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Travel-related Importation and Exportation Risks of SARS-CoV-2
Omicron Variant in 367 Prefectures (Cities) — China, 2022

Yuan Bai'"%; Mingda Xu*%; Caifen Liu'% Mingwang Shen’; Lin Wang® Linwei Tian'; Suoyi Tan’; Lei Zhang?;
Petter Holme®’; Xin Lu’; Eric H. Y. Lau' Benjamin J. Cowling'**; Zhanwei Du'?

ABSTRACT

Introduction: Minimizing the importation and
exportation risks of coronavirus disease 2019
(COVID-19) is a primary concern for sustaining the
“Dynamic COVID-zero” strategy in China. Risk
estimation is essential for cities to conduct before
relaxing border control measures.

Methods: Informed by the daily number of
passengers traveling between 367 prefectures (cities) in
China, this study used a stochastic metapopulation
model parameterized with COVID-19 epidemic
characteristics to estimate the importation and
exportation risks.

Results: Under  the
(Rp=5.49), this study estimated the cumulative case
incidence of Changchun City, Jilin Province as 3,233
(95% confidence interval: 1,480, 4,986) before a
lockdown on March 14, 2022, which is close to the
3,168 cases reported in real life by March 16, 2022. In
a total of 367 prefectures (cities), 127 (35%) had high
exportation risks according to the simulation and could
transmit the disease to 50% of all other regions within
a period from 17 to 94 days. The average time until a
new infection arrives in a location in 1 of the 367
prefectures (cities) ranged from 26 to 101 days.

Conclusions: Estimating COVID-19 importation
and exportation risks is necessary for preparedness,
prevention, and control measures of COVID-19 —
especially when new variants emerge.

transmission scenario

The ongoing global pandemic of coronavirus disease
2019 (COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has caused
incredible global disruption and challenges with a
substantial impact on public health and healthcare
systems (7). As of March 2022, the world has reported
over 460 million confirmed COVID-19 cases and 6
million deaths in over 200 countries and regions (2).

Chinese Center for Disease Control and Prevention

At the same time, China has had the most severe
COVID-19 outbreak since the original wave from
Wuhan, driven by the Omicron variant, resulting in
lockdowns in Shanghai Municipality, Shenzhen City,
and Jilin Province (3-4). For regions with high
importation risk, stringent measures (e.g., reduction of
international flights, post-arrival quarantine, and strict
surveillance) can be applied to earn more time for
preparedness and response (5-6). In support of this,
this study estimates importation and exportation risks
of various regions using nationwide mobility data in
China: using Changchun City and Jilin City in Jilin

Province as a case study.

METHODS

Mobility Data

This study analyzed the daily number of passengers
traveling between 367 prefectures (cities) in China,
including 4 municipalities, 1 special administrative
region, 332 prefecture-level divisions, 6 autonomous
counties, and 24 county-level cities and centrally
administered municipalities. The mobility data were
from a national mobile phone carrier (China Unicom),
with 318 million active users in 2019, during the
period from January 7 to 13, 2020 (/~8). When users
made phone calls, sent messages, turned on/off their
devices, or switched towers, the national mobile phone
carrier collected their location information (8-9). The
dataset was anonymized so that this study cannot
identify or filter users of certain groups. The dataset
includes approximately 100 million daily between-city
trips, without overseas mobility. This research assumed
that the mobility between cities for each week in this
study’s following simulations is the same as the study
week.

Epidemic Model
Following the Covasim model structure, this study
used a stochastic metapopulation model of COVID-19
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transmission (Supplementary Figure S1, available in
hetp://weekly.chinacdec.cn/) (10). The population is
characterized as either susceptible (S), exposed (£,
infected but not yet infectious), infectious (),
recovered (R), and deceased (D), with infectious
population additionally categorized according to
symptoms: pre-symptomatic (P), asymptomatic (4),
mild (/;), severe ([), or critical (/3). This study set
initial cases (one seed per million population) for each
prefecture (city) to simulate the daily situation of
disease transmission. Then, this study evaluated the
mean and 95% confidence interval (CI) of the daily
infected cases based on 100 simulations. Specifically,
this simulation calculated the number of infected cases
without severe or critical symptoms in city 7 at time 7 as
follows:
Aj(r) = E(2) + P2) + A(e) + 1, ,(2). )
The prevalence £(7) of infected cases in prefecture
(city) 7 at time # is given by:
Ay(2)

&lr) = e 2
where p; represents the population size of prefecture
(city) i. This study then constructed an intercity
mobility network to track the movement patterns of
individuals between cities. Let w,,(#) denote the
number of residents from the origin prefecture (city) o
that travel to the destination prefecture (city) 4 on day
t. Given the daily prevalence ,(#) of prefecture (city) o,
the rate at which infected residents from prefecture
(city) o travel to prefecture (city) 4 on day ¢ is given by
V,.4(1) = §,(#) X w, /(). The potential of importing at
least one infected case from prefecture (city) o to
prefecture (city) 4 on day ¢, is given by (3,11):

Yo (t,) =1~ exp[~0, 4(2,)]- 3
The cumulative probability of importing at least one

infection from prefecture (city) o to prefecture (city) 4
between 7y and 7, is given by:

roa(t) = 1= exp [— A ﬁg,d(uwu} L@

For each epidemic origin, this study conducted 100
stochastic simulations across 4 months (120 days). In
each simulation, the prefecture (city) & has at least 1
infected case on or by day #, when incorporating the
probability ¥, ,(z,) or £, ,(2,), respectively. This study
tracked the geographic expansion of simulated
epidemics by taking each prefecture (city) as an
epidemic origin (epicenter). To compare the epidemic
growth across outbreak scenarios, this study measured
the time until a certain percentage of prefectures
(cities) with importations reaches specified thresholds,

886 CCDC Weekly / Vol. 4 / No. 40

such as 7=50%, and denoted this quantity as I' 1 to
measure the exportation risk. To assess the
epidemiological vulnerability of a specific location /,
this study tracked the days until / becomes infected
under various scenarios as the importation risk, y.
Matlab  (version R2021b, The MathWorks,
Massachusetts, US) was used for analyzing mobility
data and simulating the epidemic transmission model.

RESULTS

For each possible importation location of 367
prefectures (cities), this study simulated epidemics
using a stochastic epidemiological model over three
transmission scenarios for the Omicron variant
(different Rp): running 100 simulations for each
scenario (parameters are in Supplementary Table S1,
available in http://weekly. chinacdc.cn/). Under the
middle (Rp=5.49), the
cumulative infections of Changchun are estimated as
3,233 (95% CI: 1,480, 4,986) before the quarantine
was imposed on March 14, 2022, which is close to the
real number of cases, 3,168, reported by March 16,
2022 (12-13). This study shows the results of the
middle transmission scenario in the main text and the
sensitivity analysis in the supplementary.

This study estimated importation and exportation
risk (Figure 1), finding that epidemics tend to spread
fastest and in the shortest amount of time when
imported or exported from Beijing or Shanghai. The
rates at which epidemics spread from and to each
prefecture (city) are highly correlated to prefectures
(cities) with larger population sizes. For Ry =5.49, 127
(35%) of 367 cities have high exportation risks and
could transmit the disease to 50% of all other locations
within a period from 17 to 94 days. The population
sizes in the 127 prefectures (cities) with high
exportation risks are around 5.69 million (95% CI:
2.08, 7.88). As a comparison, population sizes in the
remaining 240 prefectures (cities) are much smaller,
within = 2.24  million (95% CI: 0.10, 6.09)
(Supplementary Table S2, available in http://weekly.
chinacdc.cn/). The importation risk, as the average
time until a new infection arrives in a location in 1 of
the 367 prefectures (cities), ranges from 26 to 101
days. The correlation coefficients between the
population size and days of the importation and
exportation risks are —0.56 and —0.77, respectively
(both with P<0.001). These patterns also hold
(Supplementary
Figure S2, available in http://weekly.chinacdc.cn/).

transmission  scenario

for other transmission scenarios

Chinese Center for Disease Control and Prevention
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FIGURE 1. Risks of epidemic importation and exportation
transmission.

Note: For each prefecture (city), the mean and 95%
confidence interval (Cl) of the exportation risk (x-axis) are
estimated by the number of days following an importation
into that prefecture (city) until 10%, 20%, and 50% of
prefectures (cities) experience outbreaks (g, M0, and
ls.), averaged over 100 stochastic simulations.
The mean and 95% CI of the importation risk (y-axis) are
estimated by the number of days following importation in
another prefecture (city) until the focal prefecture (city)
receives its first infection, averaged over 100 stochastic
simulations. All simulations assume an initial outbreak of
R,=5.49; analogous graphs for other R;s are provided in
Supplementary Figure S2. The importation and exportation
risks are correlated with a Pearson’s correlation coefficient
of 0.72, and to population size of the prefecture (city) with
coefficients of -0.56 and —-0.77, respectively (all have P
value <0.001).

The importation and exportation transmission risks in
China are highest for outbreaks starting in Beijing and
Shanghai, in terms of both geography and the
underlying mobility network. In the case study of
Changchun, if a city lockdown is implemented two
weeks after the seeds are imported, on average 16 (95%
CI: 12, 19) cities will then have imported cases from a
random city. If a city lockdown is implemented one
week earlier or later, on average 1 (95% CI: 1, 2) and
92 (95% CI: 86, 99) cities will have imported cases,
respectively.

This study provided a data-driven modeling
approach to tailoring importation and exportation
risks, using Changchun and Jilin City in Jilin Province
as examples (Figure 2). If transmissions start from
Changchun, Harbin and Siping will have the highest
probability that >1 person infected with the Omicron
variant arrives from Changchun: both have a
probability above 50% by March 6, 2022. In contrast,
if starting from Jilin, Changchun and Harbin will have

Chinese Center for Disease Control and Prevention

the highest probability of importation. If city
lockdowns are implemented two weeks after the seeds
are imported, Changchun and Jilin will introduce the
disease to 18 (95% CI: 15, 21) and 8 (95% CI: 7, 9)
cities in China, respectively. If the city lockdown is
implemented one week earlier, they can only import to
1 (95% CI: 1, 2) and 0 (95% CI: 0, 1) cities,
respectively. If it’s one week later, they will import 131
(95% CI: 122, 140) and 56 (95% CI: 51, 62) cities,

respectively.

DISCUSSION

Human mobility patterns shape epidemiological
risk. The destiny of a newly emerging infectious disease
will most likely be determined by where it was first
imported. This study’s analysis of prefectures (cities) in
China suggests that the rate of epidemic expansion
depends not only on well-understood epidemiological
drivers, e.g., Ry, but also on the importation locations
of the initial cases. Locations that are more vulnerable
to aggressive epidemics are also the earliest to be hit by
outbreaks that originate elsewhere.

Throughout the COVID-19 pandemic, as case
numbers started to soar in the initial stage, countries
had to make policy decisions quickly to avoid local
outbreaks — even without timely and definite
scientific evidence. In response to the resurgence of
vaccine-evasive variants, estimation of importation risk
is essential for implementing targeted risk-based travel
restrictions.  This  study helped estimate the
importation risk of prefectures (cities) from any
epicenter using nationwide mobility data in China.

This study was subject to some limitations. The
synthetic simulation does not explicitly include the
possible delay of reports of new cases that could have
happened early in the COVID-19 outbreak. In
addition, this study’s model does not include moderate
cases directly, which are combined into severe cases.
However, it does assume that asymptomatic/exposed/
pre-symptomatic/mild cases can travel between
prefectures (cities). Therefore, such a model design
would have little impact on this study’s estimates of
both risk and incidence.

As Omicron outbreaks emerge within prefectures
(cities) in the mainland of China in March 2022, the
government will continue to face high pressure from
the rapid transmissibility of the Omicron variant and
coming variants in the future. The current pandemic
presents a broader opportunity for us to interrogate
how to control outbreaks. Like other transmissible

CCDC Weekly / Vol. 4 / No. 40 887
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FIGURE 2. Estimated risks for importation and exportation of the SARS-CoV-2 Omicron variant over prefectures (cities) in

China. (A) Changchun; (B) Jilin City.

Note: This study estimated the probability that >1 person infected with the Omicron variant arrived at the target prefecture
(city) by the date indicated on the x-axis, based on China Unicom mobility data. All simulations assume an initial outbreak of
R,=5.49. This study showed the top 20 regions (with the highest probability on March 14, 2022) from cities of Changchun
and Jilin City. The grey vertical line indicates March 14, 2022, the date when Jilin Province was locked down (74); line

colours correspond to the importation risk on March 14, 2022.

Abbreviation: SARS-CoV-2=severe acute respiratory syndrome coronavirus 2.

pathogens (e.g., influenza), SARS-CoV-2 is likely to
circulate in humans for many years to come (/5).
Estimating COVID-19 importation and exportation
risks is necessary for preparedness and prevention and
control measures of COVID-19 — especially when
new variants emerge.

Acknowledgements: China Unicom, staff at the
telecom carrier, Dr. Qi Tan, Dr. Bingyi Yang, Prof.
Peng Jia, Prof. Xiaoke Xu, Prof. Shujuan Yang, Prof.
Li Zhao, and Prof. Shiyong Liu.

Conflicts of interest: Benjamin J. Cowling consults
for AstraZeneca, Fosun Pharma, GlaxoSmithKline,
Moderna, Pfizer, Roche, and Sanofi Pasteur. Other
authors declare no conflicts of interest.

Funding: Supported by AIR@InnoHK programme
from The Innovation and Technology Commission of
the Hong Kong Special Administrative Region,
National Natural Science Foundation of China
(72104208), JSPS KAKENHI  (JP21H04595),
National Nature Science Foundation of China
(72025405, 91846301, 72088101, and 71790615).

doi: 10.46234/ccdew2022.184
* Corresponding author: Benjamin J. Cowling, bcowling@hku.hk.

" WHO Collaborating Centre for Infectious Disease Epidemiology and
Control, School of Public Health, Li Ka Shing Faculty of Medicine,
The University of Hong Kong, Hong Kong Special Administrative
Region, China; * Laboratory of Data Discovery for Health Limited
(D*4H), Hong Kong Science Park, Hong Kong Special Administrative
Region, China; > China-Australia Joint Research Center for Infectious
Diseases, School of Public Health, Xi’an Jiaotong University Health
Science Center, Xi'an City, Shaanxi Province, China; 4 Department of

888 CCDC Weekly / Vol. 4 / No. 40

Genetics, University of Cambridge, Cambridge CB2 3EH, UK;
° College of Systems Engineering, National University of Defense
Technology, Changsha City, Hunan Province, China; 6 Department of
Computer Science, Aalto University, Espoo, Finland; 7 Center for
Computational Social Science, Kobe University, Kobe, Japan.

& Joint first authors.

Submitted: April 29, 2022; Accepted: August 21, 2022

REFERENCES

1. Chakraborty I, Maity P. COVID-19 outbreak: migration, effects on
society, global environment and prevention. Sci Total Environ
2020;728:138882. http://dx.doi.org/10.1016/j.scitotenv.2020.138882.

2. WHO. Novel Coronavirus (2019-nCoV) situation reports [Internet].
2022. https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/situation-reports. [2022-5-30].

3. Du ZW, Wang L, Cauchemez S, Xu XK, Wang XW, Cowling BJ, et al.
Risk for transportation of coronavirus disease from Wuhan to other
cities in China. Emerg Infect Dis 2020;26(5):1049 - 52. http://dx.doi.
org/10.3201/eid2605.200146.

4. Ruktanonchai NW, Floyd JR, Lai S, Ruktanonchai CW, Sadilek A,
Rente-Lourenco P, et al. Assessing the impact of coordinated COVID-
19 exit strategies across Europe. Science 2020;369(6510):1465 - 70.
http://dx.doi.org/10.1126/science.abc5096.

5. Nakamura H, Managi S. Airport risk of importation and exportation of
the COVID-19 pandemic. Transp Policy 2020;96:40 - 7. htep://dx.
doi.org/10.1016/j.tranpol.2020.06.018.

6. Lee K, Worsnop CZ, Grépin KA, Kamradt-Scott A. Global
coordination on cross-border travel and trade measures crucial to
COVID-19 response. Lancet 2020;395(10237):1593 - 5. http://dx.doi.
org/10.1016/50140-6736(20)31032-1.

7. Slotta D. Number of China Unicom mobile subscriptions from 2011 to
2021 [Internet]. 2022. https://www.statista.com/statistics/233968/
number-of-china-unicom-mobile-subscriptions. [2022-3-17].

8. Tan SY, Lai §J, Fang F, Cao ZQ, Sai B, Song B, et al. Mobility in
China, 2020: a tale of four phases. Natl Sci Rev 2021;8(11):nwab148.
http://dx.doi.org/10.1093/nsr/nwab148.

9. Gao C, Liu JM. Modeling and restraining mobile virus propagation.

Chinese Center for Disease Control and Prevention


https://doi.org/10.46234/ccdcw2022.184
https://doi.org/10.1016/j.scitotenv.2020.138882
https://doi.org/10.1016/j.scitotenv.2020.138882
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://doi.org/10.3201/eid2605.200146
https://doi.org/10.3201/eid2605.200146
https://doi.org/10.3201/eid2605.200146
https://doi.org/10.1126/science.abc5096
https://doi.org/10.1126/science.abc5096
https://doi.org/10.1016/j.tranpol.2020.06.018
https://doi.org/10.1016/j.tranpol.2020.06.018
https://doi.org/10.1016/j.tranpol.2020.06.018
https://doi.org/10.1016/S0140-6736(20)31032-1
https://doi.org/10.1016/S0140-6736(20)31032-1
https://doi.org/10.1016/S0140-6736(20)31032-1
https://www.statista.com/statistics/233968/number-of-china-unicom-mobile-subscriptions
https://www.statista.com/statistics/233968/number-of-china-unicom-mobile-subscriptions
https://doi.org/10.1093/nsr/nwab148
https://doi.org/10.1093/nsr/nwab148
https://doi.org/10.46234/ccdcw2022.184
https://doi.org/10.1016/j.scitotenv.2020.138882
https://doi.org/10.1016/j.scitotenv.2020.138882
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://doi.org/10.3201/eid2605.200146
https://doi.org/10.3201/eid2605.200146
https://doi.org/10.3201/eid2605.200146
https://doi.org/10.1126/science.abc5096
https://doi.org/10.1126/science.abc5096
https://doi.org/10.1016/j.tranpol.2020.06.018
https://doi.org/10.1016/j.tranpol.2020.06.018
https://doi.org/10.1016/j.tranpol.2020.06.018
https://doi.org/10.1016/S0140-6736(20)31032-1
https://doi.org/10.1016/S0140-6736(20)31032-1
https://doi.org/10.1016/S0140-6736(20)31032-1
https://www.statista.com/statistics/233968/number-of-china-unicom-mobile-subscriptions
https://www.statista.com/statistics/233968/number-of-china-unicom-mobile-subscriptions
https://doi.org/10.1093/nsr/nwab148
https://doi.org/10.1093/nsr/nwab148

10.

11.

12.

China CDC Weekly

IEEE Trans Mob Comput 2013;12(3):529 - 41. http://dx.doi.org/10.
1109/TMC.2012.29.

Kerr CC, Stuart RM, Mistry D, Abeysuriya RG, Rosenfeld K, Hart
GR, et al. Covasim: an agent-based model of COVID-19 dynamics and
interventions. PLoS Comput Biol 2021;17(7):¢1009149. http://dx.doi.
org/10.1371/journal.pcbi.1009149.

Wang L, Wu JT. Characterizing the dynamics underlying global spread
of epidemics. Nat Commun 2018;9(1):218. http://dx.doi.org/10.1038/
s41467-017-02344-z.

Ruan F, Zhang XB, Xiao SJ, Ni XH, Yin XL, Ye ZW, et al. An
outbreak of the SARS-CoV-2 omicron variant BA.1 — Zhuhai City,
Guangdong Province, China, January 13, 2022. China CDC Wkly

Chinese Center for Disease Control and Prevention

13.

14.

15.

2022;4(30):669-71. http://dx.doi.org/10.46234/ccdcw2022.032.
Changchun Municipal Health Commission. Changchun Municipal
Health Commission’s briefing on the new crown pneumonia epidemic
situation [Internet]. 2022. http://wjw.changchun.gov.cn/xwzx/tzgg/
202203/t20220318_2994637.html. [2022-3-18]. (In Chinese).
Leading Group for Prevention and Control of COVID-19 in Jilin
Province. Jilin Province: from today, the movement of people in this
province across provinces, cities and states is prohibited [Internet].
2022. http://www.news.cn/local/2022-03/14/c_1128469069.htm.
[2022-3-18]. (In Chinese).

Cobey S.  Modeling infectious disease dynamics.  Science
2020;368(6492):713 - 4. http://dx.doi.org/10.1126/science.abb5659.

CCDC Weekly / Vol. 4 / No. 40 889


https://doi.org/10.1109/TMC.2012.29
https://doi.org/10.1109/TMC.2012.29
https://doi.org/10.1109/TMC.2012.29
https://doi.org/10.1371/journal.pcbi.1009149
https://doi.org/10.1371/journal.pcbi.1009149
https://doi.org/10.1371/journal.pcbi.1009149
https://doi.org/10.1038/s41467-017-02344-z
https://doi.org/10.1038/s41467-017-02344-z
https://doi.org/10.1038/s41467-017-02344-z
http://dx.doi.org/10.46234/ccdcw2022.032
http://wjw.changchun.gov.cn/xwzx/tzgg/202203/t20220318_2994637.html
http://wjw.changchun.gov.cn/xwzx/tzgg/202203/t20220318_2994637.html
http://www.news.cn/local/2022-03/14/c_1128469069.htm
https://doi.org/10.1126/science.abb5659
https://doi.org/10.1126/science.abb5659
https://doi.org/10.1109/TMC.2012.29
https://doi.org/10.1109/TMC.2012.29
https://doi.org/10.1109/TMC.2012.29
https://doi.org/10.1371/journal.pcbi.1009149
https://doi.org/10.1371/journal.pcbi.1009149
https://doi.org/10.1371/journal.pcbi.1009149
https://doi.org/10.1038/s41467-017-02344-z
https://doi.org/10.1038/s41467-017-02344-z
https://doi.org/10.1038/s41467-017-02344-z
http://dx.doi.org/10.46234/ccdcw2022.032
http://wjw.changchun.gov.cn/xwzx/tzgg/202203/t20220318_2994637.html
http://wjw.changchun.gov.cn/xwzx/tzgg/202203/t20220318_2994637.html
http://www.news.cn/local/2022-03/14/c_1128469069.htm
https://doi.org/10.1126/science.abb5659
https://doi.org/10.1126/science.abb5659
https://doi.org/10.1109/TMC.2012.29
https://doi.org/10.1109/TMC.2012.29
https://doi.org/10.1109/TMC.2012.29
https://doi.org/10.1371/journal.pcbi.1009149
https://doi.org/10.1371/journal.pcbi.1009149
https://doi.org/10.1371/journal.pcbi.1009149
https://doi.org/10.1038/s41467-017-02344-z
https://doi.org/10.1038/s41467-017-02344-z
https://doi.org/10.1038/s41467-017-02344-z
http://dx.doi.org/10.46234/ccdcw2022.032
http://wjw.changchun.gov.cn/xwzx/tzgg/202203/t20220318_2994637.html
http://wjw.changchun.gov.cn/xwzx/tzgg/202203/t20220318_2994637.html
http://www.news.cn/local/2022-03/14/c_1128469069.htm
https://doi.org/10.1126/science.abb5659
https://doi.org/10.1126/science.abb5659

China CDC Weekly

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY FIGURE S1. Schematic of the model structure, following the Covasim model structure (7).
e An individual must pass through a mild stage before reaching a severe or critical stage.
e An individual must pass through a severe stage before reaching a critical stage.

e Only individuals in a critical stage may die.

e All individuals have equal transmission rates and equal susceptibility to infection.
e The transmission rate of severe or critical infections will not be involved in the calculation of mobility prevalence, because
we assume that infected patients will be hospitalized when symptoms become severe or critical.

SUPPLEMENTARY TABLE S1. Epidemiological parameters.

Parameters

Values (mean, std)

Data source

R,: basic reproduction number

B: transmission rate per contact for a symptomatic case (mild, severe,
critical)

w,: relative infectiousness of pre-symptomatic cases as compared to
symptomatic cases

wy,: relative infectiousness of asymptomatic cases as compared to
symptomatic cases

p;: initial cases

T, latent period

Tore: duration of pre-symptomatic infectiousness (length of duration
after viral shedding has begun before an individual has symptoms)
T,.: duration of mild symptomatic infectiousness

T,: duration of severe symptomatic infectiousness

T.: duration of critical symptomatic infectiousness

T,: duration of asymptomatic infectiousness

F,: fraction of asymptomatic infectiousness

F: fraction of (symptomatic) infections that are severe

F.: fraction of (symptomatic) infections that are critical
CFR: Case fatality rate (fraction of infections that eventually result in

decease)
a,: transition rate out of exposed state

a,: transition rate out of pre-symptomatic state to symptomatic state
a,,: transition rate out of mild infectiousness state

a,: transition rate out of severe infectiousness state

a,: transition rate out of critical infectiousness state

Ym: recovery rate of mild symptomatic individuals

Ys: recovery rate of severe symptomatic individuals

y.: recovery rate of critical symptomatic individuals

Ya: recovery rate of asymptomatic individuals

2.43 (5.49, 8)

Calibrated to R,
1.57

0.5

One seed per million population
Lognormal (4.5, 1.5)

2

Lognormal (6.6, 4.9)
Lognormal (1.5, 2.0)
Lognormal (10.7, 4.8)
Lognormal (8.0, 2.0)

27%

0.8%

0.1%

0.1%
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1-F,

(1 Tm) = Vm
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Given that the effective reproduction
number (R,) of the Omicron variant
of SARS-CoV-2 is estimated at 2.43
(95% Cl: 1.05, 5.49) in China (2)
and around 8 in South Africa (3), we
study the basic reproduction number
(Ry) in the range from 2.43, 5.49 to
8.(2-3)

Assumed
(4-9)

(6)
Assumed
(7-8)
9)
(10-11)
(11-12)
(13)
(14)
(15)
Assumed

Assumed

Assumed

(16)
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SUPPLEMENTARY FIGURE S2. Risks of epidemic importation and exportation transmission with different R,, (A) R,=2.43

and (B) R,=8.

Note: For each prefecture (city), the mean and 95% CI of the exportation risk (x-axis) are estimated by the number of days
following an importation into that prefecture (city) until 10%, 20%, and 50% of prefectures (cities) experience outbreaks ("o,
Mo, and [s,), averaged over 100 stochastic simulations. The mean and 95% CI of the importation risk (y-axis) are
estimated by the number of days following importation in another prefecture (city) until the focal prefecture (city) receives its
first infection, averaged over 100 stochastic simulations of (A) R,=2.43 and (B) R,=8. The importation and exportation risks
are correlated with a Pearson’s correlation coefficient of (A) 0.72 and (B) 0.72, and to population size of the prefecture (city)
with coefficients of (A) —0.55 and —0.76; (B) —0.56 and —0.77, respectively (all have P-value <0.001).

SUPPLEMENTARY TABLE S2. List of 51 study regions including 28 provincial capitals, 4 municipalities, 1 special
administrative region of China, and the prefectures (cities).

r10% rZU% r50%
Prefecture (city)  Population ""Exportation  Importation Exportation  Importation Exportation  Importation
risk (mean) risk (mean) risk (mean) risk (mean) risk (mean) risk (mean)
Chongging 30,752,000 14.74 36.38 16.58 36.38 19.01 36.38
Shanghai 24,183,000 12.72 32.26 14.53 32.26 17.63 32.26
Beijing 21,707,000 13.28 25.70 14.82 25.70 17.40 25.70
Chengdu 16,044,700 14.34 34.64 16.30 34.64 18.53 34.64
Tianjin 15,569,000 14.96 38.32 16.50 38.32 19.45 38.32
Guangzhou 14,498,400 12.53 37.96 14.64 37.96 18.11 37.96
Harbin 10,929,000 16.38 57.43 17.63 57.43 22.65 57.43
Wuhan 10,892,900 14.19 36.84 15.83 36.84 18.17 36.84
Shijiazhuang 10,879,900 16.66 47.24 17.96 47.24 22.10 47.24
Zhengzhou 9,880,000 14.85 32.61 16.56 32.61 18.91 32.61
Hangzhou 9,468,000 14.00 41.27 15.63 41.27 18.82 41.27
Xi'an 8,989,000 14.38 35.25 16.21 35.25 19.05 35.25
Nanjing 8,335,000 14.13 41.19 15.86 41.19 18.88 41.19
Shenyang 8,294,000 15.38 50.44 17.36 50.44 21.37 50.44
Hefei 7,965,300 14.90 43.38 17.01 43.38 20.28 43.38
Changsha 7,918,100 14.59 38.07 16.17 38.07 18.50 38.07
Changchun 7,674,439 16.64 60.64 18.85 60.64 31.49 60.64
Hong Kong 7,413,100 51.55 98.63 - 98.63 - 98.63
Jinan 7,321,200 15.68 43.13 17.28 43.13 20.57 43.13
Nanning 7,153,300 15.94 50.91 17.54 50.91 21.34 50.91
Dalian 6,988,000 16.38 58.84 18.18 58.84 26.09 58.84
Kunming 6783,,000 14.73 44.61 16.23 44.61 18.77 44.61
S2 CCDC Weekly / Vol. 4 / No. 40 Chinese Center for Disease Control and Prevention
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r10% r20% r50%
Prefecture (city) Population “Exportation Importation ~ Exportation Importation ~ Exportation  Importation
risk (mean)  risk (mean) risk (mean)  risk (mean) risk (mean)  risk (mean)
Nanchang 5,463,538 15.20 43.39 16.38 43.39 19.25 43.39
Suihua 5,418,153 20.76 69.19 37.94 69.19 - 69.19
Qigihar 5,367,003 21.61 70.76 54.90 70.76 - 70.76
Guiyang 4,802,000 15.85 45.97 17.22 45.97 20.44 45.97
Jilin 4,413,157 18.98 68.08 26.78 68.08 - 68.08
Taiyuan 4,379,700 16.65 53.93 18.17 53.93 22.03 53.93
Fuzhou 4,031,037 16.69 52.55 17.95 52.55 39.71 52.55
Lanzhou 3,729,600 16.78 55.24 18.44 55.24 22.48 55.24
Anshan 3,598,000 19.18 70.13 26.05 70.13 - 70.13
Urumai 3,500,000 17.24 71.81 19.27 71.81 26.68 71.81
Siping 3,385,156 18.73 68.53 48.51 68.53 - 68.53
Tongliao 3,128,700 19.58 70.33 63.55 70.33 - 70.33
Hohhot 3,114,800 17.74 67.28 20.40 67.28 51.74 67.28
Jinzhou 3,050,000 18.47 67.81 25.36 67.81 - 67.81
Daqing 2,904,532 21.26 75.69 44.21 75.69 - 75.69
Songyuan 2,880,086 20.17 68.84 75.10 68.84 - 68.84
Mudanjiang 2,798,723 2545 70.46 - 70.46 - 70.46
Tieling 2,638,000 20.06 69.67 44.44 69.67 - 69.67
Xining 2,355,000 18.72 67.88 22.32 67.88 - 67.88
Tonghua 2,324,439 23.97 68.81 76.77 68.81 - 68.81
Haikou 2,272,100 16.03 56.04 17.71 56.04 20.58 56.04
Xi[‘obrizmsge:;‘efecture 2,270,816 20.65 72.24 75.50 72.24 - 72.24
Yinchuan 2,225,391 18.27 71.43 21.71 71.43 66.14 71.43
Fushun 2,065,000 20.97 71.32 31.23 71.32 - 71.32
Baicheng 2,032,356 22.18 74.67 79.59 74.67 - 74.67
Baishan 1,296,127 24.82 72.66 - 72.66 - 72.66
Hinggan League 1,604,200 23.45 76.48 - 76.48 - 76.48
Liaoyuan 1,176,239 25.02 71.88 - 71.88 - 71.88
Lhasa 559,423 21.44 86.53 40.61 86.53 - 86.53

Note: For each prefecture (city), the mean estimates of the exportation risk and the importation risk are calculated until 10%, 20%, and 50%
of prefectures (cities) experience outbreaks (o4, M04, @and sy, ), averaged over 100 stochastic simulations. All simulations assume an

initial outbreak of R,= 5.49.

“~” denotes regions without any importations or exportations in the studied period.
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Methods and Applications

Detection of SARS-CoV-2 Antibodies in Oral Fluid Using a
Magnetic Particle-Based Chemiluminescence Immunoassay
— Beijing Municipality, China, 2021

Naiying Mao%; Mei Dong**; Zhen Zhu'; Qi Huang’ Xiali Yu’ Hui Xie% Jianping Dong’s;
Jingyi Sun’; Fang Huang**; Wenbo Xu'*

ABSTRACT

Introduction: Oral fluids (OFs) have been broadly
used as non-invasive samples for evaluating protective
IgG antibodies from natural infection or vaccination,
especially in pediatric populations.

Methods: Paired OF and serum were collected
from both individuals who received a booster dose of
the inactive coronavirus disease 2019 (COVID-19)
vaccine as well as those who did not have a history of
COVID-19 vaccination and infection (as the control
group). The total human IgG antibody (HIgG)
content was evaluated as a marker of OF sampling
quality. An in-house adapted magnetic particle-based
chemiluminescence immunoassay was used for severe
acute  respiratory  syndrome  coronavirus 2
(SARS-CoV-2) IgG antibody detection in the OF. The
SARS-CoV-2 IgG antibody in the serum samples was
detected using a commercial immunoassay.

Results: In total, 579 paired OF and serum
samples were collected. An additional 172 OF samples
were collected from preschool children. The results
indicated that the HIgG concentration in qualified OF
samples should be higher than 0.3 pg/mL. Compared
to the serum assay, the in-house OF immunoassay for
detecting IgG antibodies against SARS-CoV-2 had
95.06% accuracy, 95.03% sensitivity, and 100%
specificity.

Conclusions: Overall, the in-house immunoassay
for detecting SARS-CoV-2 IgG antibodies in OF
showed high potential for application towards
serological surveillance and immunization effect
assessment  after large-scale, inactive COVID-19
vaccination in China.

INTRODUCTION

Since the beginning of the coronavirus disease 2019
(COVID-19) pandemic, caused by severe acute

890 CCDC Weekly / Vol. 4 / No. 40

respiratory syndrome coronavirus 2 (SARS-CoV-2),
more than 440 million people have been infected and
6 million have died worldwide as of March 2022:
posing a serious public health challenge (7).
Vaccination provides robust protection for preventing
and controlling the spread of COVID-19 (2).
However, although the largest scale COVID-19
vaccination yet has been launched in China, outbreaks
of COVID-19 are still occurring across the country
(3-5). Sero-epidemiological investigations are key to
evaluating whether a population has reached an
effective immunization barrier and to finding any
immunization gaps (6). A crucial hindrance to such
investigations, particularly in young children, is the
feasibility of collecting large-scale representative blood
samples. Oral fluid (OF) has been successfully used for
decades to evaluate the antibody levels of childhood
immunization programs for measles and rubella (7).
OF is a mixed exudate derived from several anatomical
sources, including the saliva and gingival crevicular
fluid, which contains the same IgG and IgM antibodies
as those in the serum. Detection of SARS-CoV-2-
induced antibodies in OF can thus provide a non-
invasive method for assessing host responses to
infection or vaccination.

In this study, an adapted magnetic particle-based
chemiluminescence  immunoassay =~ (CLIA)  was
developed to detect IgG antibodies against
SARS-CoV-2 in OF. Recipients of inactivated vaccines
against COVID-19 were recruited and paired serum
and OF samples were collected for comparison.
Further, the sensitivity and specificity of this non-
invasive immunoassay (OF assay) for SARS-CoV-2
IgG antibody detection were evaluated.

METHODS

Paired serum and OF samples were collected from
individuals who had received a booster dose (third

Chinese Center for Disease Control and Prevention
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dose) of inactive COVID-19 vaccine (vaccine group)
as well as those who were a part of the population that
was unvaccinated or uninfected with COVID-19
(control group). In the vaccine group, participants
were voluntarily recruited from the Beijing Center for
Disease Control and Prevention and from Beijing
Haidian Hospital in November 2021. In the control
group, due to the high coverage rate of COVID-19
vaccine in Beijing in 2021, individuals who had
collected paired serum and OF samples in 2018 before
the COVID-19 pandemic were included from Beijing
Haidian Hospital. Additionally, OF samples from
healthy preschool children who were not vaccinated
because of the COVID-19
restriction were also collected to assess the quality of
pediatric OF sampling. All participants and guardians,
on behalf of the pre-school children, provided written
informed consent prior to enrollment in the study.

The self-collection device (Oracol, S10, Malvern
Medical Developments, UK) was used to collect OF
samples (according to the manufacturer’s instructions).
As a brief overview, the sponge swab was brushed at
the junction between the teeth and gums of
participants repeatedly for at least 90 seconds until
completely soaked, and then placed back into the tube
and capped. OF was extracted using 0.6 mL elution
buffer (phosphate-buffered saline containing 10% fetal
calf serum, 500 pg/mL gentamicin, and 1 mL
penicillin-streptomycin ~ solution). The tube was
centrifuged at 250 xg for 1 minute to remove cellular
debris; then, the sponge swab was removed and
discarded. Next, the supernatant OF was collected for
further analysis. Blood samples were collected in blood
collection tubes (Becton, Dickinson and Company)
and stored at room temperature until coagulated before
being transported to the laboratory. The blood samples
were then centrifuged at 1,500 xg for 10 minutes to
separate the serum.

For detecting SARS-CoV-2 IgG antibodies in OF,
an adapted in-house SARS-CoV-2 IgG magnetic
particle-based CLIA for OF was developed (8). Simply,
75 pL of OF samples and 50 pL of recombinant
SARS-CoV-2 antigens, labeled with fluorescein
isothiocyanate (FITC), were added into a reaction tube
to form the antigen-antibody complex. Meanwhile,
35 pL of magnetic particles conjugated with anti-FITC
antibodies were added and incubated at 37 °C for 20
minutes to form IgG antibody-antigen-magnetic
particle complexes. After washing away the unbound
components, 75 pL of alkaline phosphatase-labeled
mouse anti-human IgG monoclonal antibody was

immunization age
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added. After incubation, the complex was washed
again; finally, 100 pL of substrate solution was added,
and the chemiluminescence value of each OF sample
was measured.

For detection of SARS-CoV-2 IgG antibody in the
serum, a commercial SARS-CoV-2 IgG magnetic
particle-based CLIA (Bioscience, Tianjin, China; Lot
number: G202108003) was used according to the
manufacturer’s protocol. The SARS-CoV-2 IgG
antibody levels are presented as a ratio (S/CO,
chemiluminescence value of sample/cutoff value).
Samples with ratios exceeding or equal to 1 were
considered positive and those with ratios of less than 1
were considered negative.

To ensure the quality of OF sampling, the total
human IgG antibody (HIgG) content in the OF was
selected as the biological index for sampling quality.
The content of HIgG in each OF sample was
measured using an HIgG antibody detection kit
(Bioscience,  Tianjin,  China; Lot  number:
G202108003). A reference value range (one-sided) of
95% of HIgG was evaluated to establish the quality
standard of OF sampling.

The sensitivity and specificity of the OF
immunoassay for SARS-CoV-2 IgG detection were
calculated and compared to those of a commercial
magnetic particle-based CLIA. The best cutoff value
for the in-house OF immunoassay was assessed using
receiver operating characteristic curve (ROC) analysis.
The Pearson chi-square test was used to test the
differences among sampling methods. Statistical
analysis and ROC analysis were performed using SPSS
software (version 19, IBM, NY, USA). A value of P less
than 0.05 was considered statistically significant.

RESULTS

During the study period, a total of 579 paired serum
and OF samples were collected, with 364 and 215
from the vaccine and control group, respectively. The
median age of the participants in the vaccine group was
45 years (interquartile range [IQR], 35-53 years). In
the control group, the median age was 34 years (IQR,
29-39 years). Further, 172 OF samples were collected
from preschool children with a median age of 4 years
(IQR, 3-5 years).

To evaluate the quality of OF sampling, the total
HIgG concentrations in 751 OF samples (579 adults
and 172 children) were determined. Overall, the mean
concentration of HIgG in OF samples was 1.85+
0.83 pg/mL. The mean concentration of HIgG in OF
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samples from children was 2.02+1.02 pg/mL, which
was significantly higher than that of the adults at
1.85+0.77 pg/mL (t=2.223, P<0.05). Further, the
mean HIgG concentration in the OF samples from the
vaccine group was 2.01+0.72 pg/mL, which was
significantly higher than that of the control group at
1.59+0.77 pg/mL (t=6.616, P<0.001) (Figure 1).
However, there was no significant correlation between
the HIgG concentration in the OF and the titer of IgG
antibody against SARS-CoV-2 in the serum
(R2=0.062). The threshold for HIgG concentration in
qualified OF samples could be set to 0.3 pg/mL, as
more than 95% of OF samples contained higher
concentrations of HIgG. Based on this cutoff, 8 and 12
OF samples from the vaccine and control groups,
respectively, were excluded from the study.

The SARS-CoV-2 IgG antibody was detected in 397
paired OF and serum samples (194 from the vaccine
group and 203 from the control group) using both the
adapted immunoassay and
magnetic particle-based CLIA. Compared to the titer
of SARS-CoV-2 IgG in serum, a ROC curve was
plotted for detecting SARS-CoV-2 IgG antibody in
OF samples. The area under the ROC curve for SARS-
CoV-2 IgG antibody in OF samples was 0.988, and
the chemiluminescence cutoff value was
105,566.5 (Figure 2).

Based on the cutoff value of SARS-CoV-2 IgG
antibodies in the OF, among 162 paired OF and
serum samples in the vaccine group, 161 (99.38%)

in-house commercial

set as

serum samples and 153 OF samples (94.44%) tested
positive for SARS-CoV-2 IgG (Table 1). Compared
with the serum test, the in-house OF assay had
95.06% accuracy, 95.03% sensitivity, and 100%
specificity. Of the eight false-negative OF samples, the
range of S/CO values in the OF samples was
0.187-0.881, whereas that in the matched serum
samples was 1.574-10.776. The concentration of
SARS-CoV-2 IgG in OF was significantly correlated
with that of the serum (R2=0.62, P<0.001) (Figure 3).

DISCUSSION

To date, several assays for the non-invasive detection
of SARS-CoV-2 antibodies in OF have

established using different methods, such as enzyme-

been

linked immunosorbent assays (ELISA) or lateral flow
immune assays (LFIA) (9). However, the sensitivity of
these commercial assays ranges from 53%-80%, which
may not meet the requirements of the antibody
prevalence survey (9-10). In this study, we evaluated a
magnetic particle-based CLIA with high sensitivity to
detect SARS-CoV-2 IgG antibodies in OF; this assay
combined advantages, including high
sensitivity, high-throughput, and non-invasiveness.
The in-house OF immunoassay showed that the
SARS-CoV-2 specific IgG antibody levels in OF were
similar to those observed in the serum, with 95.06%

several

concordance. This assay achieved 95.03% sensitivity,
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FIGURE 1. The distribution of HIgG titers in OF samples based on age and immune state. (A) The different levels of HIgG
antibodies between adults group (over 18 years old) and children group (younger than 14 years); (B) The different levels of
HIgG antibodies between vaccine group (received booster dose of COVID-19 vaccine) and control group (without COVID-19

infection or vaccination history).

Abbreviation: HIgG=human immunoglobulin G; OF=oral fluid; SARS-CoV-2=severe acute respiratory syndrome coronavirus

2; COVID-19=coronavirus disease 2019.
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FIGURE 2. The ROC curve for SARS-CoV-2 IgG antibody
detection in OF samples.

Note: The true positive rate (sensitivity) of SARS-CoV-2
IgG antibodies in OF is plotted in function of the false
positive (1-specificity) for different cut-off points.
Abbreviation: ROC=receiver operating characteristic;
OF=oral fluid; AUC=area under curve; SARS-CoV-
2=severe acute respiratory syndrome coronavirus 2.

TABLE 1. Comparison of SARS-CoV-2 IgG antibody levels
between the OF and serum samples in the vaccine group.

SARS-CoV-2 IgG in serum

Detection of

Total
SARS-CoV-2 IgG Positive Negative
Positive 153 0 153
SARS-CoV-2 IgG in OF
Negative 8 1 9
Total 161 1 162

Abbreviation: SARS-CoV-2=severe acute respiratory syndrome
coronavirus 2; OF=oral fluid.
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FIGURE 3. The correlation analysis of SARS-CoV-2 IgG
between OF and serum samples.

Note: Scatter plots of S/CO value of SARS-CoV-2 IgG
concentration in OF (y-axis) and S/CO value of SARS-
CoV-2 IgG concentration in serum (x-axis).

Abbreviation: SARS-CoV-2=severe acute respiratory
syndrome coronavirus 2; S/CO=chemiluminescence value
of sample/cutoff value; OF=oral fluid.
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which was higher than that of the above mentioned,
commercial, non-invasive assays for SARS-CoV-2
specific antibody detection.

The OF comprises saliva and gingival crevicular
fluid, which is rich in human IgG antibodies, but only
represents a 1/1,000 dilution of that of the serum (11).
Therefore, the quality of OF collection is critical for
detecting SARS-CoV-2 IgG antibodies using the in-
house OF assay. In this study, each participant was
instructed by healthcare workers to brush the gumline
at least for 90 seconds to stimulate the transudation of
fluid. Further, the total HIgG content of each OF
sample was measured to monitor the process of OF
sampling. The threshold of HIgG for qualified OF
samples was set as 0.3 pg/mL. Previous studies
reported that the HIgG concentration in OF from
children was lower than that in adults (9). However,
our results indicate that OF samples from children
have higher HIgG levels than those from adults.
Further studies need to be conducted to clarify this
phenomenon. In addition, vaccinated adults were
found to have higher concentrations of total HIgG in
OF than those in unvaccinated adults, possibly because
of their active immune status at the time of OF sample
collection.

However, this study has several limitations. First, as
the quality of self-collected OF is highly dependent on
proper operation and ease of using the collection
device, the difference in total HIgG contents between
samples from children and adults might be attributed
to sampling bias; at the same time, all OF samples were
collected only from adults over 18 years old and
children under 14 years old, which also may lead to
sampling bias. Second, the paired OF and serum
samples in this study were only collected from the
adult population and were not representative of the
SARS-CoV-2 antibody in the OF from children and
elderly individuals. Finally, the SARS-CoV-2 IgG
antibody levels in OF from patients with COVID-19
have not been assessed in this study.

In summary, our results demonstrate the high
potential of OF as a replacement for serum for
serological  surveillance and immunization effect
assessment in the context of large-scale immunization
programs for the inactivated COVID-19 vaccine in
China. However, further studies are needed to improve
the performance of the in-house OF assay, including
enhancement of thermal stability, quantification, and
standardization of the SARS-CoV-2 IgG titers in OF
samples.
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Mathematical Models Supporting Control of COVID-19

Bin Deng"®; Yan Niu*; Jingwen Xu'; Jia Rui'; Shengnan Lin'; Zeyu Zhao'; Shanshan Yu';
Yichao Guo'; Li Luo'; Tianmu Chen'*; Qun Li**

ABSTRACT

Mathematical models have played an important
role in the management of the coronavirus disease
2019 (COVID-19) pandemic. The aim of this review
is to describe the use of COVID-19 mathematical
models, their classification, and the advantages and
disadvantages of different types of models. We
conducted subject heading searches of PubMed and
China National Knowledge Infrastructure with the
terms  “COVID-19,”  “Mathematical ~ Statistical
Model,” “Model,” “Modeling,” “Agent-based Model,”
and “Ordinary Differential Equation Model” and
classified and analyzed the scientific literature retrieved
in the search. We categorized the models as data-driven
or mechanism-driven. Data-driven models are mainly
used for predicting epidemics, and have the advantage
of rapid assessment of disease instances. However, their
ability to determine transmission mechanisms is
limited. Mechanism-driven models include ordinary
differential equation (ODE) and agent-based models.
ODE models are used to estimate transmissibility and
evaluate impact of interventions. Although ODE
models are good at determining pathogen transmission
characteristics, they are less suitable for simulation of
early epidemic stages and rely heavily on availability of
first-hand field data. Agent-based models consider
influences of individual differences, but they require
large amounts of data and can take a long time to
develop fully. Many COVID-19 mathematical
modeling studies have been conducted, and these have

been used for predicting trends, evaluating
interventions, and calculating pathogen
transmissibility. Successful infectious disease modeling
requires comprehensive considerations of data,
applications, and purposes.

INTRODUCTION

Coronavirus disease 2019 (COVID-19) has had a
significant impact on public health and economies
worldwide (/-2). Understanding early epidemic
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trends, providing theoretical support for prevention
and control, and evaluating the effect of interventions
have been essential foci of COVID-19 research (3-5).
Mathematical models play an important role in the
study of transmission mechanisms of infectious
diseases;  dynamic  analyses and  model-based
predictions help guide selection of interventions (6-9).
However, classification and applications of existing
COVID-19 models are not fully described. For
example, some researchers use time-series models to
predict epidemic trends, while other researchers use
stochastic models for the same purpose (10-12). This
situation causes ambiguity in the applicability of
models. Classification and applications should be
better delineated and standardized, and conditions for
appropriate use of specific model types need to be
clarified.

For this review we conducted subject heading
searches on PubMed and China National Knowledge
Infrastructure  with search terms “COVID-19,”
“Mathematical ~ Statistical =~ Model,”  “Model,”
“Modeling,” “Agent-based Model,” and “Ordinary
Differential Equation Model.” The searches returned
36,021 papers related to mathematical models in the
control of COVID-19; 89 met criteria and were
included in this review. We reclassified the models
described in each paper, summarized their applications
to COVID-19, and analyzed advantages and
disadvantages of the models to provide a new
classification scheme and a selection basis for future
modeling research to further promote use of models in
COVID-19 prevention and control.

STATUS OF COVID-19 MODELS

We classified mathematical models as either data-
driven or mechanism-driven. Data-driven models
include time series models, generalized additive
models, and artificial neural network (ANN) models,
among others. Mechanism-driven models include
ordinary differential equation (ODE) and agent-based
models. Figure 1 shows our model classification
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FIGURE 1. Classification of mathematical models in COVID-19.
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Abbreviation: COVID-19=coronavirus disease 2019; SIR=susceptible-infectious-removed; SEIR=susceptible-exposed-
infectious-removed; SEIAR=susceptible-exposed-infectious-asymptomatic-removed.

scheme. In this review, we focus on data-driven, ODE,
and agent-based models.

Data-driven Models

“Data-driven model” is a general term for a
collection of models that explore the relationship
between instances of diseases and time. These models
focus on the relationship between number of infections
and time and other factors to predict disease trends.
Applications in COVID-19 include growth curve
models, generalized logistic growth models (GLM),
and other real-time prediction models (/3-14). These
models can be used to describe processes of disease
development, evaluate uncertainty of disease incidence,
and improve the accuracy of trend predictions (7).
Accuracy can be assessed with indicators such as the
Akaike (AIC), Bayesian
information criterion (BIC), and r-squared (R3).

Autoregressive integrated moving average (ARIMA)

information  criterion

models are autoregressive sliding average models based
on time-series data. They have been widely used for
COVID-19 predictions (15-18). The basic idea of an
ARIMA model is to systematically smooth time-series
sampled data to estimate and infer the state of a
phenomenon at some future time by revealing the
underlying pattern between a target variable and time
(19). ARIMA models are adaptable and accurate at
predicting trends (20). We found that for COVID-19
research, ARIMA models focused on comparison of
predicted time-series data in different regions.

Artificial neural network models have played an
important role in COVID-19 prevention and control
research (79). ANN models capture uncertainty in

896 CCDC Weekly / Vol. 4 / No. 40

time-series data and are a powerful technique for
nonlinear data, thus

handling complementing
traditional linear models and yielding results superior
to some other models (27-22). As a stochastic
nonlinear recurrent neural network model, the
Boltzmann machine (BM) model is a good fit for
analyzing cumulative COVID-19 infection data
(23-25).

Data-driven models have also been used in other
scenarios, including prediction and assessment of
cumulative deaths prevented in the pandemic (26-27),
optimizing allocation of healthcare resources, and
prediction of clinical risk during treatment of COVID-

19 (28-30).

Ordinary Differential Equation Models

ODE models are also known as compartment
models (31). They reflect the dynamics of infectious
based on
transmission. ODE models reveal epidemiological

diseases occurrence and routes of
routes, predict development trends, analyze key factors
of disease epidemics, and seek optimal strategies for
prevention and control. The most common ODE
model is a system of differential equations based on
susceptible-infectious-removed (SIR) and susceptible-
exposed-infectious-removed ~ (SEIR)  compartments
(32). ODE models can be developed by combining
population dynamics, vaccination dynamics, isolation,
and population exposures (33-34).

The basic reproduction number (R) is considered a
key variable in ODE models that is related to the
spread of infectious diseases (35-36). SIR models have

been widely used worldwide, and many studies have
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calculated R; to help predict COVID-19 trends
(37-40). SIR models are commonly used to evaluate
interventions and calculate transmissibility (47-42).
The SEIR model has been used to predict and analyze
outbreaks (43-44). It has also been used to analyze
different  epidemic
scenarios and to predict development of an epidemic
(45-46). Compared with SIR and SEIR models, the
susceptible-exposed-infectious-asymptomatic-removed
(SEIAR) model is more applicable for COVID-19
because of its asymptomatic compartment. This model
is more suitable for early outbreak predictions (47-48).
Developing models for different age groups, genders,
and occupations helps scholars understand important
differences in the spread of COVID-19 under several
scenarios (49).

Developing effective infectious disease prevention
strategies ~ requires  consideration  of  disease
characteristics, intervention mechanisms, and resource
availability. COVID-19 prevention and
measures include non-pharmaceutical interventions
(NPIs) and pharmaceutical interventions (Pls)
(50-54). NPIs are many, and include isolation, social
distancing, wearing masks, and enclosing places of
activity (55). In our review, we found that nearly 80%
of ODE-based research assessed the effects of isolation,
doing so by introducing an isolated population into the
base-case model and comparing differences in
transmission between isolated and non-isolated
populations (11,35-56). Evaluating the effects of other
NPIs is achieved by decomposing transmission rate
into the probability of transmission of a single contact
and the degree of exposure (57). For example, wearing
a mask reduces the probability of single-contact
transmission, whereas increasing social distance reduces
the degree of exposure.

An ODE model that incorporated big data on
mobile populations was used to simulate changes in
epidemic trends in closed and open cities and provide
recommendations for policymakers (58—60). The most
prominent  application of ODE models of
pharmaceutical interventions is to predict a vaccination
campaign’s duration, coverage, and impact that will be
sufficient to reduce need for NPIs and facilitate
recovery of a damaged economy and nation (6I).
Pandemics tend to decrease only gradually after
vaccination (67-62). Key indicators for vaccination
campaigns are vaccine effectiveness and coverage
attained, with an inverse relationship between the two
indicators, so that higher coverage can partially
compensate for lower effectiveness (61). Selection of

transmission mechanisms in

control
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target populations for a vaccination campaign is
important. For example, prioritizing vaccination of
older age groups is more beneficial for reducing

morbidity and mortality (63-64).

Agent-based Models

Data-driven and ODE models use population
characteristics and do not consider heterogeneity of
individuals. Agent-based modeling uses a spatial
database of the geographical environment of the study
area (65) and is usually applied in evaluations of
prevention and control measures (70,56-66). These
models can refine studies of interventions,
demonstrating, for example, that a combination of
testing and close follow-up is more effective than mass
testing or self-isolation alone (67). Agent-based models
makes it possible to evaluate the impact of individual
healthcare workers’ hand hygiene practices on
COVID-19 transmission (68). To predict trends in
individuals’ risk of infection and propose prevention
and control strategies, it is necessary to combine
individual profiles and demographic data in the model
and identify changes in COVID-19 transmission
routes in different scenarios (69-74). However, data
limitations make it difficult to generalize agent-based
model results for prediction of COVID-19 trajectory

or evaluation of interventions in a city or country.

ADVANTAGES AND DISADVANTAGES
OF MODELS

Data-driven Models

Data-driven models have unique advantages in
modeling prevention and control of infectious diseases.
A wide selection of data-driven models is available,
with many featuring ease of use and fast performance
for rapid diagnosis in early stages of an outbreak. These
models are driven by historical data and statistics and
are less affected by parameter changes. However, most
data-driven  models do not consider natural
transmission characteristics and clinical features of the
disease. In addition, some key disease parameters lack
rigorous interpretation in terms of transmission
mechanism or disease etiology, and the models require
high-quality historical data, which can challenge

assessing effectiveness of some interventions.

Ordinary Differential Equation Models
Compared to agent-based models, ODE models are
more flexible, provide more reliable predictions, and
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are less computationally demanding. After setting
parameters and initial values, ODE models run quickly
and are adaptable to the needs of an early and rapid
response to a new infectious disease. Additions and
deletions can be made according to actual situations,
for example, considering different disease states, time-
lags, age structures, and birth and death rates. Such
adaptations can make the model fit better with reality.
The effects of interventions can also be assessed visually
by graphing model compartments while changing
parameter values. ODE models have some drawbacks.
They ignore individual-level heterogeneity and
randomness in the disease characteristics; they are not
suitable for simulations of epidemics or early cases
when some of the parameters are subjective and
empirical; and the model results may be realistic and
reliable only for the reporting region and may not be
generalizable due to regional variability.

Agent-based Models

By using population characteristics and case data
and applying mathematical simulation technology to
simulate transmission, agent-based models
complement epidemiological evaluation of epidemic
characteristics and prevention and control measures
(65). A feature of agent-based models is that the results
can reflect spatial and temporal characteristics of a
disease in the region, as data-driven and ODE models
do. A key advantage is that agent-based models are
more useful for analyzing infectious diseases
transmission mechanisms and estimating infection
rates.  Shortcomings include that agent-based
individual random models require a large amount of
well-measured data and require researchers to have
geographic environment modeling experience and a
strong foundation in programming.

DISCUSSION

For the COVID-19 pandemic, each type of model
has strengths, weaknesses, and a spectrum of
applicability to different scientific questions, and each
requires varying degrees of background knowledge
from the researchers. Infectious disease data-driven
models  provided information for action by
policymakers, public  health
practitioners during times of great uncertainty about
the COVID-19 pandemic. Although most COVID-19
modeling studies used ODE models, as ODE
technology advances, future research will involve more

clinicians, and
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cross-pollination between different disciplines. Agent-
based models were not widely utilized in COVID-19
prevention and control efforts. Research with more
complex and systematic methods has only just begun,
and there is still a great deal of in-depth research work
to be done in this area.

When dealing with an outbreak of an emerging
infectious disease, model selection is based on several
points. 1) Stage of the transmission. During the
COVID-19 pandemic, different types of models were
used at different stages. In the early stages of an
epidemic, there is less knowledge about the disease,
and therefore only basic SIR or SEIAR models can be
built. As the disease is studied and research reveals
important insights, it is possible to build more complex
models that can perform new and different functions.
2) Data availability. Data are fundamental for building
models, and data completeness constrains model
selection. When there are insufficient real-world data,
researchers can only use basic data-driven models to
predict the trajectory of an epidemic. As the amount of
data increases and data sources diversify, the type,
veracity, and complexity of built models can increase.
3) Applications of the model. When choosing a model,
its purpose must be clear. For example, to evaluate the
impact of prevention and control measures, one must
consider the natural history of the disease,
characteristics and settings of the intervention, and
other factors. To study the influence of individual
factors, an agent-based model should be considered.
4) Generalizability of the model. Most modelling
studies are set in small areas, and a model appropriate
for one setting may not be applicable elsewhere.
Therefore, when selecting model parameters, it is
important to consider variability of study sites and
parameter values in a comprehensive manner.

Our review has shown that many studies have been
conducted with COVID-19 mathematical models, and
that mathematical models are highly suitable for
analyses of the pandemic. Although many types and
applications of COVID-19 models exist, we found that
the models can be divided into mechanism-driven
models and data-driven models, and that model
applications are mainly focused on predicting trends,
evaluating the effects of interventions, and estimating
severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) transmissibility. Models are playing a
critically important role in COVID-19 prevention and
control. In the future, mathematical models will be
used to provide scientific support for evidence-based,
innovative, and precise responses to many infectious
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Notes from the Field

First Imported Case of SARS-CoV-2 Omicron Subvariant BA.4
— Guangdong Province, China, May 4, 2022

Qianfang Guo"%; Changcheng Wu*%; Aiping Deng'; Jingtao Liang’; Xiang Zhao% Ruhan A% Jiajun Liu'; Fangzhu
Ouyang'; Jing Xu'; Shen Huang'; Yang Song% Lirong Zou'; Xiaoling Deng'; Kai Nie?*; Baisheng Li**

On April 29, 2022, a flight arrived at Baiyun
International Airport, Guangzhou City, Guangdong
Province, after departing from Amsterdam Schiphol
Airport, the Netherlands. After the first test of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) nucleic acid at the Baiyun International Airport, all
passengers were admitted to a quarantine hotel for a
routine 14-day medical observation. On April 30, one
of the passengers (a 20-year-old Chinese female) was
reported positive for coronavirus disease 2019
(COVID-19), and then a nasopharyngeal swab sample
was immediately retested on May 1 and reported
positive. The patient was fully vaccinated against
COVID-19 and completed 14 days of quarantine
before flying to China. She denied any history of
exposure to COVID-19 cases. After diagnosis, the
patient was sent to Foshan Fourth People’s Hospital
for treatment.

On May 4, 2022, the viral genomic sequence of the
patient was obtained using the Illumina MiniSeq
platform (Illumina, San Diego, CA, USA), and
genotyping results showed that the genome belonged
to the Omicron/variant of concern (VOC) sublineage
BA.4, with a total of 30 amino acid mutations (V3G,
T191, A27S, G142D, V213G, G339D, S371F, S373P,
S375F, T376A, D405N, R408S, K417N, N440K,
L452R, S477N, T478K, E484A, F486V, Q498R,
N501Y, Y505H, D614G, H655Y, N679K, P681H,
N764K, D796Y, Q954H, N969K) and 5 deletions
(L24del, P25del, P26del, H69del, V70del) in the spike
protein gene. The phylogenetic tree indicates that the
sequenced BA.4 has high similarity to the genome
detected in Denmark on May 4, 2022 (GISAID:
EPI_ISL_12648960) (Figure 1). The sequence has
been deposited in the National Genomics Data Center
(under the accession number WGS025540).

On May 4, 2022, the World Health Organization
reminded to closely monitor Omicron BA.4
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subvariants (). BA.4 is driving the upsurge in South
Africa and has rapidly replaced BA.2, with over 50% of
sequenced cases since the first week of April 2022 (2).
Compared to BA.2, the BA.4 subvariants also showed
stronger immune escape to the plasma of 3-dose
vaccinees, even vaccinated BA.1 convalescent plasma
(3—4). Cases of BA.4 infection have been reported in at
least 20 countries, mainly from South Africa (62.39%)
(5-6). Researchers are focusing on this subvariant and
trying to learn more.

doi: 10.46234/ccdew2022.095
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FIGURE 1. Phylogenetic tree based on the full-length genome sequences of the COVID-19 Omicron sublineage.
Note: The Guangdong Province imported VOC/Omicron (BA.4) variant is indicated with a red arrow. The other Omicron
sublineages are indicated on the right side and marked with vertical bars.

Abbreviation: COVID-19=coronavirus disease 2019; VOC=variant of concern.
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Notes from the Field

Emergence of a SARS-CoV-2 Omicron Subvariant BA.2.2 with a
454-Nucleotide Genomic Deletion — Sichuan Province, China,
May 10, 2022

Yuliang Feng"®; Xiang Zhao*; Tao Luo**; Zhixiao Chen’ Huiping Yang'; Na Chen'; Xiaozhen Ma';
Mingyuan Li’; Weihua Zhang’; Sikai Jia’ Xun Yuan’; Ming Pan'% Linlin Zhou**

On May 9, 2022, 3 local residents in Guang’an
City, Sichuan Province, tested positive for severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2)
and were diagnosed with asymptomatic coronavirus
disease 2019 (COVID-19) in a local outbreak, and as
of May 14, a total of 20 confirmed cases and 398
asymptomatic infections were reported.

Whole genome sequencing was performed directly
on the nasal and throat swab specimens from the initial
three asymptomatic infected individuals using the
[lumina MiSeq platform (Illumina, San Diego, CA,
USA). The complete genome sequences of 3 SARS-
CoV-2 strains, named SC1215, SC1216, and SC1217,
were obtained. The sequence of SC1217 has been
deposited in the GISAID database (under the accession
number EPI_ISL_12725020). Phylogenetic analysis
(maximum likelihood method) revealed that the 3 local
strains clustered together to form a monophyletic clade
belonging to the Omicron BA.2.2 sublineage
(Figure 1) (1-2). The BA.2.2 sublineage was derived
from the Omicron BA.2 lineage (3) and may have
originated in Hong Kong Special Administrative
Region (SAR) with predominant transmission to the
mainland of China, Japan, Australia, and the United
Kingdom (2).

Genomic analysis revealed a 454 nucleotide (nt)
deletion in the SARS-COV-2 genome at nucleotide
positions 27,689-28,142, and this result was further
validated by Sanger sequencing (Figure 2). Sequencing
of 41 clinical specimens from the local outbreak in
Guang'an by May 14 had also detected the 454-nt
deletion. Further analysis revealed that the 454-nt
deletion resulted in a 71-nt deletion at the 3’ end of
ORF7a gene, a complete deletion of ORF7b gene
(132-nt) and the intergenic region of ORF7b/8 (6-nt)
gene, and a 249-nt deletion at the 5’ end of ORF8
gene.

As of May 12, 2022, 2,787 sequences in the
GISAID database were Omicron BA.2.2 sublineage,
but no such long 454-nt deletion was found. ORF7a,
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OREF7b, and ORF8, which encode accessory proteins
of SARS-CoV-2, are important for the interaction of
SARS-CoV-2 with the host. Previous studies have
shown that ORF7a protein binds to human
monocytes, decreases antigen presentation ability, and
induces dramatic expression of pro-inflammatory
cytokines (4-5). Deletion of ORF8 may lead to a
milder infection and a more efficient immune response
to SARS-CoV-2 (6). Further experiments are needed
on whether and how this 454-nt deletion affects the
infectivity and pathogenicity of the virus, and
epidemiological and genomic surveillance is needed to
monitor its potential further transmission.

Funding: Sichuan Science and Technology Program
(2022ZDZX0017 and 2021YFQO0060).
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FIGURE 1. The maximum likelihood phylogeny based on the full-length genome sequences of SARS-CoV-2.

Note: The Sichuan 454-nt deletion variants are highlighted in red. The Wuhan reference strain is shaded in gray.

Abbreviation: VOC=variant of concern; SARS-CoV-2=severe acute respiratory syndrome coronavirus 2.
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FIGURE 2. Genomic organization of human SARS-CoV-2 and the location of the 454-nt deletion(A454). (A) Schematic
diagram of the genomes of SARS-CoV-2 isolates Wuhan-Hu-1 (Genbank: NC_045512, GISAID: EPI_ISL_402125). (B)
Magpnification of genomic region (red box in panel A) showing the 454-nt deletion spanning ORF7a, ORF7b, and ORF8
(indicated by the red line). (C) Sanger sequencing results flanking the 454-nt deletion of the SARS-CoV-2 A454 variant.
Abbreviation: SARS-CoV-2=severe acute respiratory syndrome coronavirus 2.
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