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90%. These facts indicate that many people fail to fully
recognize the danger of rabies and tend to take chances
after exposure (12).

Among  the  factors  influencing  the  incubation
period,  head  and/or  face  exposure  has  a  shorter
incubation  period  than  exposure  at  other  parts  of  the
body,  mainly  due  to  the  neurophilic  nature  of  the
rabies  virus  and  the  abundance  of  peripheral  nerve
tissues in the head and face, allowing the virus to reach
the  central  nervous  system  before  vaccine-induced
protective  neutralizing  antibodies  are  produced  (13).
Our  study  revealed  that  patients  who  sought  medical
treatment  exhibited  shorter  incubation  periods,  which
is  consistent  with  previous  research,  likely  because
these cases were more severely exposed or had exposure
to the head and/or face (14).

Currently, there is no universally accepted definition
for  rabies  PEP  failure.  This  study  investigated  the
potential risks of PEP failure under different preventive
interventions.  Regardless  of  the  reasons  —  such  as
inadequate  understanding  of  PEP  protocols,  financial
constraints, or personal negligence — patients who fail
to  receive  all  recommended  preventive  measures  and
subsequently  develop  rabies  should  be  explicitly
classified  as  PEP  failure  (5–6).  Analysis  of  22  PEP
failure cases  revealed that  three cases  with category III
exposure  received  complete  PEP  in  different  levels  of
medical  institutions.  Nonetheless,  their  exposed  areas
were not entirely on the head or face. Thus, in the PEP
process,  it  is  necessary  to  increase  the  compliance  of
exposed individuals to participate in the entire process.
Additionally,  the  risk  of  PEP  failure  in  different
situations must be considered (15).

This  study  has  certain  limitations.  First,  rabies
patients  often  died  during  the  investigation  or  cases
were  reported  by  family  members,  making  it  difficult
to  grasp  the  true  and  accurate  exposure  and  disposal
situation.  This  incomplete  information  may  have
affected the conclusions of this study. Second, while a
preliminary  analysis  of  factors  influencing  the
incubation  period  was  conducted,  a  more  in-depth
analysis  is  required.  Third,  some  human  rabies  cases
were  clinically  diagnosed  because  specimens  were  not
collected  immediately  and  no  laboratory  results  were
available.

In  conclusion,  the  current  situation  of  rabies
prevention  and  control  in  Hunan  Province  remains  a
challenge.  Comprehensive  measures  should  be  taken,
such  as  adopting  standardized  dog  management,
strengthening control  measures  in high-risk areas,  and
improving  public  awareness  of  PEP,  which  may  help

reduce the incidence of rabies in Hunan. 
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ABSTRACT

Introduction:  The  rapid  fluorescent  focus
inhibition  test  (RFFIT)  is  a  cell-based  virus
neutralization  assay  and  the  gold  standard  for
quantifying  rabies  virus  neutralizing  antibodies
(RVNA)  in  serums.  It  is  used  to  assess  the  biological
efficacy  of  rabies  vaccines  and  evaluate  protective
immunity  in  both  humans  and  animals.  Despite  its
broad application, RFFIT requires thorough validation
to ensure reliability.

Methods:  RFFIT was validated in this study using
the  third  World  Health  Organization  international
standard  for  anti-rabies  immunoglobulin  (WHO-3
SRIG)  and  negative  human  sera.  The  validation
followed the guidelines outlined by the Food and Drug
Administration  Guidance  for  Industry  and
International Council for Harmonisation of Technical
Requirements  for  Pharmaceuticals  for  Human  Use
(ICH)Q2 (R1) guidelines and included the assessment
of  intra-assay  and  intermediate  precision,  dilutability,
linearity,  range,  accuracy,  specificity,  robustness,  and
stability.

Results:  The  RFFIT  method  demonstrated  good
precision,  with  intra-assay  and  intermediate-precision
geometric  coefficient  of  variation  (GCV)  <30%.
Dilutability  was  confirmed,  with  95%  of  positive
samples  showing  geometric  mean  concentration
(GMC)  differences  within  ±30%  compared  to
undiluted controls.  The standard and detection values
were  described  by  y=1.0091x  −  0.1128  (R2=0.9948);
95.56%  of  the  samples  showed  70%–130%  recovery.
Specificity  was  verified  using  homologous  and
heterologous antigen competition and a matrix with no
significant  cross-reactivity.  The  assay  was  robust  to
variations  in  cells,  reagents,  and  time,  with  titer
differences  within  ±30%.  Stability  of  samples  and
reagents  under  freeze–thaw  and  different  short-term
storage conditions was confirmed.

Conclusion:  The  assay  was  successfully  validated
for quantifying RVNA content in serum samples. 

 

The rabies virus belongs to the Rhabdoviridae family
and  Lyssavirus  genus  and  causes  the  fatal  zoonotic
disease,  rabies  (1).  Once  the  symptoms  of  rabies
appear,  the  fatality  rate  is  100%.  Globally,  an
estimated  59,000  people  die  from  rabies  each  year,
with the majority of cases occurring in Asia and Africa
(2).  Effective  prevention  of  rabies  relies  on  timely
vaccination,  which  is  both  a  core  component  of  post-
exposure prophylaxis (PEP) and an important measure
for  pre-exposure  immunization  in  high-risk
populations (3).

Following  rabies  vaccination,  a  serum  rabies  virus
neutralizing  antibody  titer  of  at  least  0.5  IU/mL  is
considered indicative of an adequate immune response
for  effective  protection  (4–5).  Serological  testing  is
crucial  for  assessing  the  immunogenicity  of  rabies
vaccines and for verifying protective antibody levels in
vaccinated individuals. Of the existing testing methods,
rapid  fluorescent  focus  inhibition  test  (RFFIT)  is
considered  the  gold  standard  for  the  quantitative
detection  of  rabies  virus  neutralizing  antibodies
(RVNA) (6).

RFFIT  is  a  cell-based  viral  neutralization  assay
widely used to evaluate the biological efficacy of rabies
vaccines  and  determine  protective  antibody  levels  in
humans and animals. However, the complex analytical
procedures  of  the  assay  may  be  affected  by  multiple
factors,  including  cell  line  growth,  reagent  batch
variations, and sample quality (7–8). A comprehensive
validation  of  RFFIT was  conducted  in  this  study  and
confirmed  RFFIT  to  be  a  reliable  and  standardized
testing tool suitable for the serological surveillance and
immunological assessment of rabies. 
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METHODS
 

Serum Samples
Fifty  serum  samples  were  prepared.  20  RVNA-

positive  serum  samples  (RVNA  ≥0.5  IU/mL),  20
corresponding  1∶10  diluted  RVNA-positive  samples,
and  10  RVNA-negative  samples  (Supplementary
Table  S1,  available  at  https://weekly.chinacdc.cn/).
Negative  samples  were  obtained  from  pooled  human
serum.  The  RVNA-positive  samples  were  prepared  by
mixing  the  third  World  Health  Organization
international  standard  for  anti-rabies  immunoglobulin
(WHO-3  SRIG)  (164  IU/mL)  with  pooled  human
serum.  All  samples  were  heat  inactivated  at  56  °C  for
30 min prior to use.

In this study, the number of samples in the different
serum groups aimed to efficiently use limited standard
and  serum  matrices  while  covering  all  necessary
concentration ranges. This approach also simulated the
distribution  of  antibodies  in  real-world  scenarios.
Following  vaccination,  antibody  levels  in  most
individuals  cluster  within  the  low-to-moderate
concentration  range  (close  to  the  0.5  IU/mL
threshold).  The  validation  results  accurately  reflected
real-world testing scenarios by allocating more replicate
samples to common concentrations, thereby enabling a
more representative assessment of the reliability of the
method. 

Cells and Rabies Virus
The  BSR  cells  are  a  clone  of  hamster  kidney  cells

(BHK-21).  BSR  cells  were  maintained  in  Dulbecco’s
modified  Eagle’s  medium  (DMEM;  Gibco,  Cat.
11965092) supplemented with 10% fetal bovine serum
(FBS;  Gibco,  Cat.  10091-148),  1%  Penicillin–
Streptomycin at 37 °C in a 5% CO2 atmosphere. The
challenge virus standard (CVS)-11 is a fixed strain that
serves  as  an  international  standard  challenge  virus  for
rabies. 

Heterologous Virus Antigens
Heterologous  virus  antigens  were  provided  by

Sinovac, China: Hepatitis A (38,355 U/mL, Batch No.
01-E2108-012);  H1N1  flu  (434  μg/mL,  Batch  No.
A1-2205-037-SD);  and  EV71  (340  U/μg,  Batch  No.
08-E2111-006). 

Pooled Human Sera
Pooled  human  serum was  donated  by  volunteers  at

Synermore,  all  confirmed  to  be  without  a  history  of

rabies  virus  exposure  and  with  an  RVNA  titer  of
<0.5  IU/mL.  A  total  of  13  individual  serum  samples
were pooled and stored at −75±15 °C. 

Matrix Sera
A  2%  hemolytic  matrix  was  prepared  by  mixing  a

hemolysis  blood  collection  with  an  RVNA-negative
whole blood sample. A lipemic matrix, a stock solution
of  200  mg/mL  triglycerides,  was  first  prepared  from
glycerol trioleate (Aladdin, Catalog No. G105172-1g).
The  lipemic  matrix,  which  contained  4.0  mg/mL
triglycerides, was achieved by mixing the stock solution
with the pooled human serum. The icteric matrix was
formed by mixing 200 mg/L bilirubin with the pooled
human  serum  (final  concentration  of  bilirubin  was
34.2  μmol/L;  bilirubin  was  from  MeilunBio,  Dalian,
China; Catalog No. MB1035-1). 

Standard for Anti-Rabies
Immunoglobulin

WHO-3  SRIG  (Cat.  No.  19/244,  164  IU)  was
diluted  to  54.6667  IU/mL  according  to  the
manufacturer’s  instructions,  and  was  used  as  a
calibrator to calculate the RVNA titers (IU/mL) in the
test serum samples. 

RFFIT Protocol
The  RFFIT  procedure  (9–10)  was  used  to  measure

the level of RVNA against the CVS-11 strain of rabies
virus  in  the  serum  samples.  Heat-inactivated  serum
samples  were  serially  diluted in  a  three-fold  series  and
incubated  with  the  CVS-11  strain  in  96-well  tissue
culture plates at 37 °C for 60 min.

BSR  cells  were  then  added  to  the  serum–virus
mixture and incubated for an additional 24 h at 37 °C
in  a  5%  CO2  environment.  The  culture  plates  were
fixed  with  acetone  and  stained  with  an  anti-rabies  N-
FITC  (fluorescein  isothiocyanate)  conjugate.
Observation  was  conducted  using  a  fluorescence
microscope  (IX2-ILL100,  Tokyo,  Japan,  Olympus),
and  the  percentage  of  infected  cells  was  estimated  by
the  reader;  the  percentage  within  two  wells  was
recorded  before  and  after  50%  of  the  cells  were
infected.  Finally,  the  Reed–Muench  method  (11)  was
applied to calculate the 50% end-point titer  using the
percentage of infected values. 

RFFIT Validation
The  validation  plan  was  based  on  the  Food  and

Drug  Administration  (FDA)  Guidance  for  Industry
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(12)  and  International  Council  for  Harmonisation  of
Technical  Requirements  for  Pharmaceuticals  for
Human  Use  (ICH)  Q2  (R1)  guidelines  (13),
considering the limitations and variability of cell-based
virus  neutralization  assays.  The  FDA  and  ICH
guidelines  recommend  a  coefficient  of  variation  (CV)
of  15%–20%  as  the  acceptance  criterion  for  precision
and  accuracy  in  analytical  method  validation  (12).
However,  the  WHO  notes  that  cell-based  assays  are
expected to have a much higher CV (14). The RFFIT
is  a  bioassay.  Therefore,  this  RFFIT  validation,  a
geometric coefficient of variation (GCV) of ≤30% was
implemented.  The  validation  parameters  and
acceptance criteria are listed in Table 1. 

Precision and dilutability.　Precision was evaluated at
two  levels:  intra-assay  precision  (repeatability)  and
intermediate  precision.  Precision  and  dilutability  were
evaluated using the same set of 50 serum samples and
analyzed in triplicate  in six  independent assay runs by
two qualified analysts. 

Accuracy,  linearity,  and  range.　The  WHO-3  SRIG
was  serially  diluted  23-  to  212-fold  to  obtain
concentrations  from  20.5  to  0.0400  IU/mL.  These
dilutions  were  spiked  into  undiluted  RVNA-negative
serum  samples  to  produce  six  concentrations:  ULOQ
20.5  IU/mL,  high  quality  control  (HQC)  10.25
IU/mL,  medium  quality  control  (MQC)  2.5625
IU/mL,  low  quality  control  (LQC)  0.6406  IU/mL,
LLOQ 0.0801 IU/mL, and LLD 0.0400 IU/mL. Each

level  was  tested  individually  across  six  independent
runs by two qualified analysts in triplicate for each run. 

Specificity.　 Specificity  was  evaluated  using  antigen
competition and matrix effect studies. For competition
studies,  7  RVNA-positive  samples  (4  at  5.125 IU/mL
and 3 at 2.5625 IU/mL) were pre-incubated separately
with  5  serial  2-fold  dilutions  of  homologous
inactivated rabies virus (PV2061, Speeda, Chenda Bio,
Liaoning,  China),  inactivated  heterologous  viruses
(Hepatitis  A  virus,  H1N1  influenza  virus,  and
Enterovirus 71), and assay medium (baseline control).

For  the  matrix  effect  studies,  10  RVNA-positive
samples  (2  at  10.25  IU/mL,  4  at  5.125  IU/mL,  4  at
2.5625  IU/mL)  were  spiked  in  a  1:1  ratio  with
hemolytic,  lipemic,  and  icteric  matrices,  and  RVNA-
negative serum (baseline). 

Robustness.　Robustness  was  assessed  by  varying  the
assay  conditions  for  the  RVNA  titers.  The  impact  of
the  BSR  cells  was  evaluated  by  the  percentage
difference  in  the  RVNA  titer  (5.125  IU/mL)  from
different BSR passages (P20, P30, P40, P60, P70, and
P80).  Additionally,  BSR  cells  were  inoculated  and
passaged  every  2  or  3  days,  and  RFFIT  tests  were
performed  using  10  RVNA  positive  samples  (4
of  5.125  IU/mL,  4  of  2.5625  IU/mL  and  2  of
1.2813 IU/mL).

Further  robustness  testing  was  conducted  using
different  batches  and  suppliers  of  the  anti-rabies  N-
FITC conjugates  and DMEM. The impact  of  reagent

 

TABLE 1. Validation parameters and acceptance criteria for the RFFIT for quantifying RVNA.
Validation parameter Acceptance criterion Remark
Intra-assay precision

(repeatability)
GCV ≤30% Criteria adjusted to cell-based assay performance

Intermediate precision GCV ≤30% Criteria adjusted to cell-based assay performance

Dilutability
≥80% samples show ≤30% GMC difference
compared to undiluted control samples

Determination of range
(LLOQ, LLD, and ULOQ)

LLOQ: GCV ≤30% Criteria adjusted to cell-based assay performance

Linearity Linear regression slope must be 0.80–1.25
R2 must be ≥0.95

Accuracy
80% of the spiked SRIGs with results ≥LLOQ, with

70%–130% recovery of SRIG
Accuracy criteria should be met for the samples

near the LLOQ level

Specificity-competition studies

(1) High-titer samples: Dose-dependent inhibition
observed; ≥80% titer drop at highest concentration
(2) Low-titer samples: Titer <LLOQ at highest

concentration
(3) Titer drop ≤30% vs. no-competition control

(1)(2) Applicable to competition with homologous
antigens

(3) Applicable to competition with heterologous
antigens

Specificity - matrix effect ≥80% of matrix samples differed by ≤30% Compared with normal serum

Robustness
RVNA titer differences within ±30% under varied

conditions
Stability RVNA titer differences are within ±30%

Abbreviation:  RFFIT=rapid  fluorescent  focus  inhibition  test;  RVNA=rabies  virus  neutralizing  antibodie;  GCV=geometric  coefficient  of
variation;  GMC=geometric  mean  concentration;  LLOQ=lower  limit  of  quantification;  LLD=lower  limit  of  detection;  ULOQ=upper  limit  of
quantification; WHO-3 SRIG=third World Health Organization international standard for anti-rabies immunoglobulin.
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variation  was  assessed  by  comparing  the  RVNA titers
(5.125  IU/mL)  obtained  from  each  batch/supplier.
The  assay  was  evaluated  under  various  critical
conditions. 

Stability.　 The  short-term  stability  of  rabies  virus,
serum samples, and WHO-3 SRIG was assessed under
various  conditions.  Serum  samples  (5.125  IU/mL)
were assessed following 5 freeze–thaw cycles, and after
24 h, 1 w, and 4 w of storage at 4 °C, and after 4 h at
room  temperature  (20–25  ℃).  The  WHO-3  SRIG
was assessed following 5 freeze–thaw cycles. The rabies
virus  stability  was  evaluated  after  15  min  at  room
temperature before use. 

RESULTS
 

Precision and Dilutability
Samples  were  grouped  by  theoretical  titer  and  the

GCV%  was  calculated  from  the  mean  of  triplicate
replicates per run. All individual-precision GCV values
were  <30%,  with  most  values  from  5%–20%
(Figure 1A, B). All ten negative samples tested negative
in all runs.

Using 20 undiluted and 1∶10 diluted, paired RVNA
positive  samples,  95%  (19/20)  of  the  samples  tested
had  an  absolute  value  of  the  percentage  difference  ≤
30%  between  the  value  for  each  1∶10  diluted  and
undiluted  serum  sample.  Linear  regression  of  the
GMCs  for  these  pairs  showed  an  R2=0.9738  and  a
slope=0.9629, within acceptable limits indicating good
dilution linearity (Figure 1C). 

Accuracy, Linearity and Range
Of  the  tested  concentrations  of  WHO-3  SRIG-

spiked samples, 95.56% (86/90) of those with results ≥
LLOQ  exhibited  percentage  recoveries  within  the
acceptable  range  of  70%–130%.  The  GCV%  of  the
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FIGURE 1. The  results  of  RFFIT  validation.  (A)  Summary  of  profile  of  the  RFFIT  intra-assay  precision;  (B)  Summary  of
profile  of  the  RFFIT  intermediate  precision;  (C)  Dilutability  regression  plot  for  the  RFFIT  using  20  paired  RVNA  positive
samples;  (D)  Linearity  of  WHO-3  SRIG;  (E)  RFFIT  specificity:  dose-dependent  inhibition  with  inactivated  homologous
competitor.
Note: In A and B, serum grouping: A, 44 IU/mL; B, 20.5 IU/mL; C, 10.25 IU/mL; D, 5.125 IU/mL; E, 2.5625 IU/mL; F, 1.2813
IU/mL;  G,  4.4  IU/mL;  H,  2.05  IU/mL;  I,  1.025  IU/mL;  J,  0.5125  IU/mL;  K,  0.25625  IU/mL;  L,  0.12813  IU/mL;  M,  RVNA
negative samples. Each scatter point represents the repeated test geometric coefficient of variation values of the individual
samples. In (D), MEAN represents the average of six results; In (E), red horizontal lines denote lower limit of quantification
values.
Abbreviation: RFFIT=rapid fluorescent focus inhibition test; RVNA=rabies virus neutralizing antibodies; WHO-3 SRIG=third
World Health Organization international standard for anti-rabies immunoglobulin.
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LLOQ  was  <30%.  Linear  regression  demonstrated
strong  correlation  and  acceptable  linearity
(slope=1.0091,  R2=0.9948),  confirming  that  the
accuracy  and  linearity  acceptance  criteria  were  met
(Figure 1D). 

Specificity
For  homologous  inactivated  rabies  virus  antigen

analysis, all samples showed dose-dependent inhibition
(Figure  1E).  At  the  highest  competitor  concentration,
RVNA  titers  were  reduced  by  ≥97%  in  high-titer
samples,  whereas  low-titer  samples  fell  below  the
LLOQ.  In  the  heterologous  antigen  analysis,  titer
change  in  all  samples  was  within  assay  variability  (≤
30%).  Matrix  effect  evaluation  showed  that  RVNA
titers in hemolytic, icteric, and lipemic samples differed
by  ≤30%  from  normal  serum.  These  results  confirm
the specificity of RFFIT. 

Robustness
The RVNA titers (IU/mL) obtained from BSR cells

at  different  passages  exhibited  differences  within
±30%, with most variations being considerably smaller
(e.g.,  −4.3%  to  0.5%).  Similarly,  for  cells  tested  on
both  day  2  and  day  3  post-inoculation,  the  titer
differences  remained  within  an  acceptable  range,  with
the  majority  falling  within  ±25%  (Table  2).  Changes
in  experimental  conditions  resulted  in  percentage
differences  which  were  well  within  the  ±30%  range
acceptable  for  cell-based  assays  (Table  3).  These
findings  indicate  that  the  assay  was  robust  under
various experimental conditions. 

Stability
The titers measured for samples and standards under

freeze–thaw  and  different  storage  temperature
conditions  were  all  within ±30% of  the baseline value
(Table 4). 

DISCUSSION

Various  methods  quantify  RVNA.  Commonly-used
techniques  include  the  mouse  neutralization  test
(MNT),  indirect  immunofluorescence  assay,  RFFIT,
fluorescent  antibody virus  neutralization test  (FAVN),
and  enzyme-linked  immunosorbent  assay  (ELISA).
RFFIT  is  the  most  widely-used  cell-based  assay  for
detecting  and  quantifying  rabies  virus  neutralizing
antibodies  in  serum  (3).  Its  results  can  be  used  for
RVNA testing for pre- or post-exposure prophylaxis in

humans or animals, as well as for the clinical diagnosis
of  rabies,  detection  of  neutralizing  activity  of
monoclonal  antibodies  against  the  rabies  virus,
determination  of  potency  of  immunoglobulin
preparations, evaluation of the efficacy of new vaccines,
development  of  new  vaccination  schedules,  and
evaluation  and  calibration  of  new  serological  testing
methods  (10).  This  validation  supports  the
implementation of robust quality control measures and
confirms  the  reliability  of  RFFIT  for  quantifying
RVNA in serum.

Rabies  antibody  testing  determines  immunity  levels
conferred  by  pre-  and  post-exposure  vaccinations.

 

TABLE 2. Impact of BSR cells and experimental conditions
on robustness of RFFIT.

Condition RVNA titer
(IU/mL)

Difference
(%)BSR passages Different days

P20

2

5.1512 0.5

P30 5.1512 0.5

P40 4.9058 −4.3

P60 4.9272 −3.9

P70 4.9272 −3.9

P80 5.0578 −1.3

P81 2

5.7645 12.5

5.7645 12.5

5.5427 8.2

6.0741 18.5

2.1195 −17.3

2.1195 −17.3

2.2876 −10.7

2.2876 −10.7

1.0097 −21.2

1.0097 −21.2

P81 3

6.0741 18.5

5.8404 14.0

5.8404 14.0

6.4003 24.9

2.4104 −5.9

2.2334 −12.8

2.2334 −12.8

2.4104 −5.9

1.0639 −17.0

0.9921 −22.6
Note:  The  first  section  (rows  1–6)  investigates  the  effect  of  cell
passage  number.  The  second  section  (rows  7–26)  examines  the
impact of the cells on different days, which are specified for each
group.
Abbreviation: RVNA=rabies virus neutralizing antibodies.
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Although  the  intermediate  precision  met  the
acceptance  criterion  of  ≤30%  GCV,  higher  GCV
values  were  generally  observed  in  samples  with  low
antibody  titers  near  the  critical  threshold  of  0.5
IU/mL.  The  WHO  Rabies  Expert  Advisory
Committee  considers  antibody  levels  ≥0.5  IU/mL  in
serum to  indicate  effective  protection.  If  the  antibody
titer  falls  below  0.5  IU/mL,  multiple  booster  doses
should  be  administered  until  sufficient  antibodies  are
produced.  Therefore,  accurate  measurements  around
this cutoff are essential for determining seroconversion
and  adequate  immune  protection  in  clinical  practice.

The  increased  variability  observed  near  this  threshold
can  be  attributed  to  the  inherent  limitations  of
serological  assays  at  low  analyte  concentrations,
including reduced signal-to-noise ratios and the impact
of  biological  variability.  Nevertheless,  the  RFFIT
method still  conformed to the  pre-specified validation
criterion  of  ≤30%  GCV  across  all  samples,
underscoring its overall reliability.

This  study  has  several  limitations.  First,  validation
was performed using serum spiked with WHO-3 SRIG
rather  than  clinical  samples  from  vaccinated
individuals. Second, the sample size was limited (n=50)

 

TABLE 3. Impact of experimental conditions on robustness of RFFIT.
Incubation time Critical reagents (Supplier/ Cat. No.) RVNA titer

(IU/mL)
Difference

(%)HI + SVN + PI + FITC DMEM FITC

30 min + 50 min + 23 h + 50 min Gibco/3023261 FUJIREBIO/311520 5.6156 9.6

30 min + 70 min + 25 h + 70 min Gibco/3023261 FUJIREBIO/311520 5.5066 7.4

60 min + 60 min + 24 h + 60 min Gibco/3023261 FUJIREBIO/311520 5.4707 6.7

30 min + 60 min + 24 h + 60 min Sigma/RNBN1157 FUJIREBIO/311520 5.7269 11.7

30 min + 60 min + 24 h + 60 min Gibco/3023261 FUJIREBIO/311624 5.7144 11.5

30 min + 60 min + 24 h + 60 min Gibco/3023261 FUJIREBIO/311520 5.7144 11.5

30 min + 60 min + 24 h + 60 min Gibco/3023261 Sigma/4206160 5.6156 9.6

30 min + 60 min + 24 h + 60 min Gibco/3023261 FUJIREBIO/311520 5.0578 −1.3
Note: The section examines the impact of alterations in incubation time and critical reagents, which are specified for each group.
Abbreviation:  DMEM=Dulbecco’s  modified  Eagle’s  medium;  HI=heat  inactivation;  SVN=serum  virus  neutralization;  PI=post-infection;
FITC=fluorescein isothiocyanate; RFFIT=rapid fluorescent focus inhibition test; RVNA=rabies virus neutralizing antibodies.

 

TABLE 4. Stability evaluation of the RFFIT.

Condition RVNA titer (IU/mL) Difference (%)

WHO-3 SRIG — 1 freeze–thaw cycle 39.2490 −28.2

WHO-3 SRIG — 2 freeze–thaw cycles 39.2490 −28.2

WHO-3 SRIG — 3 freeze–thaw cycles 39.2490 −28.2

WHO-3 SRIG — 4 freeze–thaw cycles 39.2490 −28.2

WHO-3 SRIG — 5 freeze–thaw cycles 44.1519 −19.2

Sample (5.125 IU/mL) — 1 freeze–thaw cycle 4.9058 −4.3

Sample (5.125 IU/mL) — 2 freeze–thaw cycles 4.9058 −4.3

Sample (5.125 IU/mL) — 3 freeze–thaw cycles 4.9058 −4.3

Sample (5.125 IU/mL) — 4 freeze–thaw cycles 4.9058 −4.3

Sample (5.125 IU/mL) — 5 freeze–thaw cycles 4.9058 −4.3

Sample (5.125 IU/mL): 4 ℃ 4 w 4.9058 −4.3

Sample (5.125 IU/mL): 4 ℃ 1 w 4.9058 −4.3

Sample (5.125 IU/mL): 4 ℃ 24 h 4.9058 −4.3

Sample (5.125 IU/mL): room temperature, 4 h 4.3610 −14.9

Rabies virus: room temperature, 15 min 4.9058 −4.3

Note: The baseline value of WHO-3 SRIG: 54.6667 IU/mL; room temperature: 20–25 ℃.
Abbreviation:  RFFIT=rapid  fluorescent  focus  inhibition  test;  RVNA=rabies  virus  neutralizing  antibodies;  WHO-3  SRIG=third  World  Health
Organization international standard for anti-rabies immunoglobulin.
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and  may  not  fully  represent  the  diversity  of  immune
responses  across  populations.  Finally,  precision  was
reduced near the critical threshold of 0.5 IU/mL.

In  conclusion,  this  study  demonstrated  that  the
validated RFFIT method exhibited excellent analytical
performance  for  quantifying  RVNA  in  post-
vaccination  serum.  The  assay  met all  criteria  for
specificity,  accuracy,  precision,  stability,  linearity,  and
robustness, ensuring result integrity and reproducibility
under  varied  conditions.  These  findings  support  the
suitability  of  RFFIT  for  the  reliable  assessment  of
vaccine-induced  immunity  in  both  clinical  and
research  settings  (15).  Its  broader  implementation  for
serological  monitoring  in  rabies  sero-surveillance  and
vaccine evaluation studies is recommended. 
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SUPPLEMENTARY MATERIAL
 

SUPPLEMENTARY TABLE S1. Detailed plan of positive and 1∶10 human serum sample preparation.

No. Volume of WHO-3 SRIG
(164 IU/mL, μL)

Volume of pooled human
serum (μL)

RVNA titer of positive
serum sample (IU/mL)

RVNA titer of 1∶10 diluted positive
serum sample (IU/mL)

1 132.00 360.00 44 4.4

2 132.00 360.00 44 4.4

3 60.00 420.00 20.5 2.05

4 60.00 420.00 20.5 2.05

5 60.00 420.00 20.5 2.05

6 30.00 450.00 10.25 1.025

7 30.00 450.00 10.25 1.025

8 40.00 600.00 10.25 1.025

9 40.00 600.00 10.25 1.025

10 46.00 1,426.00 5.125 0.5125

11 27.00 837.00 5.125 0.5125

12 27.00 837.00 5.125 0.5125

13 27.00 837.00 5.125 0.5125

14 17.00 1,071.00 2.5625 0.25625

15 17.00 1,071.00 2.5625 0.25625

16 17.00 1,071.00 2.5625 0.25625

17 14.00 882.00 2.5625 0.25625

18 6.00 762.00 1.2813 0.12813

19 6.00 762.00 1.2813 0.12813

20 6.00 762.00 1.2813 0.12813
Abbreviation:  No.=number;  RFFIT=rapid  fluorescent  focus  inhibition  test;  RVNA=rabies  virus  neutralizing  antibodies;  WHO-3  SRIG=third
World Health Organization international standard for anti-rabies immunoglobulin.
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ABSTRACT

Introduction:  We  explored  risk  factors  for  latent
tuberculosis  infection  (LTBI)  and  developed  a  risk
prediction model using machine learning algorithms.

Methods:  Patients  with  active  pulmonary  TB  in
months  3  to  6  of  anti-TB  treatment  in  Henan
Province, China, July–September 2024 were selected as
index  cases.  Close  contacts  identified  through
epidemiological  investigation  underwent  tuberculin-
purified  protein  derivative  testing  to  determine  LTBI
status.  Face-to-face  questionnaires  were  conducted  to
collect  epidemiological  data.  The  dataset  was  divided
into  training  and  testing  sets  (6:4),  using  a  fixed
random seed.  Five  models —  logistic  regression  (LR),
decision tree (DT), random forest (RF), support vector
machines (SVM), and multilayer perceptron (MLP) —
were  trained  and  evaluated  using  the  mean  squared
error (MSE) and coefficient of determination. The test
set  was  subjected  to  external  validation.  Receiver
operating  characteristic  curve  analysis,  area  under  the
curve  (AUC),  and  F1-scores  were  used  to  quantify
predictive performance.

Results:  Among  795  close  contacts,  LTBI
prevalence  was  401  (50.5%).  By  MSE,  models  ranked:
SVM (0.121), RF (0.165), DT (0.197), LR (0.229), and
MLP  (0.233).  SVM  identified  five  key  predictors:
contact type of index case, key population classification,
residential  area,  frequency  of  participation  in  group
activities,  and  etiological  results.  Internal  validation
showed  strong  performance  (AUC=0.921,  F1=0.858),
whereas  external  validation  showed  moderate
performance (AUC=0.752, F1=0.694).

Conclusion:  The  SVM  model  incorporating
contact  type  of  index  case,  key  population
classification,  residential  area,  frequency  of  group
activity  participation,  and  etiological  results
demonstrated  robust  predictive  value  for  LTBI  risk.
This  model  shows  promise  for  the  targeted  screening
and management of high-risk populations. 

 

Latent  tuberculosis  infection  (LTBI)  refers  to  a
chronic  immune  response  to  Mycobacterium
tuberculosis  antigens,  without  clinical  or  radiological
evidence of active tuberculosis (ATB) (1). Prophylactic
treatment of LTBI plays an increasingly pivotal role in
TB  control.  It  is  estimated  that  23%  of  the  global
population  has  LTBI  (2),  and  the  overall  disease
burden is relatively high in China. LTBI is a potential
reservoir  for  ATB,  with  5%–10%  of  the  LTBI  cases
progressing  to  active  disease.  Therefore,  LTBI
treatment  directly  affects  the  global  prevention  of
future  TB  infections.  LTBI  research  largely  relies  on
screening  high-risk  populations  and  developing
targeted  treatment  strategies  (3).  Examining  families
and  other  close  contacts  of  patients  with  ATB  is
warranted  for  the  identification  and  management  of
LTBI (4–6).

Machine learning techniques such as support vector
machines  (SVM),  random  forest  (RF),  and  artificial
neural  networks  have  been  widely  used  in  disease
monitoring,  diagnosis,  and  prognosis.  These  methods
effectively  detect  novel  patterns  within  existing
datasets.  In  LTBI  prediction,  machine  learning  helps
identify  risk  indicators  that  may  remain  undetected
using conventional statistical approaches.

In  this  study,  a  survey  and  analysis  of  the  close
contacts  of  patients  with  TB in  Henan Province  were
conducted.  Five  machine  learning  methods,  namely,
SVM, RF, decision tree (DT), logistic regression (LR),
and multilayer perceptron (MLP), were used to predict
LTBI.  Their  predictive  accuracies  were  systematically
compared  to  identify  the  optimal  LTBI  prediction
framework.  Furthermore,  targeted  interventions  were
proposed for high-risk populations identified using the
best-performing  model,  enabling  a  proactive  shift  in
TB prevention and control strategies.
 

China CDC Weekly

Copyright © 2026 by Chinese Center for Disease Control and Prevention CCDC Weekly / Vol. 8 / No. 3 71



METHODS

This  study  used  a  univariate  logistic  regression
analysis  for variable screening.  Based on the 10 events
per  variable  criterion,  which  requires  a  minimum
sample size of 10–15 times the number of variables, 19
factors  were  analyzed.  The  estimated  incidence  of
LTBI among close contacts of patients with pulmonary
TB was approximately 30%.  Therefore, the minimum
number  of  required  outcome  events  was  10×19=190.
Consequently,  the  calculated  minimum  sample  size
was  190/0.3=634  participants.  Allowing  for  20%  loss
to  follow-up,  760  close  contacts  were  enrolled.  To
facilitate enrollment, the final target sample size was set
to 800.

Index cases were identified through the Tuberculosis
Management  Information  System  (the  China  Disease
Control  and  Prevention  Information  System)  as
patients  with  ATB  in  Henan  Province  receiving
treatment for 3–6 months in 2024. LTBI was defined
as  individuals  who  shared  the  same  residence  for  at
least  7  days  with  an  ATB  patient  during  the  period
from  3  months  before  the  patient’s  diagnosis  to  14
days  after  diagnosis,  and  showed  a  strongly  positive
purified  protein  derivative  (PPD)  test  result.  Non-
LTBI individuals were defined as those who were ruled
out  for  both  active  and  latent  TB  infection,  with  no
more  than one  non-LTBI subject  enrolled  per  patient
as  a  study  participant.  A  PPD  test  was  performed
according  to  the  Chinese  Guidelines  for  Preventive
Treatment  of  Tuberculosis  and  the  PPD  results  were
recorded  after  72  h.  For  PPD≥10  mm,  ATB  is  ruled
out  based  on  the  clinician’s  diagnosis,  and  the
individual  is  determined  to  have  latent  TB  infection.
For  PPD<10  mm,  if  active  and  latent  tuberculosis
infection  are  ruled  out  based  on  the  clinician’s
diagnosis,  the  individual  is  classified  as  having  a  non-
latent infection. LTBI cases were household contacts of
patients  with  ATB  (exposure≥7  days  between  3
months  pre-  and  14  days  post-diagnosis)  with  a
strongly  positive  PPD  test.  Non-LTBI  controls  were
excluded  for  both  ATB  and  LTBI,  with  up  to  one
control  enrolled  per  patient.  Close  contacts  of  these
index  cases  were  recruited  after  written  informed
consent  was  obtained.  After  excluding  individuals
owing  to  employment-related  migration,  refusal  to
participate,  or  incomplete  data  during  the  field
investigations, 795 close contacts were finally included.
All contacts underwent tuberculin PPD testing and TB
screening  and  completed  structured  questionnaires  at
designated  TB  care  facilities.  Questionnaire-derived

variables and system-recorded clinical parameters of the
index  cases  were  analyzed  as  potential  predictors  of
LTBI among close contacts.

The  Delphi  method  was  used  to  design  the  two
structured  questionnaires.  First,  the  Index  Case
Questionnaire  was  completed  by  designated
institutions  based  on  medical  records  including
demographic,  diagnosis,  and  treatment  information.
The  second  questionnaire  was  completed  by  the
investigator  during  in-person  interviews  with  close
contacts,  supplemented  by  medical  records  retrieved
from  the  case-reporting  information  system.  The
questionnaire  included  questions  regarding
sociodemographic  characteristics,  lifestyle  habits,
exposure  history,  and  TB-related  knowledge.  If  close
contacts were unable to participate because of physical
limitations,  family  members  or  guardians  completed
the  questionnaire  on  their  behalf.  Provincial  TB
control  institutions  conducted  city-level  data
verification,  followed  by  double  data  entry  using  Epi
Data  3.1  software  (EpiData  Association,  Odense,
Denmark).  The  finalized  databases  were  securely
transmitted  to  provincial  authorities  via  encrypted
emails.

A database  was  established using  EpiData  3.1,  with
data  collected  in  Microsoft  Excel  (Microsoft  Office
Home  and  Student  2019,  Microsoft  Corporation,
Redmond,  USA).  Data  analysis  was  conducted  using
SPSS Modeler (version 18.0; IBM Corp, Armonk, NY,
USA)  and  SPSS  27.0.  Qualitative  data  were  analyzed
using  the  chi-squared  test  followed  by  univariate
logistic  regression  analysis.  Machine  learning  models
including  SVM,  RF,  DT,  MLP,  and  LR  were
developed  to  predict  LTBI.  The  model  performance
was evaluated using the mean squared error (MSE) and
coefficient  of  determination  (R2).  A  lower  MAE  and
higher  R2  indicated  superior  predictive  accuracy.  The
predictive values of  these models  were further assessed
using  receiver  operating  characteristic  (ROC)  curves
and  F1-scores,  with  external  validation  of  the  test  set.
The MSE, R2,  and area under the ROC curve (AUC)
were  calculated  using  SPSS  27.0,  integrated  with
Python  3.12.  A  two-tailed  test  was  applied,  with
statistical significance set at α=0.05. 

RESULTS
 

Baseline Characteristics of Close Contacts
After  excluding  individuals  with  missing

information  owing  to  migrant  work  or  refusal  to
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participate in the field investigation, 795 close contacts
were included. LTBI accounted for 50.44% (n=401) of
the  close  contacts.  Significant  differences  (P<0.05)
were  observed  between  the  LTBI  and  non-LTBI
groups  in  terms  of  marital  status,  educational  level,
occupational  type,  residential  area  type,  per  capita
living  space,  household  registration  type,  annual
household income, frequency of participation in group
activities,  type  of  contact  with  index  cases,  Bacille
Calmette–Guérin  (BCG)  scar,  weekly  frequency  of
sleep  deprivation,  population  classification  of  index
cases,  key  population classification of  index cases,  and
etiological results of index cases (Table 1). 

Construction of Machine Learning
Algorithm Models

Using  LTBI  status  (binary  outcome)  as  the
dependent  variable  and  those  with  statistical
significance from the univariate analysis (Supplementary
Table  S1,  available  at  https://weekly.chinacdc.cn/)  as
independent  variables,  the  dataset  was  divided  via  a
random  seed  method  into  training  and  test  sets  in  a
6∶4  ratio.  Risk  prediction  models  were  developed
using  the  following  algorithms:  LR:  Binomial  logistic
regression  with  forward  stepwise  selection.  DT:  C5.0
algorithm  with  default  pruning  parameters.  RF:  100
decision trees  (ntree=100) with Gini  impurity  used for
node  splitting.  SVM:  Regularization  parameter  set  to
10,  and  regression  precision  tolerance=0.1.  MLP:
Automatically  determined  number  of  hidden  layer
neurons,  hyperbolic  tangent  activation  function  for
hidden  layers,  and  softmax  activation  for  the  output
layer. 

Efficiency Analysis of Machine
Learning Models

The  corresponding  evaluation  metrics  were
calculated using Python 3.12. MSE and R2 were used
to  evaluate  the  prediction  accuracy  of  the  models
generated  using  each  classifier  algorithm.  MSE  was
used  to  measure  the  model's  prediction  error  by
calculating  the  square  of  the  difference  between  the
predicted and true values averaged across all samples. A
smaller MSE suggests a better prediction performance.
R2  measures  the  variance  in  the  dependent  variable
accounted for by the model, suggesting its goodness of
fit.  The  R2  values  vary  between  0  and  1,  with  values
closer  to  1  indicating  a  superior  fit  and  better
explanatory ability.

Models  with  a  lower  MSE  and  higher  R2  were

deemed  more  precise.  The  prediction  accuracies  in
descending order were as follows: SVM, RF, C5.0 (DT
model),  LR,  and  MLP.  Classifier  performance  was
further  evaluated  using  sensitivity,  specificity,  and
accuracy,  with  higher  values  indicating  better
performance. The SVM model outperformed the other
algorithms in terms of these metrics (Table 2). 

Machine Learning Model Verification
The  AUC  and  F1-scores  were  used  as  the  overall

evaluation  metrics  to  assess  the  model  performance.
The AUC is used to measure the overall discriminative
performance  of  the  classifier.  The  AUC  value  ranges
from 0  to  1,  with  values  closer  to  1  suggesting  better
model  performance.  An  AUC  value  of  0.5  indicates
that the predictive ability of the model is equivalent to
random guessing.  The closer  the ROC curve is  to  the
upper left corner, the better the predictive value.

The  F1-score  is  the  reconciled  average  of  precision
(positive  predictive  value)  and  recall  (sensitivity),
offering  a  comprehensive  measure  of  performance.  In
the  case  of  an  imbalanced  dataset,  the  F1  score
accounts  for  both  false  positives  and  false  negatives.
The  score  ranges  from  0  to  1,  with  higher  values
indicating better comprehensive performance.

In  this  study,  the  SVM model  achieved  the  highest
performance in terms of both AUC and F1 scores, with
values  of  0.921  and  0.858,  respectively,  for  internal
validation,  and  0.752  and  0.694,  respectively,  for
external validation. Overall, the SVM model exhibited
the  best  predictive  performance  (Supplementary
Table S2, available at https://weekly.chinacdc.cn/).

As shown in Figure 1,  the SVM model  consistently
yielded  higher  ROC  curves  in  both  the  training  and
test  datasets,  indicating  its  superior  classification
performance  compared  with  the  other  models.  The
overlapping  ROC curves  of  the  MLP and  LR models
suggest comparable performance. Notably, the RF and
C5.0 DT models demonstrated divergent trends; in the
training set, RF outperformed C5.0, whereas in the test
set,  C5.0  outperformed  RF.  This  difference  could  be
attributed to the small sample size of the test set.

The  SVM-based  LTBI  risk-prediction  model  was
developed  using  variables  relevant  to  the  univariate
analysis.  Repeated model  iterations demonstrate  stable
variable  importance  rankings  without  considerable
fluctuations. The training set showed 85.9% accuracy,
and the test set showed 68.3% accuracy (Table 2).

The  top  five  predictors  of  LTBI  onset,  ranked  by
variable importance,  were:  1)  type of  contact  with the
index case (14.76%); 2) key population classification of
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TABLE 1. Comparison of the baseline characteristics of close contacts.

Variant LTBI
(n=401)

Composition
ratio (%)

non-LTBI
(n=394)

Composition
ratio (%) OR (95% CI) P VIF

Sex 0.985 1.482

Male 157 39.2 154 39.1

Female 244 60.8 240 60.9 0.997 (0.750, 1.326)

Age groups (years) 0.065 1.487

15–18 12 3.0 11 2.8

19–60 312 77.8 280 71.1 1.021 (0.444, 2.352) 0.960

≥60 77 19.2 103 26.1 0.685 (0.287, 1.635) 0.394

BMI (kg/m2) 0.971 1.111

18.5–23.9 228 56.9 227 57.6

<18.5 19 4.7 19 4.8 0.996 (0.514, 1.930) 0.990

≥24 154 38.4 148 37.6 1.036 (0.774, 1.386) 0.812

Marital status <0.001 1.679

Unmarried 81 20.2 30 7.6

Married 310 77.1 350 88.8 0.328 (0.210, 0.512) <0.001

Divorced/widowed 10 2.5 14 3.6 0.265 (0.106, 0.659) 0.004

Education level <0.001 1.599

Illiterate 36 9.0 41 10.4

Primary/junior high school 185 52.5 232 58.9 0.908 (0.558, 1.479) 0.699

High school and above 180 37.9 121 30.7 1.694 (1.024, 2.803) 0.040

Careers <0.001 1.338

Other 84 20.9 97 24.6

Farmer 163 40.6 210 53.3 0.896 (0.627, 1.280) 0.547

Student/teacher 77 19.2 24 6.1 3.705 (2.152, 6.379) <0.001

Healthcare/detainee 19 4.7 7 1.8 3.134 (1.256, 7.822) 0.014

Homemaker/unemployed 58 14.5 56 14.2 1.196 (0.748, 1.912) 0.455

Labor intensity 0.488 1.350

Light 261 65.1 248 62.9

Moderate 128 31.9 138 35.0 0.881 (0.655, 1.186) 0.655

Heavy 12 3.0 8 2.0 1.425 (0.573, 3.546) 0.573

Residence type 0.019 1.508

Rural 206 51.4 235 59.6

Urban 195 48.6 159 40.4 1.399 (1.057, 1.853)

Per capita living area (m2) <0.001 1.505
≥20 320 79.8 349 88.6

<20 81 20.2 45 11.4 1.963 (1.323, 2.913)

Household registration type <0.001 1.298

Local residence 319 79.6 349 88.6

Migrant population 82 20.4 45 11.4 1.994 (1.344, 2.956)

Annual household income (CNY) 0.032 1.362

<30,000 179 44.6 204 51.8

30,000–50,000 143 35.7 107 27.2 1.523 (1.105, 2.100) 0.010

>50,000 79 19.7 83 21.1 1.085 (0.751, 1.567) 0.665
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Continued

Variant LTBI
(n=401)

Composition
ratio (%)

non-LTBI
(n=394)

Composition
ratio (%) OR (95% CI) P VIF

Exposure to dust 0.489 1.355

No 382 95.3 371 94.2

Yes 19 4.7 23 5.8 0.802 (0.430, 1.498)

Daily ventilation frequency 0.063 1.180

0–1 time 118 29.4 106 26.9

2–3 times 89 22.2 93 23.6 0.860 (0.581, 1.272) 0.449

>3 times 190 47.4 180 45.7 0.948 (0.680, 1.322) 0.754

None 4 1.0 15 3.8 0.240 (0.077, 0.744) 0.013

Frequency of group activity participation per week <0.001 1.763

Low 259 64.6 321 81.5

Moderate 87 21.7 61 15.5 1.768 (1.226, 2.549) 0.002

High 55 13.7 12 3.0 5.681 (2.979, 10.833) <0.001

Contact type <0.001 2.578

Household 292 73.7 348 90.2

Neighbor 13 3.3 10 2.6 1.549 (0.670, 3.585) 0.306

Relative 16 4.0 15 3.9 1.271 (0.618, 2.615) 0.514

Colleague/classmate 56 14.1 7 1.8 9.534 (4.280, 21.240) <0.001

Other 19 4.8 6 1.6 3.774 (1.488, 9.574) 0.005

Health education received 0.996 1.247

Yes 225 56.1 221 56.1

No 176 43.9 173 43.9 0.999 (0.755, 1.322)

BCG scar <0.001 1.150

Present 314 78.3 263 66.8

Absent 87 21.7 131 33.2 0.556 (0.405, 0.764)

Smoking status 0.312 1.106

Never 179 44.6 202 51.3

Occasional 5 1.2 6 1.5 0.940 (0.282, 3.134) 0.920

Frequent 75 18.7 56 14.2 1.511 (1.013, 2.256) 0.043

Quit smoking 10 2.5 8 2.0 1.411 (0.545, 3.652) 0.478

Passive smoking 132 32.9 122 31.0 1.221 (0.888, 1.678) 0.218

Weekly frequency of sleep deprivation <0.001 1.291

None 242 60.3 291 73.9

1–2 times 56 14.0 48 12.2 1.403 (0.920, 2.138) 0.115

3–5 times 53 13.2 35 8.9 1.821 (1.150, 2.884) 0.011

>5 times 50 12.5 20 5.1 3.006 (1.742, 5.189) <0.001

Comorbidities 0.867 3.256

None 310 77.3 308 78.2

One 75 18.7 67 17.0 1.112 (0.772, 1.603) 0.568

Two 12 3.0 15 3.8 0.795 (0.366, 1.726) 0.562

Three or more 4 1.0 4 1.0 0.994 (0.246, 4.008) 0.993

Index case variables (source of infection status)

Sex 0.942 1.103

Male 292 72.8 286 72.6
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the  index  case  (12.36%);  3)  residential  area  of  close
contacts  (12.02%);  4)  frequency  of  participation  in
group  activities  (11.25%);  5)  etiological  results  of  the
index case (10.47%) (Table 3).
 

Result Interpretation
Through multi-factor logistic regression analysis, the

factors  output  by  the  SVM  were  interpreted.  The
results  showed that  the  index  case  was  a  classmates  or
colleagues, the index case being a key population with
diabetes  or  silicosis,  high  frequency  of  group  activity
participation  per  week,  the  index  case  having  positive
etiological  results,  annual  income  exceeding  50,000
Chinese Yuan, sleep deprivation more than five times a
week,  and  having  scars  were  risk  factors  for  the
occurrence  of  latent  TB infection.  Living  in  an  urban
or  migrant  population  was  a  protective  factor
(Supplementary  Table  S3,  available  at  https://weekly.
chinacdc.cn/).
 

DISCUSSION

Compared  with  conventional  statistical  methods,
machine  learning  algorithms  offer  advantages  such  as
higher  accuracy,  greater  precision,  and  stronger
adaptability. Moreover, they have been widely used for
disease screening (7).  In this study, data from patients
with TB and their close contacts from different areas of
Henan Province were analyzed to identify the optimal
model  for  predicting  LTBI.  The  training  dataset  was
analyzed  using  SVM,  RF,  DT,  MLP,  and  LR
algorithms.  The  performance  of  the  models  were
validated  using  a  test  dataset.  The  comparative
evaluation indicated the following MSE rankings from
lowest  to  highest:  SVM  (0.121),  RF  (0.165),  C5.0
(0.197), LR (0.229), and MLP (0.233), confirming the
superior  predictive  performance  of  SVM.  The  SVM
model  achieved an AUC of  0.921,  F1-score  of  0.858,
sensitivity  of  0.888,  and  specificity  of  0.831.  External
validation  yielded  an  AUC  of  0.752,  F1-score  of

Continued

Variant LTBI
(n=401)

Composition
ratio (%)

non-LTBI
(n=394)

Composition
ratio (%) OR (95% CI) P VIF

Female 109 27.2 108 27.4 0.989 (0.724, 1.351) 0.942

Occupation <0.001 1.462

Other 24 6.0 28 7.1

Farmer 232 57.9 270 68.5 1.002 (0.565, 1.778) 0.993

Student/teacher 88 21.9 36 9.1 2.852 (1.461, 5.568) 0.002

Homemaker/unemployed 52 13.0 60 15.2 1.011 (0.523, 1.956) 0.974

Healthcare worker 5 1.2 0 0.0 >100 0.999

Key population classification <0.001 1.591

No 261 65.1 304 77.2

Diabetes 41 10.2 44 11.2 1.085 (0.688, 1.713) 0.725

Silicosis 9 2.2 6 1.5 1.747 (0.614, 4.973) 0.296

School or childcare staff 79 19.7 36 9.1 2.556 (1.667, 3.919) <0.001

Other 11 2.7 4 1.0 3.203 (1.008, 10.179) 0.048

Diagnosis delay 0.063 1.178

No delay 155 38.7 178 45.2

Delayed 246 61.3 216 54.8 1.308 (0.986, 1.735)

Treatment category 0.179 1.119

New case 356 88.8 361 91.6

Retreatment case 45 11.2 33 8.4 1.383 (0.862, 2.218)

Etiological results 0.027 1.126

Negative/not tested 96 23.9 122 31.0

Positive 305 76.1 272 69.0 1.425 (1.042, 1.950)
Note: Bold number means statistical significance.
Abbreviation:  OR=odds  ratio;  CI=confidence  interval;  BCG=Bacille  Calmette–Guérin;  CNY=Chinese  Yuan;  LTBI=latent  tuberculosis
infection; VIF=variance inflation factor.
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0.694,  sensitivity  of  0.659,  and  specificity  of  0.711.
These  results  demonstrate  robust  screening
performance and strong alignment with accurate LTBI
status.

SVM, a supervised binary classification model, excels
in  high-dimensional  data  analysis  by  isolating  optimal
decision  boundaries,  making  it  widely  applicable  in
disease  screening  (8).  Its  advantages  include  reducing
structural  risk  to  enhance  generalizability,  optimizing
both  empirical  risk  and  confidence  intervals
concurrently, and the capacity to efficiently learn from
small  datasets  while  maintaining  statistical  validity
(9–10).

In this study, repeated iterations of the SVM model
yielded stable rankings of variable importance. The top
five  predictors  of  LTBI  were  the  type  of  contact  with
the  index  case  (14.76%),  key  population  classification

of  the  index  case  (12.36%),  residential  area  of  close
contact (12.02%),  frequency of participation in group
activities (11.25%), and etiological results of the index
case (10.47%).

These findings suggest that close contacts who were
coworkers  or  classmates  of  patients  with  pulmonary
TB  demonstrated  a  significantly  higher  risk  of
developing LTBI than contacts  who lived in the same
household.  This  observation  aligns  with  the  research
conducted  by  Schepisi  et al.  (11)  in  school  and
congregate  settings.  Furthermore,  this  aligns  with  the
increased  risk  of  extrapulmonary  transmission  among
nonhousehold  contacts  in  urban  African  contexts,  as
reported  by  Kakaire  et al.  (12).  This  study  also
detected  a  dose-response  relationship  between the  risk
of  LTBI  and  frequency  of  participation  in  group
activities.  Gathering  in  institutional  settings  (e.g.,

 

TABLE 2. Evaluation table of each classifier algorithm prediction model in the training set.

Model
Training set Test set

MSE R2 Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy
LR 0.229 0.086 0.702 0.601 0.627 0.629 0.583 0.591

C5.0 0.197 0.215 0.734 0.730 0.732 0.644 0.689 0.665

RF 0.165 0.342 0.891 0.712 0.779 0.536 0.656 0.665

SVM 0.121 0.517 0.888 0.831 0.859 0.659 0.711 0.683

MLP 0.233 0.073 0.662 0.581 0.602 0.621 0.596 0.624
Abbreviation:  MSE=mean  squared  error;  LR=logistic  regression;  RF=random  forest;  SVM=support  vector  machines;  MLP=multilayer
perceptron.
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FIGURE 1. LTBI risk prediction model based on the SVM algorithm.
Abbreviation: SVM=Support vector machine; LTBI=Latent tuberculosis infection.
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classrooms  and  meetings)  prolongs  exposure  and
intensifies  interpersonal  proximity.  In  overcrowded
environments  with  poor  ventilation,  these  conditions
synergistically  increase  the  risk  of  aerosol  transmission
by  increasing  the  density  of  respiratory  droplet
exchange,  extending  the  suspension  time  of  M.
tuberculosis  in  confined  spaces,  and  reducing  effective
air exchange rates.

Additionally,  close  contact  with  bacteriologically
positive  pulmonary  TB patients  was  associated  with  a
greater risk of LTBI, consistent with the findings of Lei
et al.  (13).  Patients  with  bacteriologically  confirmed
pulmonary  TB  have  higher  levels  of  M.  tuberculosis,
leading  to  stronger  pathogenicity.  Sputum  and
respiratory  droplets  are  rich  in  bacilli,  which  increases
the  risk  of  infection.  Finally,  close  contacts  of  index
cases  with  severe  diseases  such  as  human
immunodeficiency  virus  (HIV)  infection  are  more
likely  to  develop  LTBI.  HIV  co-infection  is  the  most
critical risk factor for LTBI reactivation. HIV infection
results in a reduction in the number of CD4+T cells in
both  lymphoid  tissues  and  peripheral  blood.  Elevated
viral  loads  and  rapid  progression  to  acquired
immunodeficiency  syndrome  (AIDS)  are  associated
with  an  increased  risk  of  LTBI  (14).  Finally,  close
contacts  in  rural  areas  were  at  a  higher  risk  of
developing  LTBI.  According  to  Gao  et al.,  the
estimated annual rate of TB in rural areas is 1.5%. The
present  study provides  population-based evidence  that
older  adults  in  rural  China  have  a  high  prevalence  of
LTBI  and  relatively  high  risk  of  new  infections
(15–16).

In screening with limited data, interpretable models
such as LR are often preferred because their advantages
readily  inform  public  health  strategies.  However,  this
study  highlights  the  potential  of  machine  learning  for
capturing  complex  data  relationships,  thereby  laying
the  foundation  for  future  multimodal  integration.
Thus,  developing  and  validating  advanced  machine
learning  models  remain  essential  for  building  precise
automated screening systems in the long term.

Although machine learning offers advantages such as
improved  sensitivity,  specificity,  and  diagnostic
efficiency, it has some limitations. These shortcomings
include  the  requirement  for  extensive  datasets,  poor
interpretability  of  models,  dependence  on  algorithms
and technologies, and issues related to data privacy and
security.  Owing  to  variations  in  population
distribution,  prevalence  rates,  and  other  influencing
factors that lead to a shift in data distribution, caution
should be exercised when applying the model to other
populations.  As  more  data  can  help  the  model  to
generalize  better,  data  from the  target  population  will
continue  to  be  collected  in  the  future,  merged  with
source data,  and used to train the model with a larger
dataset. Individuals with LTBI may exert greater effort
to  recall  and  report  risk  factors  related  to  TB.  These
biases  can systematically  distort  the  feature  values  and
obscure  the  true  distribution  of  certain  predictors.
Participants  may  underreport  sensitive  information,
such  as  smoking  or  alcohol  use,  while  potentially
overreporting  behaviors  such  as  physical  exercise.  The
specificity  issues  of  the  PPD  test  due  to  BCG
vaccination  and  nontuberculous  mycobacterial
infection,  as  well  as  sensitivity  issues  due  to
immunosuppression, may have affected the estimation
of  the  latent  infection  rates  and  risk  factors  in  this
study. Moreover,  integrating machine learning models
with  biomarker-based  diagnosis  of  M.  tuberculosis
infection  may  improve  the  application  of  prediction
tools.

The findings in this report are subject to at least two
limitations.  First,  the  cross-sectional  design  can
identify  factors  associated  with  LTBI,  but  cannot
establish  causality  and  may  be  susceptible  to  survivor
bias.  Second,  despite  controlling  for  multiple  known
risk  factors,  residual  unmeasured  confounding  factors
such  as  genetic  factors  and  subtle  environmental
exposures  may  affect  the  model’s  feature  importance
and generalizability. Therefore, our findings should be
regarded  as  an  initial  step  toward  more  accurate
identification of LTBI using machine learning. Future

 

TABLE 3. Importance of input variables in LTBI risk prediction model based on SVM algorithm.

Variant Importance of
forecasting Variant Importance of

forecasting Variant Importance of
forecasting

Contact type 0.1476 Etiological results of index
case 0.1047 Occupation of

index case 0.0509

Key population classification of
index case 0.1236 Household registration type 0.0891 BCG scar 0.0281

Residential area of close
contact 0.1202 Annual household income 0.0712

Frequency of group activity
participation 0.1125 Weekly frequency of sleep

deprivation 0.0568

Abbreviation: SVM=support vector machines; LTBI=latent tuberculosis infection; BCG=Bacille Calmette–Guérin.
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studies should establish longitudinal cohorts with long-
term  follow-up  for  active  TB  outcomes  to  develop
prognostic  models  that  truly  predict  progression  risk.
Only  through  such  efforts  can  artificial  intelligence
realize  its  full  potential  for  optimizing  TB  prevention
and enabling precision in public health.

In  conclusion,  this  study  suggests  an  SVM  model
constructed using machine learning algorithms focused
on five predictors: types of close contacts, occupational
types  of  the  index  case,  residential  locations  of  close
contacts, frequency of participation in group activities,
and  etiological  results  of  the  index  case.  These  factors
showed strong predictive power for assessing the risk of
LTBI. Through precise stratification, costly testing and
treatment resources can be concentrated on those most
in  need,  thereby  avoiding  wastage  of  low-risk
populations.  In  large-scale  community  screenings,  the
rapid  prioritization  of  a  large  number  of  individuals
can be achieved, allowing limited human and material
resources to maximize their effectiveness. Our next step
will  be  to  validate  the  model's  performance  across
heterogeneous  populations  using multicenter  data  and
explore  hybrid  models  that  integrate  clinical  variables
with biomarkers. 
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SUPPLEMENTARY MATERIAL
 

SUPPLEMENTARY TABLE S1. Variable assignment table.
Variant Description of the assignment

Whether LTBI Yes=1, No=0

Marital status Unmarried=1, Married=2, Divorced/widowed=3

Educational level Illiterate=1, Primary /Junior high school=2, High school and above=3

Occupation Other=1, Farmer=2, Student/Teacher=3, Healthcare/Detainee=4, Homemaker/Unemployed=5

Residence type of close contact Rural=1, Urban=2

Per capita living area ≥20 m2=1, <20 m2=2

Household registration type Local residence=1, Migrant population=2

Annual household income <30,000=1, 30,000–50,000=2, >50,000=3

Frequency of group activity participation Low=1, Moderate=2, High=3

Contact type Family member=1, Neighbor=2, Relative=3, Colleague/student=4, Other=5

BCG scar Yes=1, No=2

Weekly frequency of sleep deprivation None=1, 1–2 times=2, 3–5 times=3, >5 times=4

Occupation of index case Other=1, Farmers=2, Students/teachers=3, Domestic workers=4, Medical workers=5

Key population classification of index case Not a priority group=1, Diabetic=2, Silicosis=3, School or childcare staff=4, Other=5

Etiological results of index case Negative/not detected=1, Positive=2

Abbreviation: LTBI=latent tuberculosis infection; BCG=Bacille Calmette–Guérin.

 

SUPPLEMENTARY TABLE S2. Evaluation table of the prediction model of each classifier algorithm in the test set.

Model
Training set Test set

AUC F1 score AUC F1 score

LR 0.688 0.583 0.653 0.547

C5.0 0.786 0.742 0.733 0.675

RF 0.862 0.723 0.691 0.570

SVM 0.921 0.858 0.752 0.694

MLP 0.667 0.559 0.662 0.578
Abbreviation:  AUC=area  under  the  curve;  LR=logistic  regression;  RF=random  forest;  SVM=support  vector  machines;  MLP=multilayer
perceptron.

China CDC Weekly

Chinese Center for Disease Control and Prevention CCDC Weekly / Vol. 8 / No. 3 S1



　

 

SUPPLEMENTARY TABLE S3. Multivariate analysis.

Variant β sx χ
Wald  OR (95% CI) P

Contact type 13.890 0.008

Household*

Neighbor 0.616 0.440 1.960 1.851 (0.782, 4.383) 0.162

Relative 0.085 0.384 0.049 1.088 (0.513, 2.309) 0.826

Colleague/classmate 1.644 0.489 11.292 5.177 (1.984, 13.509) 0.001

Other 0.913 0.700 1.701 2.492 (0.632, 9.823) 0.192

Key population classification 4.872 0.301

No*

Diabetes 0.758 0.385 3.887 2.135 (1.004, 4.537) 0.049

Silicosis 0.907 0.447 4.107 2.476 (1.030, 5.952) 0.043

School or childcare staff 0.606 0.425 2.028 1.833 (0.796, 4.220) 0.154

Other 22.029 17967 0.000 0.000 0.999

Residential area of close contact

Rural*

Urban −0.176 0.175 1.011 0.838 (0.595, 1.182) 0.315

Frequency of group activity participation per week 7.544 0.023

Low*

Moderate 0.349 0.201 3.007 1.417 (0.956, 2.102) 0.083

High 1.092 0.474 5.300 2.980 (1.176, 7.548) 0.021

Etiological results of index case

Negative/not tested*

Positive 0.484 0.176 7.563 1.623 (1.149, 2.291) 0.006

Household registration type

Local residence*

Migrant population −0.321 0.242 1.756 0.725 (0.451, 1.166) 0.185

Annual household income (CNY) 6.232 0.044

<30,000*

30,000–50,000 0.253 0.225 1.258 1.287 (0.828, 2.002) 0.362

>50,000 0.555 0.232 5.714 1.742 (1.105, 2.747) 0.017

Weekly frequency of sleep deprivation 12.235 0.007

None*

1–2 times −0.040 0.242 0.028 0.961 (0.598, 1.543) 0.868

3–5 times −1.138 0.363 9.843 1.249 (0.745, 2.093) 0.339

>5 times −0.843 0.377 5.005 2.710 (1.526, 4.813) 0.001

Occupation 4.370 0.358

Other*

Farmer −22.334 17964 0.000 0.000 0.999

Student/teacher −21.591 17964 0.000 0.000 0.999

Homemaker/unemployed −3.330 22270 0.000 0.036 1.000

Healthcare worker −21.864 17964 0.000 0.000 0.999

BCG scar

Present*

Absent 0.361 0.175 4.246 1.434 (1.018, 2.021) 0.039
Abbreviation: BCG=Bacille Calmette–Guérin; OR=odds ratio; CNY=Chinese Yuan; CI=confidence interval.
* When performing multivariate analysis for each group of variable categories, the first variable is used as the reference.
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