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Recollections

Reflections on the Evolution of Heat Alert Systems into
Heat Health Risk Warning Systems

Taiyuan Zhang"®; Yuxin Zeng*; Yu Lan’ Qinghua Sun*; Pengran Qi'; Min Li'; Tiantian Li**

ABSTRACT

The frequent occurrence of extreme heat events in
the context of global warming poses a serious threat to
public health. Increasing evidence has highlighted the
limitations of China’s traditional early heat warning
system, including an overemphasis on meteorological
factors, the absence of health risk assessments, limited
regional adaptability, and a disconnect between
observations and  public  perception.  These
shortcomings hinder the ability of the system to meet
the growing demand for precise health protection
warnings and  initiatives. ~ Consequently,  the
development of an early warning system that focuses
on the health risks of high temperatures has emerged as
a critical strategy for addressing climate change-related
health impacts. This study systematically reviews the
existing standards and service limitations of heat
warning systems in China and analyzes the necessity of
advancing research on and applications of health-
oriented heat risk warnings. In the future, the broader
social scope of such meteorological warning systems is
expected to transform them into health risk assessment
systems that benefit the entire population.

STANDARDS AND SERVICE
LIMITATIONS OF HEAT WARNING
SYSTEMS IN CHINA

China’s  meteorological ~ departments  began
meteorological disaster warning operations as early as
1951. However, the modern meteorological disaster
warning system, which is currently in use, was created
according to the Measures for the Release and
Dissemination of Meteorological ~Disaster Warning
Signals  issued by the China Meteorological
Administration (CMA) in June 2007. This regulation
standardized the release and dissemination procedures
for warning signals for 13 types of meteorological
disasters, including typhoons, blizzards, and other
severe weather events, by meteorological agencies at all

Copyright © 2025 by Chinese Center for Disease Control and Prevention

administrative  levels. In 2007, the National
Meteorological Center formally established a national
meteorological ~ disaster ~ warning ~ mechanism

encompassing high-temperature warnings. The latest
version of the Measures for the Issuance of Meteorological
Disaster Warnings in 2023 outlines 14 categories of
disaster warnings that the CMA currently authorizes,
clarifies the responsibilities associated with each
warning, and further standardizes the operational
protocols for heat alerts and the corresponding
national-level response guidelines.

Definitions of Hot Weather According to

Meteorological Standards

High temperature weather: daily maximum
temperature of >35 C (I).

High temperature weather process: occurrence of
two or more consecutive days of hot weather (7).

Heat wave: a weather process with high temperature
and an extended period of high humidity that causes
discomfort in the human body and may pose a threat
to public health and safety, along with increasing
energy consumption and affecting social production
activities (2).

High-Temperature Warning Criteria of

the National Meteorological Center

The National Meteorological Center issues heat
alerts according to the following criteria (3):

Red alert: This alert is issued if parts of more than
four provinces (including autonomous regions and
municipalities) ~ have  experienced =~ maximum
temperatures >40 °C over the past 48 h, with
expectations that these areas will
experience high temperatures >40 °C. Alternatively, a
red alert is issued if the forecast suggests that most areas
in more than four provinces (including autonomous
regions and municipalities) will experience daily
maximum temperatures >40 °C within the next 48 h.

Orange alert: This alert is issued if most areas in
more than four provinces (including autonomous

continue to
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regions and municipalities) have experienced daily
maximum temperatures of >37 °C and some areas in
more than two provinces have reached a temperature
of >40 °C over the past 48 h, with expectations that
these conditions will persist with temperatures
remaining >37 °C in most areas and reaching >40 °C
in certain regions. An orange alert is also issued if the
forecast predicts that, in the next 48 h, most areas in
more than four provinces (including autonomous
regions and municipalities) will experience daily
maximum temperatures of >37 °C and most areas in
more than two provinces will continue to reach a
temperature of >40 °C.

Yellow alert: This alert is issued if most areas in
more than four provinces (including autonomous
regions and municipalities) have experienced a daily
maximum temperature of >37 °C over the past 24 h,
with expectations that the hot weather in these areas
will persist. A yellow alert is also issued if it is expected
that most areas in more than four provinces (including
autonomous regions and municipalities)  will
experience a daily maximum temperature of >37 C
over the next 48 h.

The heat alert system of the National Meteorological
Center focuses not only on extreme temperatures but
also on their persistence. A red alert event has occurred
only once, during a widespread and prolonged heat
wave in southern China from June to August 2022,
with 22 consecutive warnings issued. This event
affected an area of 4.53 million km? and impacted
approximately 1.05 billion people. The extent of
regions experiencing temperatures >40 °C was the
largest in recorded history.

The heat alerts of the National Meteorological
Center differ from those issued by provincial
authorities in terms of their specific content.
Furthermore, the provinces vary in terms of alert levels,
issuance criteria, and regional coverage. Although the
levels and wording of the warnings may vary, their
primary purpose remains the same: to provide advance
notice to the public to ensure that individuals can
adopt appropriate precautions to mitigate the impacts
of hot weather.

LIMITATIONS OF METEOROLOGICAL
HEAT ALERTS

Lack of Health Risk Indicators
Currently, heat alerts focus on meteorological
features and have not yet incorporated comprehensive

1410 CCDC Weekly / Vol. 7 / No. 45

health risk assessment systems. This shortcoming can
be attributed to a lack of technologies that can
accurately correlate meteorological conditions with
health outcomes. This limitation makes it difficult to
implement quantitative health risk warnings based on
population characteristics and to provide targeted
protection advice for high-risk groups such as older
adults, individuals with chronic illnesses, and outdoor
workers. This constraint affects the precision and
practicality of early warnings, undermining their
effectiveness in shaping public risk perceptions and
responses.

Lack of Regional Adaptation

The fixed thresholds of the current warning systems
cannot be adapted uniformly across regions because
they fail to account for the differences in physical
fitness and heat adaptation levels among residents in
various areas. Therefore, health risks in atypical high-
temperature regions are often underestimated. For
instance, residents of northeastern China may be
highly sensitive to temperatures as low as 30 °C, a
threshold not adequately captured by current warning
systems. Hence, the accuracy of regional adaptation
and risk identification must be improved.

Variation Between Meteorological

Observations and Real-world Perception
Although temperature observation measures in
China follow international norms, temperatures are
affected by complex factors in specific environments.
In addition, real body temperature often differs
significantly from meteorological observations. Thus,
these systems do not account for the diversity in
human physiological responses and health outcomes.

NEED FOR EARLY WARNING
RESEARCH ON HIGH-TEMPERATURE
HEALTH RISKS

The significant intensification of global warming
and increased frequency, intensity, and duration of
extreme heat events pose a significant threat to public
health and social security. Heat-related deaths in China
reached approximately 50,900 in 2022, representing a
342% increase compared to the historical baseline
(1968-2005) (4). High temperatures can trigger heat
stroke and pyrexia and significantly increase the risk of
acute episodes of cardiovascular and respiratory

Chinese Center for Disease Control and Prevention
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diseases. Therefore, establishing a heat health risk
warning system is critical for improving public health
preparedness and response capacity.

On July 2, 2025, the National Disease Control and
Prevention Administration and CMA released the first
National High Temperature Health Risk Warning,
described as an “across-disciplinary collaboration
between China’s public health and meteorological
departments in response to the frequent occurrence of
extreme weather and climate events and a landmark
practice to proactively address the health risks brought
about by the current climate change” (5). This warning
system  integrates  meteorological  data  with
epidemiological evidence to enable a refined risk
classification and region-specific management. The key
features of this heat health risk warning system are as
follows:

More precise risk grading: Based on relative
temperature  thresholds ~ and  evidence-based
assessments, high-temperature health risks are classified
into five levels to accommodate the diverse needs of the
northern and southern regions as well as different
climate zones.

More comprehensive coverage: The limitations of
traditional high-temperature warnings are removed,
allowing the system to include potential health risks in
non-traditional  high-temperature  regions.  This
expansion helps fill the gap in heat protection systems
in cold climate zones.

Service-oriented transformation and upgrading: The
system has evolved from weather forecasting to issuing
health-risk warnings by providing personalized health
intervention recommendations for various population
groups and industries. This feature marks a qualitative
leap from simply “knowing the weather” to “truly
knowing the people.”

Health-risk warning systems are not only powerful
tools for enhancing evidence-based government
decision-making, but also serve as a critical foundation

for medical public  safety

management, vulnerable population protection, and

resource allocation,
public health interventions. The adoption of such
systems results in a significantly stronger health-
emergency response capacity and improved societal
resilience to climate change. Simultaneously, the
widespread implementation of such early warning
systems can improve public risk perception and
awareness, facilitating a shift from a passive response to
proactive prevention and promoting the overall health
and safety of society.

Chinese Center for Disease Control and Prevention

PROSPECTIVE APPLICATIONS OF
HIGH-TEMPERATURE HEALTH RISK
EARLY WARNINGS

In the future, while the national warning network
will maintain its core function as the initiator of heat
and health risk prevention and control strategies, heat-
related health risk warnings will be applied to extend
beyond traditional boundaries and expand into a wide
range of sectors. At the community level, integrating
grid-based risk data with population characteristic
databases will allow the system to support the
refined  health
framework, enabling dynamic assessments of individual
heat exposure risks and targeted interventions. In the
context of clinical medical institutions, warning

development of a management

technology can be embedded into diagnosis and
treatment decision support systems to provide a
quantitative basis for risk stratification of heat-related
diseases (e.g., hyperthermia and acute cardiovascular
and cerebrovascular events), early screening, and
optimization of intervention strategies. In the
commercial sector, warning systems can offer technical
support for the development of high-temperature
health insurance products, provide data for demand
forecasting models and supply chain optimization in e-
commerce pharmaceutical enterprises, and facilitate
innovation in the development of climate-adaptive
products and service models for recreation and tourism
These  applications
comprehensive functional network of macro-level
warnings, meso-level coordination, and micro-level
responses. Finally, value transformation across multiple

industries. represent  a

scenarios may enable meteorological early warning
technologies to undergo a fundamental transformation
into health warning technologies for the entire
population to serve as the core infrastructure for the
modernization of public health governance under the
“Healthy China” initiative.

While challenges persist, such as imperfect data-
sharing mechanisms across industries, the need to
improve cross-departmental coordinated response
efficiency, and the limited adaptability of existing
technologies in specific scenarios, public demand for
health and safety will drive technological innovation
and insticutional  breakthroughs. Health-weather
warning technologies, exemplified by heat health risk
warning systems, are expected to evolve into national
health protection infrastructure, providing systematic
solutions to the health challenges posed by climate
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Vital Surveillances

Individual-Level, Multi-Provincial Analysis of High Temperature
and Heat-Related Iliness Association — China, 2013-2022

Zhe Wang"**; Runmei Ma*%; Xiaoye Wang'; Fei Mo'; Yunzhang Zhao’; Yunxia Geng';
Yirong Liu*; Xiangxiang Wei*; Miao He?

ABSTRACT

Introduction Climate change is intensifying extreme
heat events, positioning heat-related illness as an
escalating public health threat. However, multi-
provincial, individual-level evidence quantifying the
association between elevated temperatures and heat-
related illness in China remains limited.

Methods This multi-provincial study employed a
time-stratified case-crossover design. Individual heat-
related illness case data (2013-2022) were obtained
from the Heat-related Illness Report System, which
collects reports from local healthcare facilities and
CDCs
divisions (PLADs). We evaluated associations between
daily mean and maximum temperatures and heat-
related illness risk across multiple lag periods (lag0 to
lag07), with lag01 designated a priori as the primary
exposure window. Effect estimates are presented as
relative risks (RR) and percentage changes in RR per
1°C temperature increase. Subgroup analyses examined
potential effect modification by sex, age, heat-related
illness subtype, heat intensity, and geographic location.

Results Between 2013 and 2022, 53,061 heat-
related illness cases were recorded across study areas,
with annual counts rising throughout the decade and
reaching a peak of 14,025 in 2022. Although mild
cases predominated each year (maximum 83.0% in
2015), the proportion of severe cases exhibited a
concerning gradual increase. Regarding temperature
associations, each 1°C increase in daily mean
temperature corresponded to a 21.03% (95% CI.
20.59, 21.47) elevation in the RR of heat-related
illness. Daily maximum temperature demonstrated a
comparable pattern, though risk estimates were
marginally lower.

Conclusion This study demonstrates a clear upward
trend in heat-related illness incidence linked to climate
change and confirms that elevated temperatures
significantly increase disease risk. The escalating health
burden  necessitates urgent development and

across 11  provincial-level administrative

Copyright © 2025 by Chinese Center for Disease Control and Prevention

implementation of targeted heat-health action plans to
protect vulnerable populations.

Climate change is intensifying both the frequency
and severity of heatwaves, thereby elevating risks across
multiple adverse health outcomes (7), with heat-related
illness emerging as a critical concern (2). Heat-related
illnesses are defined as conditions resulting from
prolonged exposure to high temperatures and/or
strenuous physical activity in hot and humid
environments, occurring when the body accumulates
heat faster than its thermoregulatory capacity can
dissipate it (3). These conditions have become a major
public health concern during summer months. Heat-
related illnesses range from mild to severe and can be
categorized into heat cramps, heat exhaustion, and heat
stroke based on clinical presentation. While several
local studies have documented associations between
temperature and heat-related illnesses (4-6), national-
level evidence remains limited, particularly regarding
specific illness subtypes. Therefore, this study aimed to
analyze the epidemiological characteristics of heat-
related illnesses across multiple provincial-level
administrative divisions (PLADs) in China from 2013
to 2022 and to quantify the association between
temperature and heat-related illness risk to inform
public health policy development and guide future
research priorities.

Heat-related illness data spanning 2013 to 2022
were obtained from the Heat-related Illness Report
System, which compiles reports submitted by local
medical institutions during patient diagnosis and
treatment, as well as by CDCs during the management
of heat-related illness incidents (7). We focused our
analysis on 11 PLADs with continuous reporting
throughout the study period: Anhui, Beijing,
Guangdong, Hubei, Hunan, Jiangxi, Shandong,
Shanxi, Shanghai, Zhejiang, and Chongqing. Cases

with missing or inconsistent patient identification

CCDC Weekly /Vol.7 / No. 45 1413
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numbers or reporting addresses were excluded from the
analysis. We restricted our investigation to incidents
occurring between May and September, the primary
heat season in China. The final analytical dataset
comprised individual-level information on sex, age,
reporting location, date of illness onset, and heat-
related illness subtype. Meteorological data, including
hourly temperature and dewpoint temperature
measurements, were retrieved from the European
Centre for Medium-Range Weather Forecasts
(ECMWEF) reanalysis database. These meteorological
variables were extracted at a 0.25° spatial resolution
and subsequently aggregated to generate daily county-
level metrics, including both daily mean and daily
maximum values.

We employed a time-stratified case-crossover study
design coupled with conditional logistic regression
models, stratified by individual cases, to quantify the
linear association between temperature exposure and
heat-related illness risk across different subtypes.
Models were adjusted for potential confounders,
including daily dewpoint temperature and holiday
status (categorized as weekday, weekend, or public
holiday). We examined multiple exposure windows
from lag0 (same-day exposure) through lag07 (7-day
cumulative exposure), with lag01 (cumulative exposure
over the current and previous day) designated & priori
as the primary exposure window. Effect estimates were
expressed as the percentage change in relative risk (RR)
per 1°C increase in both mean daily temperature and
maximum daily temperature. Subgroup analyses were
conducted to assess effect modification by sex (male,
female), age (<65 years, >65 years), heat-related illness
subtype (mild, severe, heat cramps, heat exhaustion,
heat stroke), and temperature threshold (>30 °C versus
<30 °C for mean daily temperature; >35 °C versus
<35 °C for maximum daily temperature). Given that
Zhejiang Province contributed over 50% of all
reported cases, we performed separate analyses for
Zhejiang and non-Zhejiang regions to evaluate
potential geographic heterogeneity in temperature-
illness associations. All statistical analyses were
performed using R software (version 4.4.1, R
Foundation for Statistical Computing, Vienna,
Austria), with statistical significance defined as <0.05.

Between 2013 and 2022, 53,061 heat-related illness
cases were documented across the study sites,
demonstrating a generally upward trajectory that
peaked at 14,025 cases in 2022. Geographically,
Zhejiang Province accounted for the largest proportion
(54.2%) of cumulative cases, followed by Anhui

1414 CCDC Weekly / Vol. 7 / No. 45

(13.0%), Hubei (9.3%), Chongging (7.7%), and
Shandong (6.2%). Mild heat-related illness constituted
the predominant subtype each year, reaching its
highest proportion of 83.0% in 2015. Notably, severe
cases exhibited a gradual proportional increase
throughout the study period. Men comprised the
majority of cases, with their proportion escalating to
79.5% by 2021. The age distribution remained
relatively consistent, primarily affecting young and
middle-aged adults, although the proportion of older
individuals (>65 years) peaked at approximately 30%
in 2022 (Figure 1).

Our analysis demonstrated that each 1°C increase in
daily average temperature corresponded to a 21.03%
elevation in the RR of heat-related illnesses [95%
confidence interval (CI): 20.59%, 21.47%]. Stratified
by population group, the RR increased by 22.03%
(95% CI. 21.48%, 22.60%) for men, 26.62% (95%
CL: 25.67%, 27.58%) for women, 35.67% (95% CI-
34.43%, 36.91%) for older adults, and 20.48% (95%
CIL: 19.96%, 21.00%) for younger individuals. All
differences achieved statistical significance (P<0.05).
When examining the effects of elevated temperatures,
no substantial risk emerged below 30 °C. We further
analyzed the relationship between temperature and
specific subtypes of heat-related illness. Each 1°C
increase in daily average temperature was associated
with a 19.19% (95% CI: 18.66%, 19.72%) increase in
mild heat-related illnesses, a 38.94% (95% CI
37.77%, 40.13%) increase in severe heat-related
illnesses, a 36.00% (95% CI: 33.90%, 38.14%)
increase in heat cramps, an 86.87% (95% CI: 79.45%,
94.59%) increase in heat exhaustion, and a 62.48%
(95% CI: 60.01%, 64.98%) increase in heat stroke.
Daily maximum temperature exhibited a similar
pattern, although the overall risk estimates were
marginally lower (Figure 2). The robustness of these
findings across different lag periods is presented in the
Supplementary Material (Supplementary Table S1,
available at https://weekly.chinacdc.cn/). Additional
comparative analysis between Zhejiang and non-
Zhejiang regions revealed that results based on all
study sites aligned closely with those from Zhejiang
Province alone, whereas findings from non-Zhejiang
regions generally showed slightly higher risk estimates
than those observed in Zhejiang (Supplementary
Table S2, available at https://weekly.chinacdc.cn/).

DISCUSSION

This study utilized decade-long, cross-provincial

Chinese Center for Disease Control and Prevention
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FIGURE 1. Basic characteristics of heat-related iliness cases from 2013 to 2022.

(A) The annual number of heat-related illness cases; (B) The yearly distribution of heat-related illness subtypes (mild heat-
related illness, severe heat-related iliness, heat cramps and heat exhaustion, heat stroke); (C) The annual sex-based
distribution (male, female) of heat-related illness; (D) The yearly age-based distribution (<65 years, >65 years) of heat-

related illness.

data to characterize the spatial-temporal patterns of
heat-related illness and quantify its association with
temperature. Our findings reveal a generally increasing
trend in heat-related illnesses over the past decade,
with most cases occurring in men and individuals
under 65 years of age, predominantly classified as mild
heat-related illness. Notably, women and older
individuals exhibited heightened sensitivity to elevated
temperatures, with significant risks emerging when
daily average temperatures exceeded 30°C and daily
maximum temperatures surpassed 35°C. The risk of
severe heat-related illness, including heat exhaustion
and heat stroke, was highest under these conditions.
Our findings confirmed that high temperatures
substantially increase the risk of heat-related illness,
with effects persisting for several days following
exposure. These results align with previous studies

Chinese Center for Disease Control and Prevention

(4-6), critical
implementing preventive measures during extreme heat
events. Without prompt recognition and treatment,
heat-related can progress to multi-organ
dysfunction, failure, and death. Given the severity of
these outcomes, prevention strategies are paramount.

Evidence-based protective measures during extreme

underscoring  the importance  of

illness

heat include maintaining access to air-conditioned
environments, utilizing cooling devices, ensuring
adequate  hydration,
physical activity (8).
Our results indicate that while men and individuals
under 65 years experience a higher incidence of heat-

and minimizing strenuous

related illnesses, likely attributable to occupational
exposures and activity patterns (9), women and older
adults face disproportionately greater health risks from
elevated temperatures. Current studies offer varying

CCDC Weekly /Vol.7 / No. 45 1415
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FIGURE 2. Association between temperature and heat-related illness at lag01. (A) The relationship between daily mean
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conclusions on sex differences in heat-related illness
susceptibility, ~ with  explanations  encompassing
physiological factors, pathophysiological mechanisms,
and differential exercise-heat exposure scenarios (10).
Additionally, older adults demonstrate increased
vulnerability to heat-related illnesses due to diminished
thermoregulatory capacity and higher prevalence of
comorbidities  (7/7-12). These findings
highlight a critical distinction: although males and
younger individuals (under 65 years) account for the
majority of reported cases, females and older adults (>
65 years) exhibit greater physiological vulnerability
when exposed to rising temperatures, warranting
targeted protective interventions for these populations.

This study has several limitations that warrant
consideration. First, the heat-related illness data relied
on hospital-based reporting, meaning that not all cases
were captured. Some individuals may not seek medical
care, and reporting compliance varied across hospitals
and local CDCs due to differences in awareness and
interest in surveillance activities. Consequently, the
current heat-related illness surveillance system may not
accurately reflect the true disease burden in certain
regions. Second, meteorological data were aggregated
at the county level, which may introduce exposure
misclassification at the individual level, potentially
attenuating ~ the  observed  temperature-health
associations.

Despite these limitations, our findings carry
important practical implications for public health
policy and practice. It is essential to strengthen
enhance public awareness
campaigns, and improve emergency response capacity
in high-risk PLADs such as Zhejiang, Jiangsu, and
Anhui, with particular focus on vulnerable populations
including women and older adults. Although most
heat-related illnesses in our dataset were mild, likely
reflecting prompt recognition and clinical intervention,
the risk of severe outcomes such as heat exhaustion and
heat stroke remains substantial during extreme heat
events. Implementing comprehensive preventive
strategies and ensuring timely access to medical care are
critical for reducing morbidity and mortality.
Furthermore, local health systems should enhance case
reporting procedures to enable early detection of heat-
related illness clusters and public health emergencies.
Such improvements would facilitate rapid deployment
of targeted interventions in affected regions and
ultimately reduce the population-level health burden
associated with extreme heat exposure.
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SUPPLEMENTARY MATERIAL

SUPPLEMENTARY TABLE S1. Associations between high temperature and heat-related illnesses across different lag

periods.

Exposure

Model

Lag0 (%)

Lag01 (%)

Lag02 (%)

Daily mean temperature

Daily maximum temperature

All
Sex
Male
Female
Age
Older
Younger
Heat intensity
>30 °C
<30 °C
Subtype
Mild
Severe
Heat cramps
Heat exhaustion
Heat stroke
All
Sex
Male
Female
Age
Older
Younger
Heat intensity
>35°C
<35°C
Subtype
Mild
Severe
Heat cramps
Heat exhaustion

Heat stroke

20.9 (20.47-21.34)

2217 (21.63-22.72)
25.28 (24.36-26.21)

32.91 (31.74-34.09)
20.72 (20.21-21.24)

21.89 (21.45-22.34)
-2.48 (-4.4 to —0.52)

19.23 (18.72-19.75)
37.26 (36.12-38.41)
37.11 (35.02-39.23)
77.6 (70.92-84.54)
54.97 (52.76-57.21)
17.28 (16.93-17.62)

18.27 (17.84-18.7)
20.08 (19.37-20.8)

27.12 (26.19-28.07)
16.78 (16.38-17.18)

18.45 (18.08-18.82)
1.85 (0.68-3.03)

15.51 (15.11-15.92)
30.98 (30.07-31.89)
29.8 (28.19-31.42)
58.22 (53.47-63.13)
44.35 (42.63-46.1)

21.03 (20.59-21.47)

22.03 (21.48-22.58)
26.62 (25.67-27.58)

35.67 (34.43-36.91)
20.48 (19.96-21.01)

22.05 (21.59-22.51)

-5.88 (~7.94 to -3.78)

19.19 (18.66-19.71)
38.94 (37.77-40.13)
36.01 (33.9-38.14)
86.87 (79.45-94.59)
62.48 (60.01-64.98)
17.45 (17.1-17.81)

18.19 (17.76-18.63)
21.27 (20.53-22.02)

29.43 (28.44-30.42)
16.65 (16.24—17.06)

18.66 (18.28-19.03)
-0.45 (-1.7-0.83)

15.57 (15.16-15.99)
32.24 (31.3-33.18)
28.46 (26.86-30.08)
63.9 (58.74-69.24)
50.39 (48.48-52.33)

19.58 (19.14-20.01)

20.05 (19.51-20.59)
26.4 (25.43-27.37)

35.87 (34.62-37.14)
18.61 (18.09-19.13)

20.51 (20.06-20.96)

~7.27 (-9.43 to -5.05)

17.84 (17.31-18.37)
36.54 (35.39-37.69)
30.53 (28.52-32.56)
85.55 (78.19-93.22)
63.23 (60.71-65.78)
16.15 (15.8-16.5)

16.41 (15.98-16.84)
21.14 (20.39-21.9)

29.54 (28.54-30.55)
15.04 (14.64-15.45)

17.32 (16.95-17.69)

-2.72 (-4.03 to -1.38)

14.45 (14.04-14.87)
29.83 (28.93-30.75)
23.33 (21.82-24.86)
62.68 (57.54-67.99)
50.86 (48.91-52.82)
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SUPPLEMENTARY TABLE S2. Stratified analysis results comparing Zhejiang Province and other regions at lag01.

Exposure

Model

Lag01 of Zhejiang (%)

Lag01 of other regions (%)

Daily mean temperature

Daily maximum temperature

All
Sex
Male
Female
Age
Older
Younger
Heat intensity
>30 °C
<30 °C
Subtype
Mild
Severe
Heat cramps
Heat exhaustion
Heat stroke
All
Sex
Male
Female
Age
Older
Younger
Heat intensity
>35°C
<35°C
Subtype
Mild
Severe
Heat cramps
Heat exhaustion

Heat stroke

22.85(21.99-23.71)

26.7 (25.54-27.88)
27.26 (25.56-28.97)

37.56 (34.87-40.29)
23.64 (22.65-24.63)

25.47 (24.54-26.4)

-5.05 (~7.75 to -2.27)

21.71 (20.77-22.65)
57.96 (54.09-61.92)
52.17 (46.05-58.54)

90.34 (73.49-108.83)

77.02 (69.57-84.81)
17.07 (16.45-17.7)

19.76 (18.92-20.61)
19.7 (18.49-20.93)

27.12 (25.21-29.06)
17.61 (16.89-18.33)

19.27 (18.57-19.98)
0.69 (-0.97 to 2.37)

16.16 (15.48—16.85)
41.73 (39.02-44.5)
36.7 (32.53-40.99)
61.66 (50.57—73.58)
54.85 (49.72-60.15)

45.74 (44.31-47.18)

47.82 (45.99-49.67)
69.85 (65.98-73.82)

82.66 (78.21-87.23)
44.31 (42.57-46.08)

47.73 (46.23-49.24)
14.41 (9.46-19.57)

44.65 (42.73-46.6)
72.61 (69.25-76.03)
60.78 (54.75-67.05)

128.77 (112.24-146.59)
106.69 (99.87-113.74)

36.49 (35.42-37.56)

37.67 (36.32-39.04)
53.49 (50.72-56.31)

63.82 (60.64-67.08)
34.78 (33.48-36.08)

39.71 (38.54-40.89)
12.62 (9.95-15.36)

35.33 (33.89-36.78)
54.35 (52.03-56.72)
45.08 (40.85-49.44)

89.69 (79.15-100.84)

77.67 (73.09-82.38)
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Vital Surveillances

County-Level Hotspot Identification and Spatial Regression
Analysis of Health Loss from Kashin-Beck Disease
— China, 2019 and 2023

Ying Liu*%; Fang Qi*% Haoyu Du'% Haonan Li*% Shicong Zheng'? Qian Yu'’ Hexuan Dong'
Chenxi Wang' Jiaxin Li*% Yue Zhao' Jiayuan Li'% Jun Yu'**

ABSTRACT

Introduction: We analyzed the spatial distribution
of years lived with disability (YLDs) among patients
with Kashin—Beck disease (KBD) at the county level
across the country, identified hotspot regions and the
primary areas of disease burden. This provides a
foundation for the prevention and control of KBD and
the rational allocation of healthcare resources to
regions with high disease burden.

Methods: The data were obtained from the
National KBD Spatial

autocorrelation analysis was conducted to assess spatial

Surveillance  System.
clustering and to identify hotspots of YLDs in patients
with  KBD. Geographically weighted regression
(GWR) models were used to identify counties with
limited economic and healthcare resources and a high
burden of health losses.

Results: Spatial aggregation of YLDs among
patients with KBD was observed nationwide, with
hotspots concentrated in diseased counties in western
China, including Shaanxi, Gansu, and Sichuan, and in
the northern regions of Heilongjiang and Inner
Mongolia. Among the variables, the number of health
technicians was negatively correlated with the YLD rate
of patients with KBD across 2 years (P<0.05).
Significant geographical differences were found in the
spatial distribution of YLDs, with key disease burden
areas in 85 northern counties, including Heilongjiang,
Jilin, and Inner Mongolia, and 145 western counties,
including Shaanxi, Shanxi, and other provincial-level
administrative divisions.

Conclusions: YLDs among patients with KBD at
the county level in China demonstrated spatial
clustering, with hotspots primarily in the western
regions. Strengthening the recruitment and training of
health professionals in high-burden, underserved areas
may help improve the quality of life of patients.

1418 CCDC Weekly / Vol. 7 / No. 45

Kashin—Beck disease (KBD) is an endemic chronic
osteoarticular disorder primarily affecting children (7).
It is characterized by joint pain, limb deformities,
shortened extremities, and growth retardation, often
causing lifelong disability and reduced quality of life
(2). KBD has historically been endemic to 379

counties across 13 provincial-level administrative
divisions (PLADs) in China, largely along the
northeast-to-southwest belt. Comprehensive

interventions, including water and grain substitution,
socioeconomic development, and improved healthcare,
have caused its elimination and zero incidence (3-4).
Nevertheless, a substantial number of individuals live
with KBD and experience a significantly lower quality
of life (5). However, targeted health interventions for
these patients are not sufficiently supported by
scientific evidence.

Currently, spatial epidemiological research on KBD
is largely limited to individual PLADs or counties and
lacks high-resolution county-level data at the national
scale. This gap limits the effectiveness of the
prevention and control strategies. Therefore, we
conducted a spatial analysis of years lived with
disability (YLDs) among patients with KBD across
China’s counties to assess spatial distribution patterns,
identify high-burden areas, provide a theoretical basis
for improving patient outcomes, optimizing healthcare
resource allocation, and informing targeted prevention
and control policies.

METHODS

The data for this study were sourced from the
National KBD Surveillance System and the National
Case Surveys conducted in 2019 and 2023 (6). The
system conducts epidemiological surveys in KBD-
endemic regions using active case-finding methods,

Copyright © 2025 by Chinese Center for Disease Control and Prevention
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including household visits and physical examinations.
It identifies individuals based on KBD diagnostic
criteria (WS/T 207-2010), which include clinically
diagnosed and imaging-confirmed cases. The dataset
included the demographic information of the
respondents, such as sex, age, occupation, place of
residence, and disease severity. The per capita gross
domestic product (GDP) was extracted from the China
County Statistical Yearbook, and per capita income
was derived from the same surveillance system. Data
on the number of hospital beds and healthcare
technicians were obtained from the National Bureau of
Statistics of China. Missing values in county-level
economic and healthcare indicators were addressed
through multiple imputations by chained equations
(MICE) (7). Specifically, this method preserves the
inherent variability of the original data and,
consequently, improves the accuracy and statistical
efficiency of regression estimates.

We used YLDs to assess the loss of healthy life
expectancy in patients with KBD due to the non-lethal
nature of KBD. This measure effectively reflects the
burden of non-fatal disability caused by different
severities of KBD at both the individual and societal
levels (8).

The YLD was calculated as follows:

YLD =NxDW,

where N represents the number of patients with KBD
and DW denotes the disability weight. Because
previous studies have not reported the disability
weights for KBD and its clinical manifestations
resemble those of rheumatoid arthritis (9), disability
weights for rheumatoid arthritis from the Global
Burden of Disease (GBD) 2019 study were used as
proxies for KBD. These values were 0.117, 0.317, and
0.581 for degrees I, II, and III, respectively (10).

The ArcGIS software (version 10.8; ESRI,
California, USA) was used to assess the overall spatial
aggregation of YLDs among patients with KBD using
global spatial autocorrelation, whereas the Getis-Ord
Gi' statistic was employed to identify local hotspots
(11). The ordinary least squares (OLS) model was used
to initially examine the relationships between per
capita gross domestic product (GDP), per capita
income, number of hospital beds, number of health
technicians, and the YLD rate among patients with
KBD. Multicollinearity was assessed using the variance
inflation factor (VIF), with VIF values of <10
indicating acceptable collinearity. Subsequently, a
geographically weighted regression (GWR) model was

Chinese Center for Disease Control and Prevention

used to conduct localized estimations, revealing spatial
non-stationarity in the relationships between each
variable and the YLD rate across endemic areas and
counties. These patterns were visualized using local
regression  coefficients. Key areas for disease
management and priority interventions in adult

patients with KBD have been identified (12-13).

RESULTS

General KBD Characteristics
KBD is endemic to 13 Chinese PLADs. Data during
the first national surveillance in 2019 were collected
from 325 endemic counties, reporting 164,914
prevalent cases, including 105,142 degree 1, 46,702
degree II, and 13,070 degree III cases. By 2023, data
collected from 379 endemic counties indicated
165,348 prevalent cases, including 103,969 degree I,

49,796 degree 11, and 11,583 degree III cases.

Spatial Distribution of YLDs
in Patients with KBD

Significant regional differences were observed in the
YLD rates and the YLDs of KBD in 2019 and 2023.
The regions with severe loss of healthy life expectancy
in 2019 were the disease area counties of Yantang
County (497.87 YLD/10,000, 2,074.54 YLDs) and
Aba County (289.53 YLD/10,000, 1,604.27 YLDs),
both are in Sichuan Province. By 2023, the regions
with severe losses were Heshui County (86.02
YLD/10,000, 1,621.58 YLDs) and Ning County
(44.68 YLD/10,000, 1,367.49) in Gansu Province.

Moran’s I indices for KBD-related YLDs and YLD
rates were 0.11 and 0.07, respectively, in 2019, and
0.17 and 0.08, respectively, in 2023, with P<0.05 in
both years. These results indicate significant spatial
clustering of KBD-related health losses at the county
level nationwide (Supplementary Figure S1, available
at https://weekly.chinacde.cn/).

The Getis-Ord-Gi statistic was applied to further
identify hotspots. In 2019, the hotspot areas of YLD
among patients with KBD were primarily concentrated
in the central and western regions of China, covering
155 endemic counties across PLADs, including Henan,
Shaanxi, Qinghai, Gansu, Sichuan, and Shanxi
(Table 1). The hotspot areas had shifted by 2023, with
concentrations in both the western and northern
regions of China spanning PLADs such as Shaanxi,
Qinghai, Gansu, Sichuan, Inner Mongolia, and
Heilongjiang and comprising 90 endemic counties

CCDC Weekly /Vol.7 / No. 45 1419


Supplementary Figure S1
https://weekly.chinacdc.cn/

China CDC Weekly

TABLE 1. Hotspot areas of KBD YLDs rates at the county level in 2019 identified by local Getis-Ord Gi" analysis.

Hotspot type PLADs

Counties

Hotspot: 99% Gansu

confidence

Henan
Qinghai

Shaanxi

Qinzhou District, Maiji District, Qingshui County, Qin’an County, Wushan County, Zhangjiachuan Hui
Autonomous County, Kongtong District, Jingchuan County, Lingtai County, Chongxin County,
Zhuanglang County, Huating City, Xifeng District, Qingcheng County, Huan County, Huachi County,
Heshui County, Zhengning County, Ning County, Zhenyuan County, Longxi County, Weiyuan County,
Zhang County, Min County, Wudu District, Cheng County, Wen County, Dangchang County, Kang
County, Xihe County, Li County, Hui County, Liangdang County, Kangle County, Hezheng County,

Zhuoni County, Lugu County
Shanzhou District, Lushi County, Lingbao City

Guide County, Xinghai County, Banma County

Bagiao District, Lintong District, Lantian County, Zhouzhi County, Wangyi District, Yintai District,
Yaozhou District, Yijun County, Weibin District, Jintai District, Chencang District, Fengxiang County,
Qishan County, Fufeng County, Mei County, Long County, Qianyang County, Linyou County, Feng
County, Taibai County, Sanyuan County, Jingyang County, Qian County, Liquan County, Yongshou
County, Changwu County, Xunyi County, Chunhua County, Binzhou City, Linwei District, Huazhou
District, Tongguan County, Heyang County, Chengcheng County, Pucheng County, Baishui County,
Fuping County, Hancheng City, Baota District, Ansai District, Zhidan County, Ganquan County, Fu
County, Luochuan County, Yichuan County, Huanglong County, Huangling County, Nanzheng District,
Xixiang County, Mian County, Ninggiang County, Lueyang County, Hanbin District, Shiquan County,

Ningshan County, Shangzhou District, Luonan County, Zhen’an County, Zhashui County

Shanxi

Sichuan

JiShan County, Pinglu County, Ruicheng County

Beichuan Qiang Autonomous County, Pingwu County, Jiangyou City, Wangcang County, Qingchuan

County, Dazhu County, Yucheng District, Hanyuan County, Shimian County, Tianquan County,
Tongjiang County, Nanjiang County, Maerkang City, Wenchuan County, Mao County, Songpan County,
Jiuzhaigou County, Jinchuan County, Xiaojin County, Heishui County, Rangtang County, Aba County,
Ruo’ergai County, Hongyuan County, Luding County, Danba County, Daofu County, Ganzi County,
Xinlong County, Dege County, Seda County, Mianning County

Hotspot: 95%
confidence

Henan  Luoning County, Mianchi County

Inner Uxin Banner
Mongolia

Shanxi

Wanrong County, Wenxi County, Jiang County, Yuanqu County, Xia County, Xiangfen County, Ji

County, Xiangning County, Daning County, Yonghe County

Shaanxi Yanchang County

Hotspot: 90% Shanxi
confidence

Shaanxi Yuyang District

Xi County, Pu County, Shilou County

Abbreviation: KBD=Kashin—-Beck disease; YLDs=years lived with disability; PLAD=provincial-level administrative division.

(Table 2).

Spatial Regression Analysis of YLDs in
Patients with KBD

The data were standardized to eliminate the effects
of different units and magnitudes among the variables.
An OLS model was used to assess the association
between the YLD rate of patients with KBD and the
different globally.  All
independent variables had VIF values less than 10,
indicating acceptable levels of multicollinearity. In
2019, the YLD rates of patients with KBD were
positively associated with per capita GDP, per capita

socioeconomic  factors

income, and the number of hospital beds, although
none of these associations were statistically significant.
In 2023, the YLD rates were negatively associated with
per capita GDP, the number of hospital beds, and

1420 CCDC Weekly / Vol. 7 / No. 45

positively associated with per capita income, with none
of these associations reaching statistical significance.
Furthermore, a significant negative
(P<0.05) was observed between the number of health
technicians and YLD rates in both 2019 and 2023
(Table 3).

We used corrected Akaike information criterion
(AICc) as the model selection metric to apply the
GWR model that yielded AICc values of 769.14 and
845.17 in 2019 and 2023, respectively, whereas the
OLS model produced values of 859.77 and 863.15,
respectively. Thus, the GWR model provided a better
fit for both years.

The GWR parameter estimation results revealed
varying coefficients across different counties, further

association

confirming the spatial heterogeneity in the
determinants of YLD rates for KBD (Table 3). The
OLS model results demonstrated that the number of

Chinese Center for Disease Control and Prevention
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TABLE 2. Hotspot areas of KBD YLDs rates at the county level in 2023 identified by local Getis-Ord Gi” analysis.

Hotspot type PLADs

Counties

Hotspot: 99%

Qinzhou District, Qin’an County, Wushan County, Longxi County, Weiyuan County, Zhang County, Min
Gansu  County, Wudu District, Cheng County, Wen County, Dangchang County, Kang County, Xihe County, Li

County, Hui County, Kangle County, Hezheng County, Zhuoni County, Luqu County

confidence
Inner' Morin Dawa Daur Autonomous Banner
Mongolia
Qinghai  Guide County, Xinghai County, Banma County

Shaanxi Nanzheng District, Ninggiang County, Lueyang County

Beichuan Qiang Autonomous County, Pingwu County, Jiangyou City, Wangcang County, Qingchuan
County, Yucheng District, Hanyuan County, Shimian County, Tianquan County, Maerkang City,

Wenchuan County, Lixian County, Mao County, Songpan County, Jiuzhaigou County, Jinchuan County,

Xiaojin County, Heishui County, Rangtang County, Aba County, Ruo’ergai County, Hongyuan County,
Luding County, Danba County, Daofu County, Ganzi County, Xinlong County, Dege County, Seda

Sichuan
County, Mianning County
Xizang Jiangda County, Gongjue County
Hotspot: 95%
el ‘ Gansu

confidence County

Maiji District, Qingshui County, Zhangjiachuan Hui Autonomous County, Zhuanglang County, Liangdang

Heilongjiang Nenjiang City, Mohe City, Huma County, Tahe County

Inner . .
Mongolia Arun Banner, Eerguna City, Genhe City
Shaanxi Feng County, Xixiang County, Mian County

Sichuan  Tongjiang County, Nanjiang County

Xizang

Hotspot: 90%
confidence

Heilongjiang Aihui District

Shaanxi Taibai County, Shiquan County

Xizang  Zuogong County

Chaya County, Mangkang County

Gansu  Kongtong District, Chongxin County, Huating City

Weibin District, Jintai District, Chencang District, Fengxiang County, Long County, Qianyang County,

Abbreviation: KBD=Kashin—-Beck disease; YLDs=years lived with disability; PLAD=provincial-level administrative division.

health technicians was always negatively associated
with YLD rates in both years. This negative correlation
was observed in 230 counties across 10 PLADs,
including Shanxi, Inner Mongolia, Jilin, Heilongjiang,
Gansu, Qinghai, Sichuan, Henan, Shaanxi, and Xizang
(Supplementary ~ Table S1, available at
https://weekly.chinacdc.cn/). Thus, there is a need to
increase human resource allocation in primary
healthcare to strengthen disease prevention and control
systems.

DISCUSSION

In this study, we selected YLDs over single measures,
such as prevalence, to more comprehensively reflect the
population-level and societal burden of nonfatal
disability associated with KBD. In addition, the use of
YLDs provides a more in-depth evaluation of the
disease burden among existing patients with KBD
across the country.

The YLDs among patients with KBD exhibited
significant spatial clustering at the county level. The
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extent of YLD hotspots declined in 2023 compared to
that in 2019; however, persistent hotspots remained,
primarily located in 81 endemic counties in Shaanxi,
Gansu, and Sichuan in the western region and 9
counties in Heilongjiang and Inner Mongolia in the
northern region. The formation of these hotspots may
be associated with long-standing geographic and
environmental characteristics at the district and county
levels. Historically, regional geographic environments
have shaped unique living and dietary patterns among
local populations, influencing the incidence of KBD to
varying extents over time. Consequently, substantial
regional disparities in KBD prevalence have emerged,
contributing to the current spatial heterogeneity in the
YLD rates among patients with KBD (74).

Previous studies have reported that KBD occurs in
areas with lagging economic development (15).
found no
correlation between YLD rates and local economic
levels in both 2019 and 2023. The implementation of
policies such as the National Twelfth Five-Year Plan
for the Prevention and Control of Endemic Diseases

However, we statistically ~ significant
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TABLE 3. Descriptive statistics of OLS analysis results and GWR model parameter estimates.

Year Variable OLS model GWR model
Coefficient P Max Min Mean SD
Per capita GDP 0.060 0.299 14.950 -0.995 0.686 2124
Per capita income 0.018 0.757 0.627 -0.303 0.638 0.219
2019 Number of hospital beds 0.003 0.971 0.303 -0.641 0.020 0.133
Number of health technicians -0.184 0.007* 1.818 -1.037 -0.150 0.244
Per capita GDP -0.008 0.887 0.251 -0.335 -0.028 0.114
PR Per capita income 0.064 0.269 0.482 -0.204 0.012 0.140
Number of hospital beds -0.053 0.359 0.168 -0.385 -0.082 0.153
Number of health technicians -0.135 0.019* 0.295 -0.577 -0.149 0.173

Abbreviation: SD=standard deviation; OLS=ordinary least squares; GWR=geographically weighted regression; GDP=gross domestic

product.
* P<0.05, denoting statistical significance.

and the Three-Year Special Action Plan for Tackling
Endemic (2018-2020), which include
relocation, targeted care, health poverty relief, and

Diseases

increased funding for disease control, may have
significantly improved the economic conditions in
KBD-endemic areas. Narrowing regional economic
disparities, and increased investment in medical
resources  (e.g., hospital construction, medical
equipment, and drug supply) in these regions have
effectively alleviating uneven distribution of healthcare
resources.

Despite this progress, our study identified a
significant negative correlation between the number of
health technicians and YLD rates for both 2019 and
2023. Thus, a shortage of specialized health personnel
may limit patients’ access to adequate treatment and
rehabilitation services, thereby negatively affecting their
quality of life.

Therefore, targeted should be
introduced to identify areas with high YLD rates and
insufficient healthcare personnel. These include the

recruitment of professional health technicians, tailored

interventions

training programs, and optimized medical resource
allocation to enhance KBD prevention and treatment
in underserved areas. In addition, efforts should be
made to increase the supply of medications and
medical equipment to primary healthcare institutions,
ensure the availability of symptomatic treatments, and
ultimately improve the quality of life of patients with
KBD.

Future studies could include additional metrics such
as functional impairment scores (e.g., WOMAC and
HAQ) and quality of life measures (e.g., SF-36) among
patients with KBD to enhance the framework for
evaluating the health burden of KBD and provide a

1422 CCDC Weekly / Vol. 7 / No. 45

more comprehensive and systematic understanding of
its impact.

This study had two main limitations. Firstly, no
established studies have defined the disease-specific
disability weights for patients with KBD. Therefore,
disability weights for rheumatoid arthritis from the
GBD 2019 study were used as proxies. Secondly, a
small proportion (<5%) of cases were missing due to
population movement, mortality, and urbanization
and were therefore excluded from the spatial analysis.
Although this proportion was minor, it was unlikely to
affect the overall representativeness of the dataset
substantially.
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SUPPLEMENTARY FIGURE S1. Statistical plots of global spatial autocorrelation test results for YLDs and YLD rates among
KBD patients. (A) YLDs among KBD patients in 2019; (B) YLD rates among KBD patients in 2019; (C) YLDs among KBD

patients in 2023; (D) YLD rates among KBD patients in 2023.

Abbreviation: KBD=Kashin—Beck disease; YLDs=years lived with disability.
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SUPPLEMENTARY TABLE S1. Counties with an inverse relationship between YLDs rate and number of health technicians
for patients with KBD in 2019 and 2023.

PLADs

Number of counties

Counties

Heilongjiang

Shaanxi

Shanxi

Sichuan

Jilin

Gansu

Henan
Inner
Mongolia
Qinghai

Xizang

57

55

33

26

25

w w o,

Acheng District, Yilan County, Fangzheng County, Bayan County, Mulan County, Tonghe County,
Yanshou County, Shangzhi City, Wuchang City, Meilisi Daur District, Longjiang County, Yi'an County,
Gannan County, Fuyu County, Keshan County, Kedong County, Baiquan County, Jiguan District,
Hengshan District, Didao District, Lishu District, Chengzihe District, Mashan District, Jidong County,
Hulin City, Mishan City, Luobei County, Lingdong District, Sifangtai District, Jixian County, Raohe
County, Longfeng District, Ranghulu District, Datong District, Lindian County, Jiayin County, Nancha
County, Tieli City, Suburban District, Huachuan County, Tongjiang City, Fujin City, Boli County, Xi'an
District, Linkou County, Suifenhe City, Hailin City, Ning’an City, Muling City, Dongning City, Xunke
County, Bei'an City, Wudalianchi City, Mingshui County, Suileng County, Zhaodong City, Hailun City
Bagiao District, Lintong District, Lantian County, Zhouzhi County, Wangyi District, Yintai District,
Yaozhou District, Yijun County, Weibin District, Jintai District, Chencang District, Fengxiang County,
Qishan County, Fufeng County, Mei County, Long County, Qianyang County, Linyou County, Taibai
County, Sanyuan County, Jingyang County, Qian County, Liquan County, Yongshou County, Changwu
County, Xunyi County, Chunhua County, Binzhou City, Linwei District, Huazhou District, Tongguan
County, Heyang County, Chengcheng County, Pucheng County, Baishui County, Fuping County,
Hancheng City, Baota District, Ansai District, Yanchang County, Zhidan County, Ganquan County, Fu
County, Luochuan County, Yichuan County, Huanglong County, Huangling County, Yuyang District,
Shenmu City, Hanbin District, Ningshan County, Shangzhou District, Luonan County, Zhen’an County,
Zhashui County

Guangling County, Tunliu District, Changzi County, Wuxiang County, Qin County, Qinyuan County,
Qinshui County, Yushe County, Zuoquan County, Heshun County, Wenxi County, Jishan County,
Jiang County, Yuanqu County, Xia County, Pinglu County, Ruicheng County, Xiangfen County, Gu
County, Anze County, Fushan County, Ji County, Xiangning County, Daning County, Xi County,
Yonghe County, Pu County, Fenxi County, Huozhou City, Lishi District, Shilou County, Fangshan
County, Jiaokou County

Beichuan Qiang Autonomous County, Pingwu County, Yucheng District, Hanyuan County, Shimian
County, Tianquan County, Maerkang City, Wenchuan County, Mao County, Songpan County,
Jiuzhaigou County, Jinchuan County, Xiaojin County, Heishui County, Rangtang County, Aba County,
Ruo’ergai County, Hongyuan County, Luding County, Danba County, Daofu County, Ganzi County,
Xinlong County, Dege County, Seda County, Mianning County

Shuangyang District, Yushu City, Longtan District, Chuanying District, Fengman District, Yongji
County, Jiaohe City, Huadian City, Shulan City, Panshi City, Yitong Manchu Autonomous County, Xi'an
District, Fusong County, Jingyu County, Qian Gorlos Mongol Autonomous County, Changling County,
Qianguo County, Yaniji City, Tumen City, Dunhua City, Hunchun City, Longjing City, Helong City,
Wangging County, Antu County

Qinzhou District, Maiji District, Qingshui County, Qin’an County, Wushan County, Zhangjiachuan Hui
Autonomous County, Kongtong District, Zhuanglang County, Huating City, Huan County, Huachi
County, Heshui County, Zhengning County, Weiyuan County, Zhang County, Min County, Dangchang
County, Li County, Kangle County, Hezheng County, Zhuoni County, Luqu County

Luoning County, Shanzhou District, Mianchi County, Lushi County, Lingbao City
Uxin Banner, Zhalaite Banner, Tuquan County

Guide County, Xinghai County, Banma County

Xietongmen County

Abbreviation: KBD=Kashin—-Beck disease; YLDs=years lived with disability; PLAD=provincial-level administrative division.
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Preplanned Studies

Development of a Landscape Pattern Health Index and
Association with Stroke Mortality Using GWQS Regression
— Ningbo City, Zhejiang Province, China, 2001-2023

Qinsheng Kong'; Jing Huang'; Tianfeng He**; Guoxing Li

Summary
What is already known about this topic?
Urban landscape patterns influence population health
and are traditionally measured using landscape indices.
However, current indices suffer from a single-
dimensional focus, multicollinearity, and limited health
relevance.

What is added by this report?

Using a two-stage Generalized Weighted Quantile Sum
(GWQS) regression, we developed a Landscape Pattern
Health Index (LPHI),

composition/configuration metrics. This index revealed

integrating

seasonal protective/hazard effects and represents a
holistic tool for assessing urban landscape health
impacts.

What are the implications for public health
practice?

The LPHI identifies high-risk areas and seasonal
priorities, thereby guiding targeted interventions to
mitigate health risks through landscape optimization.

ABSTRACT

Introduction: Urban landscape patterns impact
population health; however, traditional indices are
limited by single-dimensional focus, multicollinearity,
and weak health relevance. Developing a holistic
Landscape Pattern Health Index (LPHI) is critical for
planning healthy cities.

Methods: Using data from Ningbo (China), this
study integrated 2001-2023 land use data (reclassified
into 7 types) and 2009-2016 street-level stroke
mortality data. A two-stage Generalized Weighted
Quantile Sum (GWQS) regression addressed the
temporal data discrepancy, first deriving weights from
2009-2016 health data, then calculating the LPHI for
the full 2001-2023 period. Quasi-Poisson regression
was used to validate the association between the LPHI
and stroke mortality.

1424 CCDC Weekly / Vol. 7 / No. 45

1.3.#

Results: An interquartile-range increase in the
Protective Composite Index reduced stroke mortality
by 20% (warm seasons) and 22% (cold seasons), while
the Hazard Composite Index increased risk by 29%
(warm) and 20% (cold). The LPHI demonstrated
significant associations with stroke mortality, with the
Protective Composite Index reducing risk and the
Hazard Composite Index increasing it across both
seasons.

Conclusion: The study suggests that the LPHI can
serve as a bridge between landscape ecology and public
health, with the potential to identify high-risk areas
and seasonal priorities. This approach could guide
targeted interventions through landscape optimization,
supporting evidence-based healthy urban planning.

Urban landscape patterns influence population
health through the spatial distribution of green spaces
(1) and water bodies (2) that mitigate pollution and
promote physical activity, whereas industrial land use
increases cardiovascular risks (3). Configurations such
as high edge density in green spaces may facilitate
physical activity and cohesion,
impervious surface complexity may exacerbate urban
heat island effects and pollutant accumulation,
indirectly influencing stroke risk via microclimatic and
Landscape patterns are

social whereas

physiological ~ pathways.
typically quantified using indices; however, existing
indices often focus on a single dimension and face
challenges, such as multicollinearity and limited
relevance. Inspired by the Air Quality Health Index
(AQHI)(4), we developed the Landscape Pattern
Health Index (LPHI) that integrates statistical
robustness, practical utility, and public health
guidance, all critical for Healthy City initiatives.

In environmental health, generalized weighted
quantile sum (GWQS) regression models can assess the
health impacts of exposure to mixed air pollutants and

Copyright © 2025 by Chinese Center for Disease Control and Prevention
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chemicals, effectively reducing collinearity among
components. Unlike dimension-reduction techniques
such as Principal Component Analysis (PCA), which
create latent factors not tied directly to health
outcomes, GWQS regression derives component
weights explicitly from associations with health,
generating more interpretable and health-relevant
composite indices, reducing multicollinearity among
correlated indicators, enabling integrated health-
oriented indices creation, and advancing evidence-
based strategies for urban landscape optimization.
Based on data from Ningbo, we employed GWQS
regression to construct an LPHI, offering a tool for
planning healthy cities.

We collected annual land use data (500m resolution)
from the MCDI12Q1 land cover  dataset
(https://earthexplorer.usgs.gov/)  from  2001-2023,
reclassified into seven major categories: impervious
surface, grassland, cropland, bare land, wetland,
waterbody, and forest/shrubland. Stroke was chosen as
the outcome as it is the leading cause of death in China
(5), and existing literature suggests its susceptibility to
environmental influences mediated by landscape
patterns, including air quality, temperature extremes,
and opportunities for physical activity (6). Daily street-
level stroke mortality data from the Ningbo CDC were
aggregated into annual counts at the street-unit level to
achieve spatiotemporal alignment with landscape and
covariate data. However, owing to data availability,
these data were sourced from 2009-2016. To reconcile
the temporal mismatch between the landscape
(2001-2023) and health (2009-2016) data, a two-
stage  analytical ~ approach  was  employed
(Supplementary Material, available at https://weekly.
chinacdc.cn/). Briefly, Stage 1 established metric-
health associations and derived weights using
2009-2016 data; Stage 2 applied these weights to
calculate the LPHI for the 2001-2023 period.
Meteorological and pollutant (e.g., PM; 5) data were
sourced from the China Meteorological Forcing
Dataset (7) and China High Air Pollutants Datasets
(8), respectively. Data on key meteorological and air
quality confounders were incorporated as covariates in
subsequent regression models to isolate independent
associations between landscape patterns and stroke risk,
following adjustment to a 1 km resolution using
bilinear interpolation. Nighttime-light data (500m
resolution) were applied to reflect economic disparities
across streets. Summary statistics for stroke deaths,
pollutant concentrations, meteorological factors, and
nighttime light intensity across street-units during

Chinese Center for Disease Control and Prevention

warm and cold seasons (2009-2016) are provided in
Supplementary Table S1.

For urban landscape patterns, we selected six indices:
one composition metric (Percentage of Landscape,
PLAND) and five configuration metrics [patch density
( PD), largest patch index (LPI), edge density (ED),
mean shape index (SHAPE_MN), and aggregation
index (AI)]. The selection was based on the rationale
that these metrics quantify fundamental spatial
characteristics, such as the abundance, size, shape, and
connectivity of landscape elements, which are theorized
to influence environmental exposure (e.g., pollution
and heat) and health-promoting opportunities (e.g.,
physical activity), thereby constituting plausible
pathways to population health.

The analysis applied a two-stage GWQS regression.
First, landscape metrics were scaled into quartiles, and
bootstrap sampling (100 iterations) was applied to
estimate weights linking metrics to health outcomes,
generating a land use-specific health index classified as
protective or hazardous based on their association
direction. Second, metrics sharing consistent protective
or hazardous associations were aggregated via GWQS
to derive composite LPHIs (protective and hazardous),
thereby enabling a holistic assessment of the health
impacts of landscape patterns. To validate the
effectiveness of the constructed LPHIs, a separate
quasi-Poisson regression was applied, modeling stroke
mortality as a function of the LPHI scores, while
including the same set of covariates for adjustment.
Statistical analyses were conducted using R software
(version 4.2.3; R Core Team, R Foundation for
Statistical Computing, Vienna, Austria).

Supplementary Table S2 (available at https://weekly.
chinacdc.cn/) details the health indices constructed for
each land-use type, revealing harmful associations
between stroke mortality and indices for impervious
surfaces and bare land. Protective associations were
identified for grassland, cropland, wetland, waterbody,
and forest/shrubland. Spatial configuration metrics
(e.g., PD) outweighed landscape composition by
weighting  the components of health indices,
underscoring their predominant influence on health
(Supplementary Table S3, available at https://weekly.
chinacdc.cn/).

Figure 1 shows the constituent weights of protective
and hazardous composite indices. The warm-season
Protective Composite Index prioritized grassland-PD
(20.04%), grassland-Al (17.81%), and
forest/shrubland-LPI  (15.88%), emphasizing the
importance of fragmented green spaces. In contrast,

CCDC Weekly /Vol.7 / No. 45 1425
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FIGURE 1. Weights of the constituent factors of the season-specific LPHI.

Note: Weights represent the relative contribution of each landscape metric derived from the GWQS regression for the (A)
Protective Composite Index (Warm); (B) Hazard Composite Index (Cold); (C) Protective Composite Index (Warm); (D)
Hazard Composite Index (Cold). The sum of the weights for each composite index is 100%. The metrics are sorted in
descending order of their weights.

Abbreviation: Grassland-PD=Grassland Patch Density; Grassland-Al=Grassland Aggregation Index; Forest/Shrubland-
LPI=Forest/Shrubland Largest Patch Index; Waterbody-ED=Waterbody Edge Density; Wetland-PD=Wetland Patch Density;
Forest/Shrubland-PD=Forest/Shrubland Patch Density; Waterbody-PD=Waterbody Patch Density; Waterbody-LPI=
Waterbody Largest Patch Index; Wetland-LPI=Wetland Largest Patch Index; Grassland-LPI=Grassland Largest Patch Index;
Waterbody-PLAND=Waterbody Percentage of Landscape; Impervious surface-ED=Impervious Surface Edge Density;
Impervious surface-SHAPE_MN=Impervious Surface Mean Shape Index; Bareland-PLAND=Bareland Percentage of
Landscape; Bareland-LPI=Bareland Largest Patch Index; Bareland-SHAPE_MN=Bareland Mean Shape Index; Bareland-
ED=Bareland Edge Density; Bareland-PD=Bareland Patch Density; Bareland-Al=Bareland Aggregation Index.

the cold-season Protective Composite Index relied on
grassland-Al (23.42%), grassland-PD (21.14%), and
waterbody-ED (13.96%), reflecting enhanced natural
vegetation and water connectivity during colder

months. The

overwhelmingly driven by impervious surface ED

Hazard Composite Index was
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(warm: 72.86%; cold: 69.07%) and SHAPE_MN
(warm: 9.04%j cold: 10.20%), indicating that irregular
impervious patches posed a year-round risk.

For the composite LPHIs (Table 1), the Hazard
Composite Index had higher mean values in warm

(1.16, IQR=1.64) than cold (1.13, /QR=1.58) seasons,
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TABLE 1. Descriptive statistics of the constructed LPHI (2001-2023) and Percentage change (mean and 95% posterior
intervals) in stroke mortality associated with an interquartile range (/QR) increase in LPHI.

Descriptive Statistics

Seasons LPHI Mean QR Median Min Max Stroke mortality (%) P
Protective Composite Index 0.90 0.48 0.92 0.01 1.66 -20 (-26, —-13) <0.001
Warm Hazard Composite Index 1.16 1.64 1.46 0.00 247 +29 (+19, +40) <0.001
Cold Protective Composite Index 0.94 0.46 0.92 0.02 2.03 -22 (-28, -16) <0.001
Hazard Composite Index 1.13 1.58 1.38 0.00 2.41 +20 (+11, +29) <0.001

Note: ‘+’ indicates a percentage increase in stroke mortality associated with an IQR increase in LPHI, whereas ‘-’ represents a percentage

decrease linked to an IQR increase in LPHI.

Abbreviation: LPHI=Landscape Pattern Health Index; /QR=interquartile range.

with extreme ranges spanning 0.00-2.47. The
Protective Composite Index exhibited similar means
across seasons (warm: 0.90; cold: 0.94), but a higher
maximum in cold seasons (2.03 compared to 1.66),
suggesting a stronger protective potential of natural
landscapes in winter. Regression results confirmed the
validity of the LPHI: each /QR increase in the
Composite Index reduced the stroke
mortality risk by 20% (13%-26%) in warm seasons
and 22% (16%-28%) in cold seasons. Conversely, the
Hazard Composite Index increased risk by 29%
(19%—-40%) and 20% (11%-29%), respectively (all
P < 0.001). Together, these findings demonstrate a
robust association between the LPHI and stroke
mortality, supporting its validity as a framework for
assessing the health effects of urban landscape patterns.

Protective

DISCUSSION

Regarding the associations between indices
constructed for individual land use types and stroke
mortality, grassland, cropland, wetland, waterbodies,
and forest/shrubland reduced risks in both seasons,
whereas impervious surfaces and bare land increased
risks. This aligns with the known benefits of green (1)
and blue spaces (2). Vegetated areas are likely to
mitigate the risk through pollutant absorption,
microclimate  regulation, and stress reduction.
Although no direct studies have linked impervious
surfaces or bare land to stroke mortality, built
environment density is positively correlated with stroke
risk (6). Impervious surfaces, particularly those with
complex shapes and extensive edges, intensify the
urban heat island effect (9). This can elevate stroke risk
through temperature-dependent pathways such as
stress, which reduces
perfusion in warm seasons and heightens cold-induced
hemodynamic instability in cold seasons (10).

Barelands lacking vegetation may similarly experience

exacerbated heat cerebral

Chinese Center for Disease Control and Prevention

extreme temperature €Xposure.

The LPHI, developed through GWQS regression,
addresses the key limitations of traditional indices,
including single-dimensional focus, multicollinearity,
and weak health linkages, by systematically integrating
both landscape composition (e.g., impervious surfaces
and green space coverage) and configuration metrics
(e.g., patch density and aggregation). Its dual
protective-hazardous index design provides a holistic
framework to assess both risk-mitigating and risk-
amplifying landscape features, revealing that the
protective effects of grasslands and water bodies
depend on features such as fragmented green spaces
(facilitating ~ activity) in warm seasons, whereas
hazardous risks from impervious surfaces relate to edge
complexity, whose irregular configurations
heat island effect or pollutant
accumulation, thereby increasing the risk of stroke. By

may
exacerbate the

prioritizing metrics with strong health associations, the
LPHI bridges landscape ecology and public health and
offers a robust tool for quantifying the impact of urban
forms on health outcomes.

A key innovation of this study is the development of
the LPHI via GWQS regression. Our findings suggest
that this approach can translate complex landscape
patterns into a composite tool with potential public
health utility. The significant associations observed
support the idea that the LPHI can holistically assess
health risks and benefits from urban landscapes, which
could enable better prioritization of interventions, such
as enhancing green space connectivity or managing
impervious surface expansion, to mitigate population
health risks.

However, the LPHI
limitations. Validated in Ningbo, its generalizability

framework has several
may face challenges owing to varying local land use,
climate, and health contexts. The 500m resolution
remote sensing data may overlook microscale features
with neighborhood-level health impacts, such as small

CCDC Weekly /Vol.7 / No. 45 1427
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park accessibility. Socioeconomic factors, such as
income inequality, indirectly inferred from nighttime
light data, should be explicitly integrated. Relying
solely on stroke mortality restricted the study's scope.
Stroke, a chronic disease with acute manifestations,
requires the precise alignment of long-term landscape
exposures (e.g., pre-2009 data gaps) with acute triggers
(partially addressed here). Different diseases (e.g.,
asthma and tumors) exhibit distinct environmental
sensitivities (e.g., tumors to industrial pollution),
necessitating multi-disease validation. Static residential
assumptions ignore migration (e.g., rural-to-urban
moves) and biased associations for chronic diseases,
such as stroke, influenced by past exposure. These gaps
highlight the need for higher-resolution data, explicit
socioeconomic indicators, multiple diseases, and
longitudinal analyses to enhance LPHI’s utility.

Despite these limitations, the LPHI bridges
landscape ecology and public health, offering a scalable
tool for healthy urban planning. In the big data era,
real-time sensing (e.g., Sentinel-2) and machine
learning may be integrated to predict landscape health
risks (e.g., impervious surface growth) and guide smart
interventions, such as green corridor prioritization.
This aligns with the need to deepen LPHI public
health applications using data-driven insights for
enhanced risk control. Given the burden of stroke and
environmentally sensitive diseases, integrating LPHI
into policies fosters proactive place-based strategies.
This ensures that landscape design matches health
priorities, supports sustainability and population health
while leveraging technology for precision public health.
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SUPPLEMENTARY MATERIAL

TEMPORAL SCOPE OF HEALTH OUTCOME AND LANDSCAPE DATA.
Due to data availability constraints, the health outcome data (stroke mortality) used in this study were sourced
from 2009-2016, while the landscape pattern indices were derived from land use data collected from 2001-2023. To
account for this temporal discrepancy in our analysis, a two-step approach was employed, as outlined below:

Step 1: Establishing Weights of Landscape Indices
For the 2009-2016 period, we aimed to establish the weights of landscape indices associated with health
outcomes. First, we standardized the landscape indices into 4 quantiles. Using a bootstrap sampling method with
100 resamples and maximum likelihood estimation, we estimated the weights, w;, of each landscape index, q;
(i=1~c, where c=6), associated with the health outcome. This was done by solving the equation:

C
E (u) =o+Bx (2 Wiqi) +7'g
=T

A detailed explanation of GWQS regression model parameters is provided below:

E(u): The expected number of deaths from stroke. This is the value that the model ultimately aims to predict,
reflecting the theoretically expected number of stroke deaths based on landscape indices and other covariates.

a: The intercept term. When all landscape index variables (q;) are 0 and other covariates (z) are also 0, «
represents the expected number of stroke deaths, serving as a baseline value for the model.

wi: The weight of the landscape index q;. Its value range is 0<w;<1 and ) ;; w;=1. These weights determined the
relative importance of each landscape index in comprehensively influencing stroke mortality.

q;: Landscape indices. Here, i = 1—c (c=0), representing different quantitative indicators of landscape patterns
such as PLAND and PD. They participated in the model calculation after being standardized into four quantiles.

B: The regression coefficient of the weighted index () i, wiq;). This was used to measure the degree of influence
of the weighted comprehensive value of the landscape indices on the expected number of stroke deaths. Its
significance in influencing the results was determined using a significance test (P < 0.05).

z: A row vector of other covariates that need to be adjusted, such as PM, s, relative humidity, economic
development level, and other factors. The superscript T in z! denotes the transpose operation, converting this row
vector into a column vector for proper matrix multiplication with the coefficient vector ¢ .

¢: The regression coefficient column vector for the covariates z, reflecting the degree of influence of each
corresponding covariate on the expected number of stroke deaths.

The model was subject to the constraints ) ; ; w;=1 and 0<w;<l. For each bootstrap sample, we estimated the
model parameters (B,w;), and evaluated the significance of the landscape index quantile weight w; based on the
significance of the regression coefficient B (P < 0.05). We then averaged the results from the significant bootstrap

SUPPLEMENTARY TABLE S1. Summary statistics on stroke deaths, pollutant concentrations, meteorological factors and
nighttime light intensity across street-units in Ningbo during warm and cold seasons (2009-2016).

Indicators Warm Seasons Cold Seasons
Total count Mean SD Median Min Max Total count Mean SD Median Min Max
Stroke Deaths/n 18,331 010 032 0 0 6 25201 014 039 0 0 5
Air pollutants
PM, /(ug/m°) 315 1343 2895 427 116.71 56.71 27.25 50.63 8.96 450.59
NO,/(ug/m®) 2752 980 2676 4.92 85.67 47.97 1540 47.02 7.24 134.47
Meteorology
Daily mean temperature/C 2522 395 2555 925 3558 875 497 833 -822 24.09
Relative humidity/% 77.77 10.84 7839 30.44 100.00 72.38 14.75 73.32 12.15 100.00
Wind speed/(m/s) 240 116 217 022 19.49 243 113 223 0.08 10.20
NTL/(nWem™sr™") 8.39 12.36 269 0.00 68.24 8.39 1236 269 000 68.24

Chinese Center for Disease Control and Prevention CCDC Weekly /Vol.7 / No. 45 S1
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SUPPLEMENTARY TABLE S2. Descriptive statistics of the constructed health index (2001-2023) for each land use type
and their direction of association with stroke mortality.

Warm Seasons Cold Seasons
Index Descriptive Statistics Descriptive Statistics
Mean IQR Median Min Max RR (95% CI P Mean IQR Median Min Max RR (95% Gl P
Impervious surface 1.49 2.89 1.96 0.00 3.00 1.13(1.08,1.18) <0.001 1.48 270 1.89 0.00 3.00 1.09(1.04,1.14) <0.001
Grassland 1.31 052 1.25 0.00 2.87 0.74 (0.68,0.82) <0.001 1.29 0.56 1.21 0.00 2.83 0.75(0.69,0.82) <0.001
Cropland 155 197 1.96 0.00 3.00 0.93(0.89,0.97) 0.002 1.55 1.97 1.97 0.00 3.00 0.91(0.87,0.95) <0.001
Bareland 150 1.22 147 0.00 3.00 1.10(1.03,1.18) 0.007 143 1.14 1.24 0.00 3.00 1.11(1.03,1.18) 0.004
Wetland 163 1.41 1.66 0.00 3.00 0.90(0.84,0.97) 0.005 1.64 148 1.66 0.00 3.00 0.89(0.83,0.95) 0.001
Waterbody 144 076 148 0.00 2.52 0.78(0.71,0.87) <0.001 1.44 0.79 1.48 0.00 2.58 0.80(0.73,0.88) <0.001

Forest/Shrubland 1.45 1.24 144 0.00 3.00 0.86(0.81,0.91) <0.001 144 140 1.40 0.00 2.99 0.88(0.83,0.94) <0.001

Note: RR (95% Cl) >1 indicates a harmful association with health outcomes, whereas RR (95% CI) <1 suggests a protective association.
Abbreviation: C/=confidence interval; RR=relative risk.

SUPPLEMENTARY TABLE S3. Weights of the constituent factors of the season-specific health index for each land use type
(%).

Warm Seasons (%) Cold Seasons (%)
Ind Landscape Spatial Landscape Spatial
ndex Composition Configuration Composition Configuration
PLAND Al ED LPI PD SHAPE_MN PLAND Al ED LPI PD SHAPE_MN
Impervious 0.07 022 97.77 0.09 0.08 1.78 0.03 038 93.99 0.06 0.14 5.41
surface
Grassland 0.09 49.13 0.05 6.83 41.76 2.14 0.07 51.82 0.06 7.13 37.74 3.17
Cropland 0.03 0.70 0.03 124 97.92 0.08 0.04 093 0.04 060 98.32 0.06
Bareland 22.45 7477 059 0.07 0.93 1.17 13.77 80.80 0.24 0.03 0.47 4.69
Wetland 1.66 3.67 8.31 26.74 59.60 0.01 1.76 065 6.70 33.41 57.47 0.02
Waterbody 0.02 21.21 1.19 26.34 48.32 2.91 0.05 13.35 0.14 32.62 46.21 7.64
Forest/Shrubland 0.02 0.09 0.02 43.38 56.02 0.47 0.05 0.72 0.04 38.12 59.99 1.07

Abbreviation: PLAND=Percentage of Landscape; Al= Aggregation Index; ED=Edge Density; LPI= Largest Patch Index; PD= Patch
Density; SHAPE_MN= Mean Shape Index

samples to obtain the final weights for each index.

Step 2: Calculating the Landscape Pattern Health Index (LPHI)

In the second step, using the weights obtained from the first-step analysis, we calculated the Landscape Pattern
Health Index (LPHI) for the 2001-2023 period. Specifically, for the 2001-2023 landscape data, we first re-
standardized the landscape indices into four quantiles and then utilized the weighted index formula WQS=} 7, w; g;
for the calculation, WQS: weighted quantile sum. By separating the analysis into these two steps, we were able to
effectively utilize the available data and establish a comprehensive understanding of the relationship between
landscape patterns and health outcomes, despite differences in their temporal scopes.
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