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Vital Surveillances

Epidemiological Characteristics of Dengue Fever
— China, 2005-2023

Zhuowei Li'; Xiaoxia Huang'; Aqian Li'; Shanshan Du'; Guangxue He'; Jiandong Li**

ABSTRACT

Introduction: The global incidence of dengue
fever has increased significantly over the past two
decades, and China faces a significant upward trend in
dengue control challenges.

Methods: Data were obtained from China’s
NNDRS from 2005 to 2023. Joinpoint regression
software was used to analyze temporal trends, while
SaTScan software was used to analyze spatial, seasonal,
and spatiotemporal distributions. ArcGIS software was
used to visualize clusters.

Results: A total of 117,892 dengue cases were
reported from 2005 to 2023, with significant
fluctuation in annual reported cases. Dengue was not
endemic in China. Autochthonous outbreaks most
likely occurred in the southwestern, southeastern
coastal, and inland areas of China. These outbreaks
have occurred between June and November, generally
peaking in  September or  October,
epidemiological week (EW) 40.

Conclusions: Dengue challenges in China are

around

increasing. Timely case monitoring, proactive control
interventions, and staff mobilization should be
implemented before June to ensure a timely response
to autochthonous outbreaks.

Dengue virus (DENV) is the most widespread
arbovirus and causes the highest number of arboviral
disease cases globally. DENV contains four serotypes
(DENV-1, DENV-2, DENV-3, and DENV-4).
Infection with one serotype can induce only transient
immunity to the others; secondary infections with a
different serotype may increase the risk of severe
dengue (I-3). Over the past two decades, the global
incidence of dengue has increased markedly (4), and
the challenges of dengue outbreaks faced by China
have also shown a cyclical upward trend (5). Since the
first confirmed autochthonous outbreak of dengue was
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reported in Guangdong Province in 1978, outbreaks
caused by all four DENV serotypes have been reported
successively on a fluctuating scale in China (5). In
January 2024, several Member States from the World
Health Organization (WHO) Regions of the Americas,
Africa, Western Pacific, and Southeastern Asia reported
a significant increase in dengue circulation (6). Travel-
related cases may always occur in areas with the
potential for rapid dengue transmission, posing an
increasing risk of autochthonous outbreaks in China.
To better understand the dengue epidemic in China,
we analyzed the epidemiological characteristics of
reported dengue cases in China from 2005 to 2023.
We examined temporal, spatial, and population
characteristics, as well as clustering patterns.

METHODS

Data Collection

Dengue case data for China from January 1, 2005,
to December 31, 2023, were obtained from the
Chinese National Notifiable Disease Reporting System
(NNDRS). Demographic data stratified by age and sex
were obtained from the National Bureau of Statistics of
China (heeps://www.stats.gov.cn/sj/tjgb/rkpegb/,
accessed on January 5, 2024).

Descriptive Analysis

Descriptive epidemiologic methods were used to
analyze the reported cases. Joinpoint regression
software was used to analyze temporal trends of dengue
cases. Incidence was analyzed by spatial, space-time,
and seasonal scanning with SaTScan (version 10.1.2;
Information Management Services, Maryland, USA)
software at the prefecture and month levels,
respectively. Datasets were prepared based on
incidence, population by district, and geographic
coordinates. The maximum scanning window was set
to 25% of the total population. The maximum
temporal clustering scale was set to 50% of the total
study length, and the step size was set to 1 month, as
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described previously (7). Dengue clusters were
identified using a model based on the maximum log-
likelihood ratio (LLR) and graded by log-likelihood
values. A cluster of dengue cases in the selected region
was accepted when P<0.05. Areas under risk were
calculated by comparing the number of cases within
each window to the expected number using a Poisson
model. Relative risk (RR) in the SaTScan output file
refers to the ratio of estimated risks within and outside
the cluster. Areas at risk of infection were determined

by the RR.

RESULTS

From 2005 to 2023, a total of 117,892 cases were
reported in China. Of these, 67,073 (56.89%) were
laboratory-confirmed cases, and 3,225 (2.74%) were
imported cases. The national incidence of dengue
significantly  increased from 2005 to 2023
(AAPC=30.27%, 95% CI. 21.44, 159.66%) with an
average incidence rate of 0.45/100,000. The number
of reported cases peaked in 2014 (47,047 cases), 2019
(22,726 cases), and 2023 (19,935 cases), accounting
for approximately 76.09% of total reported cases
(Figure 1A). The number of annual reported cases
fluctuated significantly, ranging from 59 cases (2005)
to 47,047 cases (2014), and exhibited three successive
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phases (Figure 1A). A low-incidence phase was
observed during 2005-2012, with an average incidence
rate of 0.03/100,000 (AAPC=-10.54%, 95% CI:
-30.84, 10.80%). A high-incidence phase was observed
during 2013-2019, with an average incidence rate of
0.96/100,000 (AAPC=-13.25%, 95% CI. -40.26,
16.68%). A significant decline in cases, with an average
incidence rate of 0.03/100,000 (AAPC=-14.88%,
95% CI. -58.37, 59.20%), was seen during the
COVID-19 pandemic from 2020 to 2022. In 2023,
the number of cases approached the 2019 peak,
continuing the characteristics of the high-incidence
phase.

Dengue was reported in all months; however, the
vast majority of cases were reported from June to
November. The peak occurred from August to
October (#=101,653, RR=18.60, LLR=97,644.65),
accounting for 86.23% of the total (Figure 1B). When
analyzed by epidemiological week (EW) of onset or
reporting, the number of cases generally peaked at EW
40 (n=15,166, Figure 1C). In low-incidence years, the
peak could appear later, such as in EW 43 in 2012.

The overall male-to-female case ratio was 1.11. A
relatively similar age distribution was observed for both
males and females (Figure 2A). Cases were reported in
all age groups; the majority (2=68,698; 58.27%) were
20-49 years of age (Figure 2B). The main difference in
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FIGURE 1. Distribution of dengue cases in the Chinese mainland during 2005-2023. (A) By year; (B) By month; (C) By

week.
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FIGURE 2. Distribution of dengue by (A) gender, (B) age, and (C) occupation.
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the sex ratio was that the proportion of females was
lower than that of males of the same age in the 50-59
(0.92:1) and 60 and above age groups (0.94:1), while
the opposite was true for the 0-9 (1.24:1), 10-19
(1.53:1), 20-29 (1.18:1), 30-39 (1.18:1), and 40—49
(1.13:1) age groups. The highest incidence of cases
was observed among households and unemployed
individuals (#=22,943, 19.46%), followed by farmers
(n=16,901, 14.34%) and businesspeople (7=15,258,
12.94%) (Figure 2C).

From 2005 to 2023, dengue was reported in 30
provincial-level ~administrative divisions (PLADs),
including 302 prefectures and 1,694 counties. The top
five  PLADs with high dengue incidence —
Guangdong (68,070, 57.74%), Yunnan (30,785,
26.11%), Fujian (3,742, 3.17%), Zhejiang (3,260,
2.77%), and Guangxi (3,136, 2.66%) — contributed
92.45% of the total cases. Additionally, 68.34% of
cases were reported from the top five prefectures:
Guangzhou (45,977, 39.00%), Xishuangbanna
(15,871, 13.46%), Dehong (10,073, 8.54%), Foshan
(5,998, 5.09%), and Zhongshan (2,652, 2.25%). The
top five counties — Baiyun (13,303, 11.28%),
Jinghong (11,171, 9.48%), Ruili (9,210, 7.81%),
Haizhu (6,899, 5.85%), and Liwan (6,680, 5.67%) —
accounted for 40.09% of cases. Dengue exhibited
obvious geographical clustering in the Chinese
mainland.

During the low-incidence phase from 2005 to 2012,
clusters occurred mainly in  Guangdong (11
prefectures, 7=2,217), Yunnan (3 prefectures, 7=181),
Fujian (1 prefecture, 7=142), and Zhejiang (1
prefecture, #=201). During the high-incidence phase,
the geographic scope of clusters expanded, and
autochthonous  outbreaks  occurred in  the
southwestern, southeastern coastal, and inland areas of
Chinese mainland. This was especially true in the Pearl
River Delta (PRD) and the Border of Yunnan and
Myanmar (BYM), with cases reported in Guangdong
(10 prefectures, 7=62,375), Yunnan (7 prefectures,
n=29,578), Fujian (1 prefecture, #=1,831), Zhejiang (1
prefecture, 7=1,583), Jiangxi (1 prefecture, 7=833),
and Guangxi (1 prefecture, #=1,842).

The spatiotemporal —analysis of incidence,
population, and geographic coordinates from 2005 to
2023 identified significant dengue clusters categorized
into three levels. The primary cluster emerged in
Guangzhou (#=37,382) and Foshan (#=3,543) in
Guangdong Province in 2014 (RR: 589.08, LLR:
210,880.11), and in seven prefectures in southwestern
Yunnan Province (7=27,689) (Xishuangbanna, Pu’er,
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Lincang, Dehong, Dali, Chuxiong, Baoshan) from
2015 to 2023 (RR: 56.27, LLR: 80,673.22). Secondary
clusters (#=5,387) were identified in southeastern
prefectures of Zhejiang (11 prefectures), Anhui (5
prefectures), Fujian (9 prefectures), Jiangxi (10
prefectures), and Guangdong (4 prefectures) in 2019
(RR: 7.05, LLR: 5,807.61), and in Chongging
Municipality (#=1,411) in 2019 (RR: 9.95, LLR:
1,965.70). Tertiary clusters were found in Puyang
(7=90), Henan Province (RR: 5.34, LLR: 77.56) in
2019, and Jining (#=81), Shandong Province (RR:
2.16, LLR: 18.92) in 2017. The frequency of high-risk
areas suggests that dengue is not endemic in China;
widespread areas are vulnerable to
autochthonous outbreaks.

however,

CONCLUSIONS

Dengue affects people in most countries in the
tropics and subtropics. Dengue is not endemic in the
Chinese mainland; however, the vectors that transmit
DENV are widely distributed. Aedes aegypti is
established notably in parts of Yunnan, Hainan, and
Guangdong, and Aedes albopictus is widely established
in much of China (5). In this study, the spatial,
temporal, and  demographic  epidemiological
characteristics of dengue, as well as the areas with local
transmission risks, were revealed in China from 2005
to 2023. No significant gender or occupational
differences were observed in the reported cases. It
could be supposed that susceptibility to dengue might
mainly depend on the proximity to the source of
infection and the chance of being bitten by infected
mosquitoes in China. The likelihood of onward
DENV transmission is linked to the importation of the
virus into receptive areas with active, competent
vectors (6,8). Globally increased dengue circulation
over the past two decades has markedly increased the
risk of importation of the virus by viremic travelers
into China. All autochthonous outbreaks of dengue in
China have so far occurred between June and
November, generally peaking in September or
October, around EW 40. The spatial and
spatiotemporal distribution of dengue in the past 19
years demonstrated that broad areas in China are
facing the risk of autochthonous outbreaks, which
most likely occur in the southwestern, southeastern
coastal, and inland areas of south China, especially in
the areas of the PRD and BYM. Most PLADs in South
China have reported locally acquired dengue cases.

Factors contributing to local transmission include

CCDC Weekly / Vol. 6/ No. 41 1047



China CDC Weekly

high mosquito populations, susceptibility to circulating
DENV  serotypes, and favorable
conditions — such as air temperature, precipitation,
and humidity — that affect mosquito reproduction,
feeding patterns, and the DENV incubation period
(9-11). Timely, proactive control interventions and

environmental

qualified staff are also key influencing factors. Proactive
prevention and control interventions should be
deployed, and staff training and mobilization should be
carried out before June for timely responses to
autochthonous outbreaks in the Chinese mainland.
This study is based on the analysis of online active
reporting data from the NNDRS system, which, to
some extent, affects the accurate portrayal of dynamic
dengue epidemic characteristics in specific regions.
However, it can reflect the overall dengue trend in
China and provide a reference for promoting the
proactive deployment of prevention and control.
Conflicts of interest: No conflicts of interest.
Funding: This work was supported by the Project of
Capital Clinical Diagnosis and Treatment Technology
Research and Transformation (Z221100007422076).
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Trends and Spatial Pattern Analysis of Typhoid and Paratyphoid
Fever Incidence — Yunnan Province, China, 1989-2022

Xiulian Shen'®; Ligiong Zhang**; Lining Guo® Jibo He'*; Weijun Yu**

ABSTRACT

Introduction: This study explored the incidence
trends and spatial clustering of typhoid and
paratyphoid fever (TPF) in Yunnan Province to
provide scientific evidence for developing and
improving prevention and control strategies.

Methods: Temporal trends were investigated by
calculating the annual percent change (APC) and
average annual percent change (AAPC), along with
their 95% confidence intervals (CIs). The spatial
clustering of TPF across Yunnan Province was
examined using global Moran’s I and local indicators
of spatial association (LISA) statistics.

Results: A total of 206,066 TPF cases were
reported in Yunnan Province from 1989 to 2022, with
an average annual incidence of 13.98 per 100,000
population and a case fatality rate of 2.5 per 1,000.
The greatest number of cases was reported during July
and August. The 25-34-year age group had the highest
incidence, and farmers were prominently represented.
TPF incidence in Yunnan Province showed a
significant decrease and spatial clustering. From 2005
to 2022, 13 county-level cities/counties/municipal
districts in 5 prefectures (cities) in Yunnan Province
were identified as statistically significant H-H spatial
clusters of TPF incidence. A total of 24 TPF outbreaks
were reported in Yunnan Province from 2005 to 2022.

Conclusions: The incidence of TPF in Yunnan
Province showed a significant decrease and spatial
clustering. Control strategies should focus on high-

incidence areas, seasons, and populations to reduce the
incidence of TPF.

Typhoid and paratyphoid fever (TPF) are
categorized as Class B notifiable infectious diseases in
China. They are caused by the Salmonella enterica
subspecies serovars Typhi and Paratyphi A, B, and C.
TPF is  characterized by a  predominantly

Chinese Center for Disease Control and Prevention

gastrointestinal reaction, high infectiousness, long
duration of illness, multiple complications, and a
substantial disease burden. The global incidence of
TPF has declined, with approximately 14.3 million
cases and 135,900 deaths reported in 2017 (7). Since
the 1990s, the incidence of TPF in China has declined
annually and is at a low level according to World
Health  Organization  classification  criteria  (2).
However, the incidence of TPF in southwestern
PLADs, such as Yunnan Province, is among the
highest in the country and remains a priority infectious
disease for prevention and control (2). Therefore,
understanding the epidemiological trends of TPF and
analyzing population and regional distribution
characteristics is important for devising effective
control plans, strategies, and interventions. Herein,
these topics were examined using TPF data collected
from 1989 to 2022. Descriptive, temporal trend, and
spatial autocorrelation analyses were performed.

METHODS

Data on TPF for 1989-2004 were obtained from
the Compendium of Infectious Disease Epidemics in
Yunnan Province. Reported TPF cases for 2005-2022
were obtained from the infectious disease surveillance
system of the CISDCP (3). Additionally, reported TPF
outbreaks for 2005-2022 were obtained from the
emergent public health event information management
system of the CISDCP. Outbreak definitions followed
the National Public Health Emergency Information
Reporting and Management Specification issued by the
Ministry of Health of the People’s Republic of China
in 2005 (4). Demographic data were derived from the
Yunnan Statistical Yearbook (1989-2022).
Administrative  division codes and geographical
coordinates were acquired from the National
Catalogue  Service for Geographic Information
(hteps://www.webmap.cn/). The crude incidence rate
(per 100,000 population) was calculated as the number

of annual TPF cases divided by the total annual

CCDC Weekly / Vol. 6/ No. 41 1049
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population.

Joinpoint regression models were employed to
identify incidence trends from 1989 to 2022 using
Joinpoint software (version 4.9.1.0; National Cancer
Institute, Bethesda, US) (5). The number of
joinpoints, joinpoint locations, and P values were
determined using Monte Carlo permutation tests. The
Bayesian information criterion was used to select the
best-fitting model. To explore temporal trends, the
APC and AAPC in reported TPF cases and their 95%
(CIs) were calculated. An
increasing or decreasing trend indicates a statistically
significant trend slope (two-sided P<0.05). A stable
trend indicates a non-significant APC (two-sided P>
0.05), representing stable incidence or sporadic case
reporting (6).

Spatial autocorrelation analysis, using GeoDa
1.18.0.0, explored the spatial correlation strength of
TPFE. Details on the spatial autocorrelation analysis
have been previously published (3). Briefly, global
autocorrelation, using Global Moran’s 1 statistics,

confidence intervals

analyzed the clustering characteristics of the research
objects across the entire region. Anselin’s Local
Moran’s I (LISA) test statistics were used for spatial
autocorrelation analysis. LISA analyzed the specific
cluster types and regions; LISA cluster maps showed
four cluster modes: H-H, L-L, L-H, H-L, and not
significant. The H-H and L-L regions represent spatial
clustering, while the L-H and H-L regions were
outliers (3,7).

RESULTS

General Characteristics
From 1989 to 2022, Yunnan Province reported
206,066 TPF cases, with an incidence of 32.80 per
100,000 in 1989 and 2.29 per 100,000 in 2022. The

35 .
30
25 .
20

Incidence(1/100,000)

average annual incidence was 13.98 per 100,000.
A total of 508 deaths were reported, resulting in a case
fatality rate of 2.5 per 1,000. Joinpoint regression
analysis revealed an overall decreasing trend in TPF
incidence, with an AAPC of -6.78% (P<0.05)
(Figure 1).

From 2005 to 2022, a total of 75,747 TPF cases
were reported in Yunnan Province, including 43,767
laboratory-confirmed cases and 31,980 clinically
diagnosed cases. Of these, 48,452 had typhoid fever,
with incidence decreasing from 14.44 per 100,000
population in 2005 to 1.88 per 100,000 in 2022. The
remaining 27,295 cases had paratyphoid fever, with
incidence decreasing from 8.24 per 100,000
population in 2005 to 0.41 per 100,000 in 2022.
Additionally, joinpoint regression analysis revealed an
overall decreasing trend in both typhoid and
paratyphoid fever incidence from 2005 to 2022, with
average annual percent changes (AAPCs) of —12.51%
and —16.79%), respectively (all P<0.05) (Figure 2).

Population and Seasonal Distribution

From 2000 to 2022, Yunnan Province reported
112,160 TPF cases, with an incidence rate of 20.13 per
100,000 in females and 19.58 per 100,000 in males.
Incidence was elevated in the 0-44 age group, peaking
in the 25-34 age group (Table 1). From 2005 to 2022,
the primary occupations of TPF cases were farmers,
students, and children, comprising 44.01%, 19.08%,
and 11.35% of cases, respectively. TPF cases were
consistently reported from January to December
each year, demonstrating clear seasonality. Peak
incidence occurred in July and August (Supplementary
Figure S1, available at https://weekly.chinacdc.cn/).

Spatial Distribution
From 1989 to 2022, TPF cases were reported in 8

—1989-1997 APC=-7.33%
1997-2004 APC=6.70%
—2004-2022 APC=-11.31%
* Typhoid and paratyphoid fever

FIGURE 1. Joinpoint regression showing trends in the overall incidence of typhoid and paratyphoid fever in Yunnan

Province, China, 1989-2022.
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FIGURE 2. Joinpoint regression showing trends in the overall incidence of typhoid fever and paratyphoid fever in Yunnan

Province, China, 2005-2022.
Abbreviation: APC=annual percent change.

TABLE 1. Age and gender characteristics of typhoid and paratyphoid fever cases in Yunnan Province, China, 2000-2022.

Total Male Female
Age (years) ~ Cases Percentage Incidence  Cases Percentage Incidence  Cases Percentage Incidence
(n) (%) (per 100,000) (n) (%) (per 100,000) (n) (%) (per 100,000)

04 7,518 6.70 10.70 4,276 56.88 11.77 3,242 43.12 9.55

5-9 9,536 8.50 12.88 5,282 55.39 13.66 4,254 4461 12.04
10-14 8,734 7.79 11.47 4,894 56.03 12.23 3,840 43.97 10.64
15-19 10,134 9.04 12.02 5,158 50.90 11.67 4,976 49.10 12.39
20-24 11,022 9.83 12.72 5,225 47.41 11.60 5,797 52.59 13.94
25-29 12,007 10.71 15.59 5,861 48.81 14.51 6,146 51.19 16.78
30-34 11,454 10.21 13.69 5,699 49.76 12.95 5,755 50.24 14.52
35-39 9,991 8.91 11.35 4,944 49.48 10.64 5,047 50.52 12.15
40-44 7,957 7.09 10.00 3,954 49.69 9.45 4,003 50.31 10.61
45-49 6,348 5.66 8.83 3,114 49.05 8.32 3,234 50.95 9.38
50-54 5,121 4.57 9.59 2,428 47.41 8.84 2,693 52.59 10.37
55-59 3,709 3.31 7.84 1,801 48.56 7.50 1,908 51.44 8.19
60-64 2,841 2.53 8.10 1,389 48.89 7.84 1,452 51.11 8.37
65-69 2,087 1.86 7.24 1,104 52.90 7.77 983 47.10 6.72
70-74 1,769 1.58 8.01 954 53.93 9.00 815 46.07 7.10
75-79 1,126 1.00 7.62 696 61.81 10.24 430 38.19 5.38
80-84 559 0.50 6.72 352 62.97 9.89 207 37.03 4.35

>85 247 0.22 6.68 166 67.21 11.87 81 32.79 3.52
Total 112,160 100.00 19.84 57,297 51.09 19.58 54,863 48.91 20.13

autonomous prefectures and 8 cities in Yunnan
Province. In terms of average annual incidence, the top
5 prefectures (cities) were Xishuangbanna Dai
Autonomous Prefecture (37.50 per 100,000), Dehong
Dai-Jingpo Autonomous Prefecture (28.34  per
100,000), Yuxi City (26.88 per 100,000), Nujiang
Lisu Autonomous Prefecture (22.39 per 100,000), and
Honghe Hani and Yi Autonomous Prefecture (21.29
per 100,000). Joinpoint regression analysis revealed a
statistically significant decreasing trend (all P<0.05) in
the reported incidence of 13 prefectures (cities) from
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1989 to 2022, except for Yuxi City (P=0.288), Diqing
Tibetan Autonomous Prefecture (P=0.332), and
Nujiang Lisu Autonomous Prefecture (P=0.468)
(Table 2). Furthermore, there was a positive spatial
correlation  and  significant  spatial  clustering
distribution of TPF incidence in all county-level
cities/counties/municipal districts of Yunnan Province
from 2005 to 2010 (Moran’s 1=0.291, P=0.001), 2011
to 2016 (Moran’s 1=0.269, P=0.001), 2017 to 2022
(Moran’s 1=0.241, P=0.001), and 2005 to 2022

(Moran’s  1=0.315,  P=0.001).  Supplementary
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TABLE 2. Joinpoint regression showing the incidence and trends of typhoid and paratyphoid fever in the prefectures (cities)

of Yunnan Province, China, 1989-2022.

Incidence

Average annual percent

Prefecture/city Cases (n) (per 100,000) Trend change (95% Cls) t P
Xishuangbanna Dai Autonomous Prefecture 12,722 37.50 Decrease -8.41 (-13.27, -3.28) -3.16 0.002
Dehong Dai-Jingpo Autonomous Prefecture 10,745 28.34 Decrease -8.80 (-15.18, —1.95) -2.49 0.013

Yuxi City 19,356 26.88 Stable -7.28 (-19.34, 6.59) -1.06 0.288
Nujiang Lisu Autonomous Prefecture 3,804 22.39 Stable -5.17 (-17.83, 9.44) -0.73 0.468
Honghe Hani and Yi Autonomous Prefecture 30,503 21.29 Decrease -4.72 (-7.09, -2.30) -3.77 <0.001
Kunming City 34,463 18.12 Decrease -6.59 (-8.83, -4.31) -5.53 <0.001
Wenshan Zhuang and Miao Autonomous Prefecture 17,335 15.07 Decrease —-11.69 (-20.50, -1.91) -2.32 0.020
Baoshan City 10,826 1317 Decrease -12.38 (-16.29, -8.28) -2.27 0.023
Dali Bai Autonomous Prefecture 11,151 9.78 Decrease -5.91 (-10.74, -0.82) -2.27 0.023
Lijiang City 3,856 9.71 Decrease -4.02 (-6.00, -1.99) -4.00 <0.001
Quijing City 18,613 9.52 Decrease -2.18 (-3.92, -0.40) -2.39 0.017

Diging Tibetan Autonomous Prefecture 1,168 9.43 Stable -11.89 (-15.18, —-1.95) -0.97 0.3319
Chuxiong Yi Autonomous Prefecture 7,768 8.82 Decrease -7.18 (-10.55, -3.68) -3.95 <0.001
Pu’er City 7,456 8.82 Decrease -8.27 (-11.76, —4.64) -4.53 <0.001
Zhaotong City 12,737 7.53 Decrease -10.41(-12.23,-8.55) -10.89 <0.001
Lincang City 3,563 4.53 Decrease -5.09 (-6.82, -3.33) -5.78 <0.001

Abbreviation: Cls=confidence intervals.

Table S1 (available at https://weekly.chinacdc.cn/)
presents the statistically significant H-H spatial clusters
of TPF incidence in a total of 13 county-level
cities/counties/municipal districts of 5 prefectures
(cities) in Yunnan Province from 2005 to 2022 and the
statistically significant L-L spatial clusters of TPF
incidence in a total of 22  county-level
cities/counties/municipal districts of 8 prefectures
(cities) in Yunnan Province from 2005 to 2022.

Outbreaks

From 2005 to 2022, Yunnan Province reported 24
TPF outbreaks (12 typhoid fever and 12 paratyphoid
fever), with a median duration of 21 days
(Supplementary Table S2, available at https://weekly.
chinacdc.cn/). These outbreaks involved 1,273 cases,
an exposed population of 203,519, and an incidence
rate of approximately 625.49 per 100,000. Occurring
in 14 counties (districts) across 7 prefectures (cities) in
Yunnan Province, the outbreaks primarily affected
rural areas (17 outbreaks) and schools (6 outbreaks).

CONCLUSIONS

The overall TPF incidence in Yunnan Province,
China, shows a significant decrease, potentially
attributable to national disease prevention and control
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policies, public health service development, the
inclusion of rural water and latrine improvements in
disease prevention and control agencies’ national code
of practice (8), immunization, and improved sanitation
and hygiene awareness (9). Despite annual declines in
TPF incidence rates both nationally and in China,
Yunnan the highest-ranking
provincial-level administrative division (PLAD) for
these diseases (2). The emergence of TPF as a
significant public health issue in Yunnan Province

Province remains

highlights the critical need for effective epidemic
control measures. Successfully managing the TPF
epidemic in Yunnan Province is pivotal in diminishing
the overall incidence of these diseases across China.
Indeed, several possible reasons may explain the highest
TPF incidence in Yunnan Province. First, Yunnan
Province experiences peak TPF incidence during
summer due to high temperatures and rainfall, creating
ideal conditions for disease transmission (9-10).
Second, abundant karst landforms in Yunnan Province
increase the vulnerability of underground water sources
to pathogenic bacterial contamination, amplifying the
risk of TPF epidemics (2,9). Third, the epidemic’s
cause may also stem from differences in dietary and
water hygiene practices among populations in Yunnan
Province’s multiethnic areas (7).

From 1989 to 2022, the top five average annual
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incidences of TPF were observed in Xishuangbanna
Dai Autonomous Prefecture, Dehong Dai-Jingpo
Autonomous Prefecture, Yuxi City, Nujiang Lisu
Autonomous Prefecture, and Honghe Hani and Yi
Autonomous  Prefecture.  The four prefectures,
excluding Yuxi City, are border prefectures with a high
concentration of ethnic minorities. The elevated TPF
incidence in these areas could be linked to prolonged
case accumulation, heightened exposure rates, and
changes in dietary and drinking practices among ethnic
minorities (/7). Additionally, the high TPF incidence
between border county-level cities/counties/municipal
districts in these prefectures (cities), such as Kunming
City, Yuxi City, Honghe Hani and Yi Autonomous
Prefecture, and Wenshan Zhuang and Miao
Autonomous Prefecture, may be attributed to similar
risk factors and provides a hypothesis for cross-regional
transmission (/2). The high incidence among farmers,
students, and children is consistent with the findings of
a national study (/2) and may be linked to poor living
conditions, increased outdoor  exposure, and
inadequate dietary and hygiene practices.

However, this study has limitations. First, data on
TPF cases were acquired from the CISDCP infectious
disease surveillance system via passive surveillance,
potentially introducing reporting bias (3). Second,
differences in testing, diagnostic, and reporting
capabilities of hospitals at different levels in various
regions lead to bias in identifying and reporting TPF.
Third, the spatial autocorrelation analysis scale
selection depends on the researcher’s subjective
judgment and does not consider the temporal
characteristics of clustering; false positives are
inevitable, so these results should be interpreted
cautiously. Finally, this study did not include driving
factors (e.g., pathogen resistance) and facilitating
factors (e.g., meteorology) (10) that may influence
TPF incidence; therefore, the causes of TPF incidence
could not be analyzed. In conclusion, while the
reported TPF incidence in Yunnan Province has
decreased notably, it remains high, with noticeable
spatial clustering in certain prefectures (cities).
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SUPPLEMENTARY MATERIAL
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SUPPLEMENTARY FIGURE S1. Monthly reported cases of typhoid and paratyphoid fever in Yunnan Province, China,
2005-2022.

SUPPLEMENTARY TABLE S1. Statistically significant high-high and low-low spatial clusters of typhoid and paratyphoid
fever in Yunnan Province, China, 2005-2022.

Year High-High (H-H) Low-Low (L-L)

Zhaotong City (Yanjin County, Yongshan County, Zhenxiong County,
Yiliang County, Weixin County, and Shuifu County-level City), Lincang
Yuxi City (Jiangchuan District, Tonghai County, City (Linxiang District, Fengging County, Yun County, Shuangjiang
Huaning County and Eshan County), Kunming City County, and Gengma County), Pu’er City (Ning’er County, Jinggu
(Chenggong District and Jinning District), Dehong County, Zhenyuan County, and Jingdong County), Chuxiong Yi
2005-2010 Dai-Jingpo Autonomous Prefecture (Lianghe Autonomous Prefecture (Nanhua County, Chuxiong County-level City,
County and Ruili County-level City), and and YaoAn County), Diging Tibetan Autonomous Prefecture (Weixi
Xishuangbanna Dai Autonomous Prefecture County, Shangri-La County-level City, and Deqin County), Dali Bai
(Jinghong County-level City). Autonomous Prefecture (Nanjian County and Weishan County), Nujiang
Lisu Autonomous Prefecture (Gongshan County and Lanping County),
and Lijiang City (Gucheng District and Yulong Naxi Autonomous County).

Hpnghe AEIUEIT Agtonomou§ FUSEETG Zhaotong City (Zhaoyang District, Ludian County, Qiaocjia County, Yanjin
(Kaiyuan County-level City, Mengzi County-level -
. . . : ; County, Daguan County, Yongshan County, Suijiang County, Zhenxiong
City, Jianshui County, Mile County-level City, and i e . .
: ; - S County, Yiliang County, Weixin County, and Shuifu County-level City),
Luxi County), Kunming City (Chenggong District, - .
” . S Nujiang Lisu Autonomous Prefecture (Fugong County, Gongshan County
2011-2016 VLEE) e Ee) Sl Ol i) Os7 and Lanping County), Chuxiong Yi Autonomous Prefecture (Chuxion
(Huaning County), Wenshan Zhuang and Miao ping Y), 9 9

Autonomous Prefecture (Qiubei County), and County-level (.:lt.y and Shuangbai .County), qu.lng leetgn Autonomous
) . Prefecture (Weixi County and Deqin County), Lincang City (Yun County),
Xishuangbanna Dai Autonomous Prefecture and Pu'er City (Jingdong County)
(Jinghong County-level City). y {Jingdong ¥)-

Honghe Hani and Yi Autongmous Prefecture. Zhaotong City (Yanjin County, Yongshan County, Suijiang County,
(Kaiyuan County-level City, Mile County-level City, - o - .
. . . ; Zhenxiong County, Yiliang County, Weixin County, and Shuifu County-
and Luxi County), Qujing City (Luliang County and . . . ) » .
: g level City), Lincang City (Yun County and Fengqing County), Nujiang Lisu
Shizong County), Wenshan Zhuang and Miao )
Autonomous Prefecture (Fugong County and Gongshan County), Pu’er
2017-2022  Autonomous Prefecture (Yanshan County and " y\1oiano county and Jingdong County), Yuxi City (Xinping County)
Qiubei County), Lijiang City (Yongsheng County Y Jlang y gdong Y), y ping Y),

} ; ) - Baoshan City (Shidian County), Chuxiong Yi Autonomous Prefecture
and Ninglang County), Kunming City (Shilin . . o -
. ; (Chuxiong County-level City), Dali Bai Autonomous Prefecture (Nanjian
County), and Chuxiong Yi Autonomous Prefecture 2 ) .
County), and Diging Tibetan Autonomous Prefecture (Degin County).
(Dayao County).
Honghe Hani and Yi Autonomous Prefecture Zhaotong City (Zhaoyang District, Yanjin County, Yongshan County,

(Kaiyuan County-level City, Mengzi County-level  Zhenxiong County, Yiliang County, Weixin County, and Shuifu County-
City, Jianshui County, Mile County-level City, and level City), Lincang City (Linxiang District, Fengging County, Yun County,
Luxi County), Yuxi City (Jiangchuan District, and Gengma County), Nujiang Lisu Autonomous Prefecture (Fugong
2005-2022 Tonghai County, Huaning County, and Eshan County, Gongshan County and Lanping County), Pu’er City (Zhenyuan
County), Kunming City (Chenggong District and County and Jingdong County), Diging Tibetan Autonomous Prefecture
Jinning District), Dehong Dai-Jingpo Autonomous (Weixi County and Deqin County), Dali Bai Autonomous Prefecture

Prefecture (Ruili County-level City), and (Nanjian County and Weishan County), Chuxiong Yi Autonomous
Xishuangbanna Dai Autonomous Prefecture Prefecture (Chuxiong County-level City), and Lijiang City (Yulong Naxi
(Jinghong County-level City). Autonomous County).
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SUPPLEMENTARY TABLE S2. Typhoid and paratyphoid fever outbreaks in Yunnan Province, China, 2005-2022.

Year Prefecture/City . County-l_eyel o Outbreaks Cases Expo_sed Incidence
City/County/Municipal District (n) (n) population (n) (%)

2005 Honghe Hani and Yi Autonomous Prefecture Mile County-level City 2 83 2,206 3.76
Quijing City Luliang County 2 51 4,100 1.24
2006 Quijing City Xuanwei County-level City 1 53 2,301 2.30
Zhaotong City Yongshan County 1 22 3,000 0.73
Honghe Hani and Yi Autonomous Prefecture Yuanyang County 1 19 548 3.47
2007 Yuxi City Chengjiang County-level City 1 15 946 1.59
Wenshan Zhuang and Miao Autonomous Prefecture Maguan County 3 44 647 6.80
2008 Kunming City Guandu District 1 92 3,026 3.04
Zhaotong City Yanijin County 1 18 454 3.96
Honghe Hani and Yi Autonomous Prefecture Gejiu County-level City 1 42 384 10.94
Quijing City Luliang County 1 34 386 8.81
2009 Quijing City Shizong County 1 63 368 17.12
Wenshan Zhuang and Miao Autonomous Prefecture Maguan County 1 21 237 8.86
2010 Kunming City Jinning District 1 13 2,500 0.52
2012 Wenshan Zhuang and Miao Autonomous Prefecture Yanshan County 1 14 1,198 117
2014 Wenshan Zhuang and Miao Autonomous Prefecture Yanshan County 2 559 178,592 0.31
2016 Baoshan City Changning County 1 27 410 6.59
i Quijing City Shizong County 1 49 2,076 2.36
Wenshan Zhuang and Miao Autonomous Prefecture Maguan County 1 14 140 10.00
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Preplanned Studies

Monitoring the Status of Multi-Wave Omicron Variant
Outbreaks — 71 Countries, 2021-2023

Chuanging Xu'*; Lianjiao Dai'; Songbai Guo'; Xiaoyu Zhao? Xiaoling Liu®

Summary

What is already known about this topic?
Analyzing the characteristics of epidemic development
after the emergence of the severe acute respiratory
syndrome virus 2 Omicron variants with its subvariants
and the impact of income level inequalities on the
coronavirus disease 2019 (COVID-19) case-fatality
ratio helps to better understand the spread of novel
coronavirus infections.

What is added by this report?

The median time interval between the first and second
waves of Omicron sub-variants was 70 days
(interquartile spacing: 43.75-91), and between the
second and third waves was 87.5 days (interquartile
spacing: 49-119), which obeyed a lognormal
distribution. The case-fatality ratio of the first wave was
significantly higher than that of the second and third
waves. During the initial epidemic period, there was no
significant geographic differences in the case-fatality
ratio of the first wave, while the case-fatality ratio in
countries with high income levels was significantly
lower than in countries with other income levels.
What are the implications for public health
practice?

We still need to pay attention to the COVID-19
pandemic, as inequalities in income levels have an
impact on the case-fatality ratio during the early stages
of Omicron epidemics. In most countries, strains of the
virus are likely to move from low to high population
prevalence after 2—4 months.

The productive life of society has been greatly
affected since the outbreak of coronavirus disease 2019
(COVID-19) in late 2019. In November 2021,
genome surveillance teams in South Africa and
Botswana detected the Omicron variant on November
26, 2021 (/). Compared to previous strains, the
Omicron variant has a faster transmission rate and
enhanced immune escape. Several scholars have shown
that novel coronaviruses are characterized by multi-
wave epidemics and changes in case-fatality ratios over
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time (2-5). Because of the multiple disparities between
countries, differences in the number of confirmed cases
and deaths in outbreaks across regions are often related
to social inequalities (6-7). Ribeiro KB et al. studied
social inequalities in COVID-19 mortality in Sio
Paulo and showed that significant social inequalities
exist in COVID-19 mortality, with higher case-fatality
ratios among Black and mestizo populations compared
to White populations and higher case-fatality ratios
associated with lower socioeconomic indicators such as
education and income (8). Perelman J et al. retrieved
data from the Sixth National Health Survey of
Portugal, conducted from September 2019 to
December 2019, and examined and analyzed social
inequalities in eight diseases associated with
COVID-19 deaths in Portugal; they showed that
populations with higher education had a lower risk of
hypertension,  diabetes,  stroke,  obesity, and
cardiovascular disease (9). Since the naming of the
Omicron strain, several waves of outbreaks have
occurred in many countries, mainly caused by the
Omicron strain and its variants. We collected
epidemiological data on the Omicron variant of
COVID-19 in 71 countries from November 14, 2021,
to June 11, 2023, to analyze the characteristics of
outbreak transmission following the emergence of the
Omicron strain and assess the impact of income level
inequalities on the COVID-19 case-fatality ratio.

This study compiled weekly data on new confirmed
COVID-19 cases and deaths for 71 countries based on
daily new COVID-19 cases published by the World
Health Organization (https://covid19.who.int/data).
The baseline was defined as the 50th percentile of the
number of non-zero new weekly cases. The start of
each outbreak wave was defined as the first of 3
consecutive weeks in which the number of new cases
exceeded the baseline, and the end was defined as the
first of 3 consecutive weeks in which the number of
new cases fell below the baseline (70). Figure 1 shows
the weekly trend of new cases between November 14,
2021, and June 11, 2023, using Poland, the United
States, Singapore, and India as examples.

Based on World Bank classification criteria, the 71
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countries were categorized by income level into four
high-income,
middle-income, and

lower-
and

tiers: upper-middle-income,

low-income countries;
geographically into seven regions: South Asia, Europe
and Central Asia, the Middle East and North Africa,
East Asia and the Pacific, sub-Saharan Africa, North
America, and Latin America and the Caribbean. The
case-fatality ratio for each outbreak wave was calculated
using the number of deaths divided by the number of
confirmed cases during the same period. Descriptive
statistics were analyzed for the time intervals between
each outbreak wave. R 4.1.3 software (The R
Foundation for Statistical Computing, Vienna,
Austria) was used to conduct Fisher’s exact test to
determine whether country and
geographic location were related to the number of
outbreak waves. The Kruskal-Wallis one-way ANOVA
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was used to determine whether there was a significant
difference in case-fatality ratios between different
outbreak classifications and to assess the effect of
income inequality on the outbreak case-fatality ratio.

Of the 71 countries included in the analysis, 5
experienced one wave of outbreaks, 22 experienced two
waves, and 38 experienced three waves between
November 14, 2021 and June 11, 2023. Six countries,
including Brunei, Austria, and Uzbekistan, experienced
four waves during this period.

Based on each epidemic wave’s outbreak time and
genomic surveillance data of COVID-19 from the
Centers for Disease Control and Prevention, the
predominant epidemiologic strains in the Omicron
variant’s first wave were BA.1.1, BA.2, and BA.2.12.1.
The dominant viral strains in the second wave were
BA.5, and the dominant strains in the third wave were

6,000,000 -
5,000,000 -
4,000,000
3,000,000 -
2,000,000
1,000,000
0 —
> Qv N b b &
q,\\@qy\,@,@@ Wfﬁ'\i’\ﬁ?’\w
DUENENENENENE NGNS
Date
2,500,000 -
2,000,000
1,500,000
1,000,000 -
500,000 -
0 ———t—
x QO N P P & &
SN Q”’\Q & Q'\\Q Q°’\° Yl
oSG oS A A S
A A R N A A AN
N M S S S N M
Date

FIGURE 1. Time-series plot of new cases in (A) Poland, (B) the United States, (C) Singapore, and (D) India between

November 14, 2021 and June 11, 2023.

Note: The black curve is the number of new confirmed cases per week, the red horizontal line is the baseline, the green
vertical line is the start time of each wave of the epidemic, and the blue vertical line is the end time of each wave of the

epidemic.
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BQ.1.1 and XBB.1.5.

To obtain the time interval between low and high
epidemics of the viral strains in the population, the
interval between two waves of outbreaks was defined as
the difference between the start time of each wave and
the end time of the previous wave. The median interval
between the first and second waves of Omicron
subvariant outbreaks was 70 days (interquartile range:
43.75-91), and the median interval between the
second and third waves was 87.5 days (interquartile
range: 49-119); these intervals follow a lognormal
distribution. These findings suggest that in most
countries, the viral strain shows a trend of high
prevalence approximately 2—4 months after the end of

A 20 A Lognormal
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g ! BIC  90.119,14
3 121
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5
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z 9]

4 4

2 4

0
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Interval days

one wave. The distribution of the time interval
between each outbreak wave is shown in Figure 2.

We studied the case-fatality ratio of Omicron
variants over time and calculated the case-fatality ratio
of outbreaks in 38 countries with three waves of
outbreaks based on available data, as shown in
Figure 3. We found that among the three epidemic
waves, the highest case-fatality ratio occurred during
the first wave of Omicron sub-variants in 24 countries:
Greece, Chile, Singapore, Mexico, Guatemala, Peru,
India, Ukraine, Kenya, Madagascar, Afghanistan,
Ethiopia, Mali, Burundi, Italy, Switzerland, Panama,

Poland, Qatar, Armenia, Ecuador, Morocco,
Myanmar, and Plurinational State of Bolivia. The
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FIGURE 2. Distribution of outbreak intervals (A) between the first and second waves of Omicron sub-variants and (B)

between the second and third waves.

Abbreviation: AlIC=Akaike information criterion; BIC=Bayesian information criterion.
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FIGURE 3. Case-fatality ratio analysis of three waves of outbreaks caused by Omicron variants in 38 countries. (A) Case-
fatality ratio per country; (B) Case-fatality ratio per wave of the epidemic.

Note: In panel A, the black, red, and blue lines represent the first, second, and third waves of case-fatality ratios,
respectively. In panel B, the solid line represents the median case-fatality rate for each wave of the epidemic, and the
dashed line represents the mean case-fatality rate for each wave of the epidemic.
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highest case-fatality ratio occurred in the second wave
in two countries: Malawi and the Philippines. There
were 12 countries with the highest case-fatality ratio in
the third wave: the United States of America,
Luxembourg, the Netherlands, Slovenia, France,
Colombia, Nepal, Lebanon, Mozambique, Belgium,
Canada, and Indonesia. The mean case-fatality ratios
for these 38 countries in the three epidemic waves were
0.006899513, 0.003806385, and 0.003993398,
respectively.

A Kruskal-Wallis one-way ANOVA was used to
analyze differences in case-fatality ratios between
epidemic waves. The resulting P value of 0.008572 was
less than the 0.05 level of significance, indicating a
significant difference in case-fatality ratios between the
three epidemic waves. Dunn’s method was used for
pairwise comparisons. Results are shown in Table 1.
The P value comparing the case-fatality ratio of the
first wave to the second and third waves was less than
0.05. Box plots of the case-fatality ratios for the three
waves show that the Omicron variant was associated
with higher lethality in the early stages of emergence.
As the pandemic progressed, the lethality of the second
and third waves was much lower than that of the first
wave of Omicron sub-variants.

Fisher’s exact test was used to determine the
correlation between a country’s
geographic location, and the number of outbreak
waves. The resulting P values were 0.7744 and 0.9219,
respectively, indicating no relationship between a
country’s income level or geographic location and the
number of outbreak waves. The case-fatality ratios
from 71 countries experiencing the first wave of

income level,

TABLE 1. Results of Dunn’s test for case-fatality ratio in
three waves of the epidemic.

Comparison expression z P
First wave vs. second wave 2.719 0.010
First wave vs. third wave 2.622 0.013

Second wave vs. third wave -0.097 1.000

Omicron sub-variants were categorized by geographic
location and analyzed using a Kruskal-Wallis one-way
ANOVA. The P value of 0.2648 exceeded 0.05,
indicating no significant difference in case-fatality
ratios of the first Omicron sub-variant wave across
regions. Figure 4A shows the case-fatality ratio levels of
the first Omicron sub-variant wave according to a
country’s income class when the Omicron variant first
circulated, addressing income inequality between
countries. The mean case-fatality ratios of the first
Omicron sub-variant wave for high-income, upper-
middle-income, lower-middle-income, and low-
income countries were 0.003053595, 0.009750986,
0.006429692, and 0.009294815, respectively.

A Kruskal-Wallis one-way ANOVA was performed
to assess the relationship between country income level
and case-fatality ratio in the first wave of Omicron
subvariants. This analysis was chosen based on sample
size considerations. The P and Dunn’s two-by-two
comparison test results are shown in Table 2. These
results indicate that, when the Omicron variant first
endemic, the case-fatality ratio was
significantly lower in high-income countries compared
to countries with other income levels. This difference is
likely due to social inequalities and disparities in
resource allocation.

became
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FIGURE 4. Levels of case-fatality ratio of Omicron sub-variants in countries with different income levels. (A) Levels of case-
fatality ratio in the first wave of Omicron sub-variants in countries with different income levels. (B) Levels of case-fatality ratio
in the second wave of Omicron sub-variants in countries with different income levels. (C) Levels of case-fatality ratio in the
third wave of Omicron sub-variants in countries with different income levels.

Note: The solid line represents the median case-fatality rate for each wave of the epidemic, and the dashed line represents

the mean case-fatality rate for each wave of the epidemic.
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TABLE 2. Results of the Dunn's test for country income
level and case-fatality ratio in the first wave of Omicron
sub-variants.

Comparison expression 4 P

-3.31 2.79x107°
-2.55 3.25%x107?
0.99 9.68x10™"
-4.50 2.01x107®

Low income vs. upper-middle income -0.02 1.00

High income vs. low income
High income vs. lower-middle income
Low income vs. lower-middle income

High income vs. upper-middle income

Lower-middle income vs. upper-middle income -1.60 3.32x10™"

DISCUSSION

The constant mutation of COVID-19 strains and
declining levels of immunity may cause coronaviruses
to exhibit multiple epidemic waves. Our study found
that neither the geographic location nor the income
level of a country correlated with the number of
epidemic waves. Although the Omicron variant of
COVID-19 resulted in different case-fatality ratios for
each epidemic wave, the second and third waves had
significantly lower case-fatality ratios than the first
wave.

Therefore, attention to the novel coronavirus
epidemic remains paramount. Analysis of the data in
this paper reveals that the interval between the end
date of each wave and the start date of the next wave
follows a lognormal distribution, with a median of 70
days (interquartile range: 43.75-91) and 87.5 days
(interquartile ~ range: 49-119), respectively.
Consequently, most national viral strains will likely
transition from low to high prevalence within 2—4
months. Discrepancies in income levels, resource
allocation, and policy implementation across different
countries contribute to significant variations in the
Omicron case-fatality ratio. For instance, regarding
vaccine distribution in Africa and the Middle East,
countries with superior healthcare infrastructure have
an advantage in vaccine access (/). Therefore,
analyzing data from a wider range of countries and
regions is crucial for a more accurate understanding of
outbreak temporal characteristics. Increased immune
escape by Omicron leads to multiple infection waves,
and repeated infections increase the risk of death,
hospitalization, and sequelae (/2). Therefore,
protective measures should be implemented to mitigate
the risk of multiple novel coronavirus infections.
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Methods and Applications

Impact of COVID-19 Interventions on Respiratory and Intestinal
Infectious Disease Notifications — Jiangsu Province,
China, 2020-2023

Ziying Chen'; Xin Liu'; Jinxing Guan'; Yingying Shi’; Wendong Liu* Zhihang Peng**; Jianli Hu'**

ABSTRACT

Introduction: Many measures implemented to
control the coronavirus disease 2019 (COVID-19)
pandemic have reshaped the epidemic patterns of other
infectious diseases. This study estimated the impact of
the COVID-19 pandemic on respiratory and intestinal
infectious diseases and potential changes following
reopening.

Methods: The  optimal  intervention  and
counterfactual models were selected from the seasonal
autoregressive integrated moving average (SARIMA),
neural network autoregression (NNAR), and hybrid
models based on the minimum mean absolute
percentage error (MAPE) in the test set. The relative
change rate between the actual notification rate and
that predicted by the optimal model was calculated for
the entire COVID-19 epidemic prevention period and
the “reopening” period.

Results: Compared with the predicted notification
rate based on the counterfactual model, the total
relative change rates for the 9 infectious diseases were
-44.24%, respiratory infections (-55.41%), and
intestinal infections (-26.59%) during 2020-2022.
Compared with the predicted notification rate based
on the intervention model, the total relative change
rates were  +247.98%,  respiratory infections
(+389.59%), and intestinal infections (+50.46%) in
2023. Among them, the relative increases in influenza
(+499.98%) and hand-foot-mouth disease (HFMD)
(+70.97%) were significant.

Conclusions: Measures taken in Jiangsu Province
in response to COVID-19 effectively constrained the
spread of respiratory and intestinal infectious diseases.
Influenza and HFMD rebounded significantly after the
lifting of COVID-19 intervention restrictions.

Since 2020, China has classified coronavirus disease

Chinese Center for Disease Control and Prevention

2019 (COVID-19) as a Category B infectious disease
but managed it as a Category A disease, empowering
local authorities to impose lockdowns and other
stringent control measures (/). These COVID-19
control measures in China have persisted for nearly 3
years and may have far-reaching consequences for the
healthcare system and other disease burdens. In
January 2023, the Chinese government substantially
adjusted its control policies, completely lifting
COVID-19 interventions and resuming normal social
and economic activities. The first COVID-19 case was
confirmed in Jiangsu Province on January 22, 2020
(2). Several studies have shown that these measures are
effective against COVID-19 and numerous other
common infectious diseases, particularly respiratory
and intestinal infections (3). Currently, the impacts of
COVID-19 interventions on the spread of other
respiratory and intestinal diseases in Jiangsu Province
have been inconsistent.

Therefore, in this study, we established COVID-19
intervention models and counterfactual models of 9
respiratory and intestinal infectious diseases by
adopting the seasonal autoregressive integrated moving
average (SARIMA), neural network autoregression
(NNAR), and hybrid models. We then compared the
actual notification rate with the predicted rate and
analyzed the impact of COVID-19 intervention
measures in Jiangsu Province. This study aimed to
provide a decision-making basis for the prevention and
control of emerging infectious diseases.

METHODS

Data Source
Data on respiratory and intestinal infectious diseases
between January 2004 and December 2023 in Jiangsu
Province were obtained from the nationwide Notifiable
Infectious Diseases Reporting Information System
(NIDRIS). Based on the criterion of an annual average
number of reported cases exceeding 250 from 2020 to

CCDC Weekly / Vol. 6/ No. 41 1059
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2022, a total of nine notifiable infectious diseases were
identified for analysis: tuberculosis, influenza, mumps,
hepatitis A, dysentery,
diarrhoeal diseases other than cholera, dysentery, and
typhoid/paratyphoid (OID), hand-foot-mouth disease
(HFMD), and hepatitis E.

This study used the overall government response
index from the Oxford COVID-19 Government
Response Tracker (OxCGRT) to quantify COVID-19
interventions (4). This index tracks the strength and
variation of all relevant indicators of government
response from 2020 to 2022 on a scale of 0 to 100.

scarlet fever, infectious

Establishment of the SARIMA Model

SARIMA, a variant of the ARIMA model, is
expressed as  SARIMA(p,4,9)(P,D,Q)s (5). The
parameters p, d, and ¢ represent the orders of
autoregression, the degree of trend difference, and the
moving average for the nonseasonal component,
respectively. P signifies the order of seasonal
autoregression; D, the degree of seasonal difference; Q,
the order of the seasonal moving average; and s, the
seasonal period.

Establishment of the NNAR Model

NNAR models can be conceptualized as a complex
network of neurons or nodes, exhibiting intricate
nonlinear interactions and functional forms. The
model can be described with the notation
NNAR(p,P,k)m for seasonal data, where p represents
the number of nonseasonal lagged inputs for the linear
autoregressive (AR) model process, P denotes the
seasonal lag for the AR model process, # signifies the
number of nodes in the hidden layer, and m is the
length of the seasonal period (5).

Establishment of The SARIMA-NNAR
Hybrid Model

A hybrid model was constructed by combining the
SARIMA and NNAR models with equal weights.

Model Evaluations
We used a quantitative metric to evaluate and
compare the performance of the models: MAPE. The
formula used to calculate the metric is shown below

(6):
b = i
Ve

MAPE = % i
=1

where y, and j, denote the original and predicted

1060 CCDC Weekly / Vol. 6/ No. 41

values at time #, respectively, and 7 is the number of
predictions. A model with small mean absolute
percentage error (MAPE) values is preferred.

Constructing the Counterfactual Models

The SARMA, NNAR, and hybrid models were
used to construct counterfactual models. Monthly case
counts for each infectious disease from 2004 to 2017
served as the training set, while data from 2018 to
2019 served as the test set. The baseline models with
the lowest MAPE values on the test set were selected
and trained using data from 2004 to 2019 to predict
case counts from 2020 to 2023.

Constructing the COVID-19

Intervention Models

Three models were constructed using monthly case
counts for each infectious disease and overall
government response indices. Data from 2004 to 2021
were used for model training and construction, while
data from 2022 served as the test set to assess model
performance. The best baseline models were selected
based on the minimum MAPE value obtained from
the test set. Subsequently, these models were trained
using data from 2004 to 2022 to predict the number
of cases in 2023 (Supplementary Figure S1, available at
hteps://weekly.chinacdc.cn/).

RESULTS

Selection of The Optimal Model

The counterfactual models were neural network for
tuberculosis, influenza, and OID; SARMA for mumps,
scarlet fever, and HFMD; and hybrid for hepatitis A,
dysentery, and hepatitis E. The intervention models
were hybrid for tuberculosis, mumps, scarlet fever,
dysentery, OID, HFMD, and hepatitis E; neural
network for influenza; and SARIMA for hepatitis A.
(Supplementary Table S1, available at https://weekly.
chinacdc.cn/)

Predicted Yearly Notification Rates for
2020-2023 Based on Counterfactual
Models

The actual yearly notification rates for 9 infectious
diseases from 2020 to 2022 were lower than the rates
predicted by the counterfactual models. The total
relative change rates for the 9 infectious diseases,
respiratory infections, and intestinal infections were

Chinese Center for Disease Control and Prevention
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FIGURE 1. The observed notification rate versus the predicted notification rate based on 2020-2023 according to the
counterfactual model. (A) Tuberculosis; (B) Influenza; (C) Mumps; (D) Scarlet fever; (E) Hepatitis A; (F) Dysentery; (G) OID;

(H) HFMD; (1) Hepatitis E.

Note: The blue line represents the fitted values, the black line represents the actual values, and the red line along with the
pink area represents the predicted values and the 95% confidence interval, respectively.

Abbreviation: OlD=infectious diarrhoeal diseases other than
mouth disease.

-44.24%, -55.41%, and -26.59%, respectively. The
three diseases with the highest relative change rates
were scarlet fever (-75.90%), mumps (-73.35%), and
influenza (-61.00%). (Figure 1 and Table 1)

The total notification rates for 9 infectious diseases
in 2023 predicted by the COVID-19 intervention
model and the counterfactual model were similar

(P=0.796).

Predicted Yearly Notification Rates for
2023 Based on COVID-19

Intervention Models

The actual yearly notification rate of 9 infectious
diseases in 2023 was higher than the rate predicted by
the COVID-19 model,  which
incorporates the overall government response index to
reflect changes in non-pharmaceutical interventions
(NPIs). The total relative change rate for the 9
infectious diseases was +247.98%, with respiratory
infections (+389.59%) and intestinal infections

intervention
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cholera, dysentery, and typhoid/paratyphoid; HFMD=hand-foot-

(+50.46%) showing increases. Three infectious diseases
— influenza (+499.98%), HFEMD (+70.97%), and
hepatitis A (+7.04%) — showed a relative increase,
while the remaining 6 infectious diseases showed a
relative reduction (Figure 2 and Table 1).

DISCUSSION

COVID-19 intervention measures effectively curbed
the spread of respiratory and enteric infectious diseases
in Jiangsu. We observed that the incidence of 9
infectious diseases declined compared to model
predictions during 2020-2022, and the reduction in
respiratory infectious diseases was greater than that in
intestinal infectious diseases.

The lifting of NPIs did not result in a rebound of all
infectious diseases; only influenza and HFMD
infections were significantly higher than predicted by
the intervention model. Similar observations have been
reported in other countries. In late 2022, a surge in
influenza and respiratory syncytial virus infections in
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FIGURE 2. The observed notification rate versus the predicted notification rate based on 2023 according to the intervention
model. (A) Tuberculosis; (B) Influenza; (C) Mumps; (D) Scarlet fever; (E) Hepatitis A; (F) Dysentery; (G) OID;(H) HFMD; (I)

Hepatitis E.

Note: The blue line represents the fitted values, the black line represents the actual values, and the red line along with the
pink area represents the predicted values and the 95% confidence interval, respectively.
Abbreviation: OlD=infectious diarrhoeal diseases other than cholera, dysentery, and typhoid/paratyphoid; HFMD=hand-foot-

mouth disease.

the U.S. led to numerous reports (7). This wave of
respiratory infections among children coincided with
the easing of COVID-19 restrictions. Similarly, the
incidence of HFMD rebounded in Japan as NPIs were
relaxed (8). Based on current data, the observed
rebounds or outbreaks following the easing of NPIs
initially appeared in children and were all attributed to
non-vaccine preventable diseases (non-VPDs) (9).
However, given the potential decline in community
immunity due to disruptions in vaccination programs
during the COVID-19 pandemic (10),
rebound trends observed for non-VPDs might also be
anticipated for VPDs.

Some medical professionals and media outlets use
the term “immune debt” to explain the surge in
influenza and HFMD cases in 2023 (71), referring to
the lack of pathogen exposure that leaves immune
systems less prepared to fight these diseases. However,

similar

opponents argue that the immune system does not
operate on a “use it or lose it” mechanism; even

without exposure to pathogens, the human immune

1062 CCDC Weekly / Vol. 6/ No. 41

system maintains normal natural immunity (72).
Indeed, proposed
explanations for this phenomenon: the severe acute
respiratorysyndrome virus 2 (SARS-CoV-2) virus
damages the immune system through T-cell responses,
weakening resistance to common infectious diseases
(13). Immune dysfunction can persist for up to 8
months, even in patients with mild to moderate SARS-
CoV-2 infection (14). However, further evidence is
needed to confirm this viewpoint.

Most related studies have focused on assessing the
impact of COVID-19 outbreaks and control measures
on other infectious diseases during the early stages of
lockdown or specific periods. This study encompasses
the entire COVID-19 period and considers the
dynamic changes in NIPs. We selected optimal models
to improve prediction accuracy, retrospectively
analyzed and compared case reports, and addressed
inquiries regarding the magnitude of changes in
respiratory and intestinal infectious diseases after the
cancellation of the zero-clearing policy in a timely

several scholars have new
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TABLE 1. The predicted yearly notification rate based on the counterfactual model and the intervention model from 2020 to

2023.
Counterfactual model Intervention model
2020-2022 2023 2023
gtseega:ril Diseases Average ::i::;g Annual ::1'::‘9’2 Annual ::::;:
cases ar_mual rate of Cases incidence rate of Cases incidence rate of
() ('1"/'1"0%‘*333) incidence (11100,000) incidence ™ (1/100,000) incidence
’ (%) (%) (%)
Tuberculosis 69,823 27.87 -7.79 22,229 26.10 -32.46 20,661 24.26 -27.34
Influenza 304,717 121.64 -61.00 83,959 98.60 649.72 104,913 123.20 499.98
Respiratory ~ Mumps 67,543 26.96 -73.35 25,371 29.79 -84.35 4,738 5.56 -16.19
Scarlet fever 19,979 7.98 -75.90 7,577 8.90 -84.51 2,373 2.79 -50.53
Total 462,062 184.46 -55.41 139,136 163.39 366.89 132,685 155.82 389.59
Hepatitis A 1,796 0.72 -18.44 517 0.61 -14.89 411 0.48 7.04
Dysentery 5,262 2.10 -34.49 1,452 1.71 -55.03 1,184 1.39 -44.85
. OoID 85,067 33.96 -32.22 31,469 36.96 -49.39 18,250 21.43 -12.73
intestinal HFMD 192,943 77.02 -24.95 58,830 69.09 110.24 72,341 84.95 70.97
Hepatitis E 7,348 2.93 -0.75 2,225 2.61 9.48 2,947 3.46 -17.34
Total 292,416 116.73 -26.59 94,493 110.97 51.48 95,133 111.72 50.46
Total 754,478 301.19 -44.24 233,629 274.36 239.32 227,818 267.54 247.98

Note: relative change rate of incidence=(actual incidence-predicted incidence)/predicited incidence.

manner.

Our study has certain limitations. First, the lower
number of reported cases of certain infectious diseases
than predicted during the three-year COVID-19
intervention may reflect underreporting due to
reluctance to seek medical care, potentially biasing
reporting data and underestimating the actual
incidence. Second, most OxCGRT data indicators are
based on the

implemented in a single country, which may limit the

strictest ~ government  policies
generalizability of our findings to other countries or
regions with less stringent measures.
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SUPPLEMENTARY MATERIAL

The monthly cases

The intervention
series (overall government
response index)

Train database: 2004.1-2021.12 Construct SARIMA, NNAR Construct SARIMA, NNAR Train database: 2004.1-2017.12
Test database: 2022.1-12 and hybrid models and hybrid models Test database: 2018.1-2019.12

Select the best model based on Select the best model based on
the minimum MAPE value of the minimum MAPE value of
the test set the test set

Retrain database: 2004.1-2022.12 Retrain using the Retrain using the Retrain database: 2004.1-2019.12
best model best model Construct counterfactual model

Calculate incidence

Counterfactual cases after Counterfactual cases during
COVID-19 pandemlc COVID-19 pandemic
2023.1-12 2020.1-2022.12

Forecast “reopening”period Forecast Counterfactual cases
2023.1-12 2020.1-2023.12

Actual notification rate o
2023.1-12 Calculate incidence Calculate incidence

Actual notification rate
2020.1-2022.12

SUPPLEMENTARY FIGURE S1. Research design and model training diagram.
Abbreviation: SARIMA=seasonal autoregressive integrated moving average; NNAR=neural network autoregression;
MAPE=mean absolute percentage error; COVID-19=coronavirus disease 2019.

SUPPLEMENTARY TABLE S1. Selection of optimal model.

Counterfactual model Intervention model
Disease category Di (The first step) (The second step)
Final model Model parameter Final model Model parameter
Tuberculosis Neural Network NNAR(3,1,2)[12] Hybrid -
Influenza Neural Network NNAR(13,1,7)[12] Neural Network NNAR(13,1,8)[12]
Respiratory
Mumps SARIMA SARIMA(3,0,1)(2,1,0)[12] Hybrid -
Scarlet fever SARIMA SARIMA(2,0,0)(0,1,1)[12] Hybrid -
Hepatitis A Hybrid = SARIMA SARIMA(0,1,3)(0,0,2)[12]
Dysentery Hybrid = Hybrid =
Intestinal OID Neural Network NNAR(15,1,8)[12] Hybrid =
HFMD SARIMA SARIMA(3,1,0)(0,1,1)[12] Hybrid =
Hepatitis E Hybrid = Hybrid =

Note: “~” means SARIMA-NNAR (SARIMA with weight 0.5, NNAR with weight 0.5).
Abbreviation: SARIMA=seasonal autoregressive integrated moving average; NNAR=neural network autoregression; OlD=infectious
diarrhoeal diseases other than cholera, dysentery, and typhoid/paratyphoid; HFMD=hand-foot-mouth disease
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Drawing on the Development Experiences of Infectious
Disease Surveillance Systems Around the World

Huimin Sun'; Weihua Hu'; Yongyue Wei'; Yuantao Hao

ABSTRACT

High-quality infectious disease surveillance systems
are foundational to infectious disease prevention and
control. Current major infectious disease surveillance
systems globally can be categorized as either indicator-
based, which are more specific, or event-based, which
Modern systems
commonly utilize multi-source data, strengthened
information sharing, advanced technology, and

are more timely. surveillance

improved early warning accuracy and sensitivity.
International experience may provide valuable insights
for China. China’s existing
surveillance systems require urgent enhancements to
monitor emerging infectious diseases and improve the

infectious disease

integration and learning capabilities of early warning
models. Methods such as establishing multi-stage
surveillance systems, promoting cross-sectoral and
cross-provincial data sharing, applying advanced
technologies like artificial intelligence, and cultivating
professional talent should be adopted to enhance the
development of intelligent and multipoint-triggered
infectious disease surveillance systems in China.

Throughout history, infectious diseases have caused
enormous loss of life and social distress, and despite
modern scientific and technological advances, they
remain an ongoing threat. The emergence and re-
emergence of infectious diseases serve as reminders of
the need for constant High-quality
surveillance systems are crucial for the effective
prevention and control of infectious diseases. By

vigilance.

collecting and analyzing epidemic data, these systems
detect infectious disease trends and provide -early
warnings of potential outbreaks, enabling authorities to
take swift action and reduce the risk of disease
transmission.

China Notifiable

Infectious Diseases Reporting Information System

implemented the National

Chinese Center for Disease Control and Prevention

1,2,3,#

(NIDRIS) in 2004 to enable nationwide direct
reporting of infectious diseases. In 2008, the China
Infectious Diseases Automated-alert and Response
System (CIDARS) launched, creating an automatic
warning model based on NIDRIS data (7). These
systems have helped address China’s infectious disease
surveillance and early warning challenges. However,
over time, NIDRIS and CIDARS have encountered
problems such as delayed warning checkpoints, limited
information sources, and technologies in need of
improvement (2). The inauguration of the National
Bureau of Disease Control and Prevention in 2021
signified the start of reform for China’s disease
prevention and control system. Infectious disease
surveillance, a pivotal responsibility of the CDC, is in
urgent need of improvement. As President Xi Jinping
emphasized, enhancing monitoring and early warning
capabilities should be a top priority for a sound public
health system. China requires intelligent and multi-
point-triggered surveillance systems, which generally
refer to advanced systems that leverage technologies
such as big data, cloud computing, the Internet of
Things, and artificial intelligence (Al) to automatically
collect data, synthesize results, and issue early warnings
from multiple critical nodes in the infectious disease
lifecycle. Such systems also incorporate public opinion
data from media and social networks, along with other
sociologically relevant information about disease
emergence, to improve the sensitivity, accuracy, and
timeliness of early warnings, thereby reducing human
error and oversight (2).

China can benefit from international experience in
developing surveillance systems. This article reviews
global experience with infectious disease surveillance
systems to understand potential improvements for
China’s national surveillance system, aiming to provide
insights for constructing intelligent, multipoint-
triggered infectious disease surveillance systems in

China.
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OVERVIEW OF SURVEILLANCE
SYSTEMS GLOBALLY

Infectious disease surveillance can be defined as
continuously and systematically collecting information
on infectious diseases and related factors and
dynamically analyzing the temporal, spatial, and
population distribution of infectious diseases to
understand the current status and trends of infectious
diseases and provide guidance for preventive and
control measures (3). The main components of an
infectious disease surveillance system include data
collection, data  management, data  analysis,
investigation, and reporting (4). Early warning
identifies abnormal signals from surveillance data and
then performs alert management, which involves
managing and sorting these signals to ensure effective
responses. Together, surveillance, early warning, alert
management, and response form a comprehensive
process that is critical to the timely detection and
opportune management of infectious disease threats
5.

We searched PubMed, Web of Science, and China
National Knowledge Infrastructure using the following
search terms: (infectious disease OR communicable
disease) AND (surveillance OR monitoring OR early
warning) AND system. From the retrieved articles, we
extracted specific information about each surveillance
system, including system name, website, system type,
country or region, year started, area of service, data
sources, data access, functions, and features. We
selected and summarized infectious disease surveillance
systems from leading countries or regions, including
the United States and Canada for North America, the
European Union for Europe, China and Japan for
Asia, and Australia for Oceania. According to the
European CDC’s methodological framework for
epidemiological  intelligence, infectious  disease
surveillance systems can be classified as indicator-based
and event-based (6). Indicator-based systems collect
structured data from routine surveillance like case
numbers, morbidity, mortality, laboratory test results,
and consumption of specific drugs. Event-based
systems collect unstructured data from any formal or
informal source and are mainly used in web-based
surveillance  systems such as the Program for
Monitoring Emerging Diseases (ProMED) Mail, the
Global Public Health Intelligence Network (GPHIN),

and HealthMap (7-8).

1066 CCDC Weekly / Vol. 6/ No. 41

Indicator-Based Surveillance Systems

Indicator-based surveillance systems are
technologically mature and rely on passive reporting by
healthcare organizations (Table 1). For instance, the
United  States’ National Notifiable  Diseases
Surveillance System (NNDSS) (9), China’s NIDRIS
and CIDARS, and the European Surveillance System
(TESSy) (10) are used to monitor cases of notifiable
infectious diseases. The United States’ Electronic
Laboratory Reporting (ELR) systems and Japan’s
Infectious Agents Surveillance Report (IASR) monitor
laboratory  testing  information (/).  Before
microbiological confirmation, syndromic surveillance
collects and analyzes routine health-related data on
symptoms and clinical signs, often from emergency
departments and other healthcare settings (12-13). In
the United States, the National Syndromic
Surveillance Program (NSSP) has been instrumental in
detecting and monitoring health threats by aggregating
data from over 6,500 healthcare facilities across the
country (/4). In England, national real-time syndromic
surveillance systems have been developed using data
from telemedicine triage systems, general practice, and
emergency departments to support early detection of
seasonal influenza and situational awareness during
public events (15).

In recent years, wastewater surveillance has emerged
as a critical component of indicator-based surveillance
systems. Klapsa and colleagues reported the detection
of poliovirus isolates related to the serotype 2 Sabin
London sewage samples,
demonstrating the potential of wastewater surveillance
in identifying community transmission and genetic
evolution of pathogens (6). Similarly,
countries and regions, including the Netherlands,
Australia, France, and United States, have
implemented wastewater surveillance programs to
monitor for SARS-CoV-2 and other pathogens
(17-18), providing timely data on disease prevalence
and transmission dynamics. In addition, specific early
warning components such as the European
Antimicrobial Network
(EARS-Net) (19), prescription surveillance in Japan
(20), and the Over-The-Counter (OTC) medication
sales monitoring in the United States provide parallel
data streams that are synergistically integrated into
broader surveillance frameworks (27). The EARS-Net
tracks antimicrobial resistance patterns as part of the
European disease and laboratory networks. Meanwhile,
OTC medication sales monitoring and prescription
surveillance analyze sales data for specific drugs as an

vaccine  strain  in

several

Resistance  Surveillance
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TABLE 1. Major indicator-based surveillance systems.

Country/
region (year
started)

System (website) Data sources

Data access

Functions Features

NIDRIS (1) China (2004) Medical institutions  Restricted
NNDSS . Health departm.ents,
. United States healthcare providers, .
(https://www.cdc.gov/nndss/ : Public
. (Before 1990) laboratories, and
index.html) (9) .
hospitals
TESSy
(https://www.e.cdc..europa.e Europe European Union .
u/en/publications- Restricted
) (2008) member states
data/european-surveillance-
system-tessy) (10)
. Data reported in .
CIDARS (1) China (2008) NIDRIS Restricted
ELR (https://www.cdc.gov/ United States . .
elrfindex html) (17) (2001) Laboratories Restricted
Local public health
e e
(https://www.niid.go.jp/niid/j Japan (1980) . " Public
afiasr.html) quarantine stations
’ throughout the
country.
Emergency
. NSSP United States depaﬁment, . .
(https://www.cdc.gov/nssp/p (2003) laboratories, medical Restricted
hp/about/index.html) (74) centers, weather
service data
EARS-Net .
National
(https://www.ecdc.europa.e L .
antimicrobial
TSl Se Europe resistance
us/networks/disease- P . Public
(1998) surveillance
networks-and-laboratory- s
initiatives, laboratory
networks/ears-net-data)
networks
(19)
Prescnpho(r;g; rveillance Japan (2009) Pharmacies Restricted

The healthcare departments review

infectious disease information reported by Case surveillance

medical institutions and then report to
NIDRIS. It monitors individual cases,
diagnoses, and epidemiological
information on 39 infectious diseases.
The health departments work with
healthcare providers, laboratories,
hospitals, and other partners to obtain
information. Surveillance of notifiable
disease cases was carried out in about
3,000 health institutions.

Multisectoral
cooperation.

Case surveillance.

Multi-source data

and multisectoral
cooperation.

Case surveillance.
International
cooperation.

Surveillance of notifiable infectious
disease cases.

Case data extraction, early warning
analysis, and signal push daily. It
analyzes the situation of 39 infectious
diseases and provides early warning to
provincial and municipal CDCs.
ELRs are transmitted from the laboratory

Case surveillance

to public health departments, health care Stz:\l/)g"rf;r?cré
systems, and CDCs for further public . )
. . Multisectoral
health action. It monitors laboratory .
L . cooperation.
testing information.
Laboratory

Surveillance of laboratory testing
information, including pathogen
differential diagnosis, genetic testing, and
drug resistance test results.

surveillance. Multi-
source data and
multisectoral
cooperation.

By tracking the symptoms of patients in
the emergency department and other Syndromic
environments in almost real-time, a timely surveillance. Multi-
system is provided for public health source data and
officials to detect, understand, and multisectoral

monitor health threats to determine cooperation.
whether they need to be addressed.
Collect comparable, representative, and
- ) ) Laboratory
accurate data on antimicrobial resistance, .
. surveillance.
analyze the spatiotemporal trends of )
L . . ) International
antimicrobial resistance in Europe, and )
cooperation.

provide support for policy decision-making

Report the estimated numbers of
influenza and varicella patients and
people prescribed certain drugs.

Surveillance of
drug purchases.

Abbreviation: NIDRIS=National Notifiable Infectious Diseases Reporting Information System; NNDSS=National Notifiable Diseases
Surveillance System; TESSy=The European Surveillance System; CIDARS=China Infectious Diseases Automated-Alert and Response

System; ELR=Electronic Laboratory Reporting system;

IASR=Infectious Agents Surveillance Report; NSSP=National Syndromic

Surveillance Program; EARS-Net=European Antimicrobial Resistance Surveillance Network.

important component of syndromic surveillance to
identify trends that may indicate disease transmission.
Most  of
collaboration for data validation or further public

these systems involve multisectoral

health action.

Indicator-based surveillance systems are

Chinese Center for Disease Control and Prevention

characterized by their specificity, as they rely on
physician-diagnosed and laboratory-confirmed data,
utilizing pre-defined case definitions and/or laboratory
testing to ensure a clear and consistent identification of
cases. Typically, indicator-based surveillance reports are
compiled on a weekly or monthly basis from primary

CCDC Weekly / Vol. 6/ No. 41 1067
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public health units, which ensures a more complete
and specific dataset, albeit at the cost of timeliness.
This reporting frequency may lead to reporting delays
and information omissions, which in turn can result in
lagging or missed warnings, particularly for emerging
infectious diseases where the case definitions may not
yet be well-established or the disease may present with
atypical symptoms.

Event-Based Surveillance Systems

The prevalent event-based surveillance systems are
primarily web-based, capturing all unstructured data
that appears on the internet, including social media
posts, search inquiries, e-commerce trends, and
wearable device records (22). Event-based surveillance
systems can be further categorized into news
aggregators, automatic and moderated systems (7-8).
News aggregators aggregate web content by location or
topic into one platform for convenient access, such as
Influenzanet (23), FluTracking (24), and Google Flu
Trends (25), the last of which is no longer updated.
Automatic systems add a series of analytic steps to news
aggregators, as seen in the Semantic Processing and
Integration of Distributed Electronic Resources for
Epidemiology (EpiSPIDER) (26), HealthMap (27),
BioCaster (28), EPIWATCH (29), and the Medical
Information System (MedISys) (30). Moderated
systems involve the screening of information by public
health professionals before reports release, thus
exhibiting fewer false positives compared to news
aggregators and automatic systems, exemplified by
GPHIN (31), ProMED-mail (32), and Argus (33). A
summary of the characteristics of the ten event-based
surveillance systems is presented in Table 2.

Web-based surveillance systems commonly use
multilingual and multi-source data to monitor vast
amounts of online information on infectious diseases.
For instance, HealthMap, an automatic system
operational since 2006, monitors online information
on emerging diseases in nine languages, utilizing data
from sources like Baidu, EuroSurveillance, Google, and
WHO, among others (27). MedISys, operating within
the European Union since 2004, collects public health
reports in 32 languages from global internet sources,
providing summaries on various diseases (30). Argus, a
moderated system, collects information from media
sources in 40 native languages and uses Bayesian
analysis tools for filtering and selection, focusing on
biological events posing global health threats (33).
Some systems use advanced Al technology to drive data
analysis. For example, BioCaster, relaunched in 2021,
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utilizes deep learning and natural language processing
models to analyze structurally complex data from
thousands of news reports daily, enabling real-time
detection and interactive visualization of outbreak
reports (34). EPIWATCH employs Al to scan open-
source data, detecting early warnings of infectious
disease outbreaks since 2016, with continuous
enhancements through machine learning (29). GPHIN
implements a machine learning classifier to score the
relevance of reports, distinguishing outbreak-related
stories from background noise, with high-scoring
articles published immediately and low-scoring ones
suppressed, while medium-relevance articles are
reviewed by analysts (35). The integration of advanced
technologies enables these systems to demonstrate
significant advantages in capturing early abnormal
signals, thereby facilitating the timely detection and
management of public health threats. Influenzanet and
FluTracking are two representative participatory
surveillance platforms that collect data from volunteers
at multiple stages of symptoms, absence from school or
work, medication, medical consultations, and
vaccinations.  Participatory  surveillance improves
previous health surveillance systems by involving the
public in the construction of epidemiologic scenarios
(36-37).

Event-based surveillance systems enable timely
surveillance and early warning by facilitating
immediate reporting and rapid investigation of diseases
of public health significance. Event-based surveillance
serves as a complementary early warning mechanism
for emerging infectious diseases, emphasizing the
importance of immediate reporting and management
to ensure a swift response, which is also an essential
feature that distinguishes it from indicator-based
surveillance. For example, GPHIN has been recognized
for its role in detecting early signals during public
health emergencies, such as the SARS outbreak in
2003 and the initial reports of the Ebola outbreak in
West Africa in 2014 (38). It is worth noting that
GPHIN’s contributions are part of a broader array of
surveillance and intelligence efforts, whose alerts are
based on a combination of local accounts and media
reports that collectively contribute to the early
identification of potential outbreaks. However, the
information obtained by event-based surveillance
systems is not fully verified by public health
professionals, so the reliability of the information they
monitor cannot be guaranteed. When used for early
warning, their low signal-to-noise ratio might drain
considerable public health resources (5). Hence,
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TABLE 2. Major event-based surveillance systems.

Country/
Syste_m Type region Area_ of Data sources Data Functions Features
(website) (year Service access
started)
Baidu,
EuroSurveillance, Online information on emerging
HealthMap . Google, HealthMap diseases is monitored in nine .
) United . . ) Multi-source
(https://healthm Automatic . Community News . languages, providing real-time
States Worldwide Public h ; data and
ap.org/about/)  system (2008) Reports, WOAH, surveillance of public health multilanauage
(27) ProMED, User threats based on informal data guag
Eyewitness Reports, sources
and WHO
EpiSPIDER . . Daylife, Google, Integratg |nformgt|on cgllected
) . ) United North America, - from online media and informal .
(http://www.epi  Automatic Humanitarian News, . . ; . Multi-source
; States Europe, Public  surveillance systems in English to
spider.org/) system - . Moreover, ProMED, . . ) data
(2006) Australia, Asia . monitor outbreaks of infectious
(26) Twitter, and WHO ;
diseases
Restricted
/Limited to Collect public health reports in 32 )
MedISys ) . . Multi-source
. . Automatic  Europe European Global internet European languages from global internet
(http://medusa.j : : h . data and
. system (2004) Union resources Union sources and compile summaries of -
rc.it) (30) . . ) . multilanguage
member information on various diseases
states
Information is collected from
. media sources in 40 native
Printed newspapers, . .
. . : languages, and Bayesian analysis .
Moderated Uil BRI iee ) tools are used to select and filter e aTie
Argus (33) States Worldwide Internet-based Restricted . ) - . data and
system the information. It aims to monitor .
(2004) newsletters and blogs, . . multilanguage
WHO. and WOAH biological events that may pose a
! global health threat to humans,
plants and animals
. . A transparent, non-political, open
ProMED-mail United Media reports, F)fﬁmal to all, free e-mail list for identifying Multi-source
. Moderated . reports, online . . .
(https://promed States Worldwide . Public emerging and re-emerging data and
. system summaries, and local . . > .
mail.org/) (32) (1994) infectious diseases and unusual multilanguage
observers .
health toxin-related events
EurekAlertl, European An ontology-based text mining
. ) system that detects and tracks the
Media Monitor Alerts, PN . . . .
\ distribution of infectious diseases Multi-source
) Google, the CDC’s . S
BioCaster . - . % . from the internet in eight data,
e Automatic  Japan Priority to Asia- Morbidity and Mortality . . .
(http://biocaster I ) Public languages. A quantum leap in  multilanguage,
M system (2006) Pacific region Weekly Report, ) . .
.nii.ac.jp) (34) real-time detection of disease  and advanced
MeltWater, WOAH, .
outbreaks has been achieved technology
ProMED, ReLers, through the integration of artificial
WHO and Vetsweb gh 9
intelligence technology
An open-source epidemic
observation station based on
EPIWATCH Media coverage, press artificial |‘nteII|gence that sefirches Multi-source

) . . . global internet resources in 52 data,
(https://www.ep Automatic Australia . releases, official . .

. Worldwide : Public languages to promptly detect = multilanguage,
iwatch.org/) system (2016) reports, and social . ; .
) infectious disease outbreaks. The and advanced

(29) media .

system is enhanced by the technology
integration of artificial intelligence
and machine learning technologies
Surveillance of global media
messages in nine languages to
News service items, detect and track major public Multi-source
GPHIN ProMED-mail, Restricted health events and provide real- data,

. . Moderated Canada . L . s . .
(https://gphin.c system (1997) Worldwide  electronic discussion /Subscripti time, early warning based on the multilanguage,
anada.cal/) (317) Y groups, and selected on international internet sources. The and advanced

websites latest generation of GPHIN technology
integrates machine learning
technology (35)
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Continued
Country/
Syste_m Type region Area_ of Data sources Data Functions Features
(website) (year Service access
started)
Influenza-like illness (ILI)
The . .
incidence in Europe was
Netherlands, . )
. monitored by screening the ILI
Belgium, . . -
Influenzanet questionnaire completed by Participatory
T Portugal, Italy, A g .
(https:/finfluenz ~ News Europe . . volunteers. In the questionnaire,  surveillance
; the UK, France, Online survey Public - .
anet.info/explor aggregator (2003) : participants are asked to report and multi-stage
Sweden, Spain, . . )
e-data) (23) reland information on symptoms, date of surveillance
’ onset, absence from school or
Denmark, and S .
. work, medication, and medical
Switzerland .
consultations and outcomes
A participatory surveillance system
to monitor the spread and severity
FluTracking of ILI in Australia by investigating Participatory
(https://info.flutr ~ News Australia Australia @nlina survey Public symptoms (cough, fever, and sore surveillance

acking.net/) aggregator (2006)
(24)

throat), time off work or normal  and multi-stage
duties, influenza vaccination surveillance
status, influenza laboratory testing,
and health-seeking behaviors

Abbreviation: WOAH=World Organization for Animal Health; ProMED=Program for Monitoring Emerging Diseases; WHO=World Health
Organization; EpiSPIDER=Semantic Processing and Integration of Distributed Electronic Resources for Epidemiology; MedISys=Medical

Information System; GPHIN=Global Public Health Intelligence Network

improving data quality from event-based surveillance
should be an ongoing endeavor.

Commonalities Between Surveillance

Systems

Concerning data collection, first, the data are multi-
sourced. Although surveillance data were initially
derived from clinical diagnoses and laboratory tests,
with the emergence and use of big data technology, the
data sources have expanded to include symptoms,
human behavior, and social activities, which have
diversified the types of data available for infectious
disease surveillance. Second, information sharing has
been enhanced through transnational cooperation,
which enables faster responses to infectious disease
threats by fostering collaboration among international
organizations, government agencies, and non-
governmental organizations, and through
multidisciplinary collaboration, in which experts from
various fields work together to advance infectious
disease surveillance systems.

At the data analysis stage, modern surveillance
systems have embraced a range of sophisticated
methodologies to systematically process and interpret
the vast and diverse datasets they collect. These
methods include high-throughput analysis, which
allows for the rapid examination of large volumes of
data (39); aberration detection techniques, such as
control charts and linear regressions, which identify
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deviations from expected patterns that may indicate
the onset of an outbreak (40); and spatiotemporal
clustering algorithms, which help in pinpointing the
geographic and temporal distributions of cases (41).
For example, the CDC in the United States uses the
Early Aberration Reporting System to detect anomalies
in disease surveillance data (42). Likewise, public
health institutes in FEuropean countries use the
Farrington algorithm, a quasi-Poisson regression
model, to monitor disease incidence across member
states (43). These traditional methods remain
foundational in public health surveillance, but there
has been a notable increase in the adoption of more
sophisticated techniques, such as machine learning and
Bayesian frameworks, particularly for multivariate
datasets. For example, EPTWATCH’s ability to provide
early outbreak signals has been enhanced by Al and
machine learning (29). Moreover, Al can be used to
develop predictive models that can forecast the spread
of infectious diseases based on various factors,
including  environmental conditions, population
movements, and historical outbreak data. These
algorithms learn from patterns and trends in the data,
improving their accuracy over time and providing
valuable insights  that traditional
surveillance data.

complement
In terms of outputs, early warning sensitivity and

accuracy are constantly improving. Systems based on
online media can serve as a valuable complement to
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official surveillance and early warning systems, offering
more timely warnings and improved sensitivity.
Moreover, despite the heterogeneous nature of internet
surveillance information, technological advances can
significantly reduce data noise, and thus, the accuracy
of early warning is also rising. This evolution ensures
that public health responses are increasingly informed
by precise and timely data, enabling a more effective
containment of infectious disease threats.

DISCUSSION AND FUTURE
DIRECTIONS

International experience in constructing infectious
disease surveillance systems has provided beneficial
insights for China. The NIDRIS and CIDARS systems
currently used in China are based on analyses of
clinically confirmed cases. Although highly accurate,
this approach often results in a significant lag.
Surveillance and early warning platforms can be
established at multiple stages before the diagnosis of
infectious disease patients, including risk factors,
symptoms, medication purchases, absenteeism from
work or school, and medical consultations. In this case,
warning signals can be released earlier, which is critical
for the early management of infectious diseases (2).
Some syndromic surveillance systems have been
established in China, but they only operate on a pilot
regions (44-45). Establishing

participatory syndromic surveillance systems at the

basis in certain
national level could enhance surveillance activities. For
example, collecting crowdsourced data on influenza-
like illnesses to track respiratory viruses promptly.
Event-based internet surveillance systems complement
NIDRIS and CIDARS by highlighting potentially
contagious cases that have not been clinically
confirmed. Carefully screening and integrating valid
information can better address potential risks. Recent
scientific recommendations, such as the 7-1-7 metric,
have been proposed to quantify outbreak surveillance,
notification, and response performance. The 7-1-7
framework measures the timeliness of surveillance
(target of <7 days from emergence), notification (target
of <1 day from detection), and completion of seven
early response activities (target of <7 days from
notification) (46). Implementing such metrics may
help identify bottlenecks and enablers within the
system, thereby facilitating targeted improvements and
prioritizing national planning for early outbreak
management.

Chinese Center for Disease Control and Prevention

Second, NIDRIS and CIDARS primarily collect
data from healthcare institutions, and data exchange
between different sectors is limited. It is necessary to
consider utilizing data from sources such as media,
schools, workplaces, pharmacies, laboratories, and
customs. Enhanced multisectoral cooperation and
information-sharing  are  crucial for obtaining
comprehensive information on disease and health-
related events (2). Furthermore, China should
exchange information on infectious diseases with other
countries. The WHO established a new global hub for
pandemic and epidemic intelligence in Berlin,
Germany (47), to enhance data sharing and
international cooperation for the early detection of
potential pandemics. This hub, in collaboration with
the EIOS initiative, supports a unified, all-hazards,
One Health approach to the early detection,
verification, assessment, and communication of public
health threats using publicly available information
(48). EIOS  facilitates  global,
collaboration,  supporting countries and other
stakeholders in addressing future pandemic and
epidemic risks with improved access to data, enhanced
analytical capacities, and improved tools and insights
for decision-making. China should, as always, actively
participate in global infectious disease early warning
efforts, leveraging initiatives like EIOS to strengthen its
contribution to global health security.

Finally, the early warning model of China’s
infectious disease surveillance platform, represented by
CIDARS, is primarily based on the fixed-threshold
detection method, temporal models, and spatial-
temporal models (49). As technology advances,
CIDARS should be updated to enhance its data
integration and intelligent learning abilities to improve
the effectiveness of early warnings (2). Modern,
intelligent surveillance systems require Al algorithms to
rapidly collect, efficiently process, and thoroughly
analyze large-scale, multi-source data for timely and
accurate outbreak warnings. Additionally, diverse data
formats, including text, images, video, and audio, may
necessitate the use of blockchain and multimodal
technologies to consolidate them into a structured
database, enabling collaborative management of
heterogeneous data from various sources. However, the
successful implementation of Al in surveillance systems
also requires a skilled workforce with expertise in
epidemiology, advanced data analysis, and system
management. In China, a notable shortage of CDC
professionals limits the improvement of infectious
disease surveillance, management, and emergency

multisectoral

CCDC Weekly / Vol. 6/ No. 41 1071



China CDC Weekly

response capabilities. Therefore, targeted training of
professionals who can interpret Al outputs, conduct
epidemiological investigations, and make informed
decisions based on complex data is essential. On
October 25, 2023, China established the National
Data Bureau to coordinate data integration and
promote the development of a digital China. The
Bureau will accelerate digital technology innovations
and assist in building intelligent surveillance systems
while fostering the development of a highly skilled
public health workforce to ensure the effective
utilization of these advanced technologies.

The China CDC leadership has steadily
strengthened the surveillance and early warning
capacity of provincial CDCs. Intelligent, multipoint-
triggered early warning models are being explored in
several PLADs. Decentralizing early warning tasks to
PLADs is a crucial strategic innovation that allows
customization to regional factors, facilitating accurate
monitoring  and  resource  deployment.  This
decentralization is imperative because it enables
efficient  and detection,  verification,
investigation, and early response at a more localized
level, further enhancing the national surveillance
system's overall efficiency. However, differences in
surveillance capacity among provincial CDCs may
compromise the accuracy and comparability of results.
Moreover, competition among provincial CDCs may
hinder infectious disease data sharing, as infectious
disease surveillance and early warning are linked to
CDC  performance Therefore,
information-sharing mechanisms across PLADs are
needed to ensure accurate and complete data for timely
infectious disease prevention.

The numerous practical challenges in constructing
intelligent, multipoint-triggered surveillance systems
must be recognized. For example, multi-point
surveillance collects large quantities of user data, which
inevitably ~carries the risk of leaking private
information. Thus, technologies like decentralization
and data encryption are necessary for privacy
protection. Furthermore, a key challenge with event-
based surveillance is distinguishing between true and
false information. Therefore, information filtering and
verification strategies are needed to determine the
credibility of surveillance data.

timely

evaluations.

CONCLUSION

In summary, China’s current infectious disease
surveillance systems should be upgraded to meet new-
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era requirements. According to the findings of this
review, the term “multipoint-triggered” implies multi-
source data, multi-stage monitoring, and multisectoral
and  multi-provincial  cooperation. The term
“intelligent” implies the application of advanced and
learning-capable ~ warning models and  analysis
techniques. Intelligent and  multipoint-triggered
infectious disease surveillance systems will significantly
improve the timeliness and accuracy of early warnings
and further strengthen China’s ability to respond to
public health emergencies.
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