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What is

Post COVID-19 Condition (PCC)?

The most commonly reported

symptoms are

- Tiredness
- Sore throat
- Cough

- Headache
- Chest pain

ey @

Itis a condition that is usually diagnosed after 3
months from the start of COVID-19, lasts for at
least 2 months, and cannot be explained by an
alternative diagnosis. Symptoms may be different
from those experienced during an acute COVID-19
episode or persist from the initial illness
Symptoms may also change or reappear over
time. PCC is also known as long COVID-19, long-
haul COVID-19, post-acute COVID-19.

- Shortness of breath

- Difficulty to sleep and/or concentrate
- Anxiety or depression

- Joint or muscle pain

PCC MOSTLY AFFECTS:
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Preplanned Studies

Risk Factors Associated with the Spatiotemporal Spread of the
SARS-CoV-2 Omicron BA.2 Variant — Shanghai
Municipality, China, 2022

Wen Zheng'; Xiaowei Deng'; Cheng Peng'; Xuemei Yan'; Nan Zheng'; Zhiyuan Chen';
Juan Yang'; Marco Ajelli; Juanjuan Zhang'*; Hongjie Yu'?*

Summary

What is already known about this topic?
Previous studies have explored the spatial transmission
patterns of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and have assessed the
associated risk factors. However, none of these studies
have quantitatively described the spatiotemporal
transmission patterns and risk factors for Omicron
BA.2 at the micro (within-city) scale.

What is added by this report?

This study highlights the heterogeneous spread of the
2022 Omicron BA.2 epidemic in Shanghai, and
identifies associations between different metrics of
spatial spread at the subdistrict level and demographic
and socioeconomic characteristics of the population,
human mobility patterns, and adopted interventions.
What are the implications for public health
practice?

Disentangling different risk factors might contribute to
a deeper understanding of the transmission dynamics
and ecology of coronavirus disease 2019 and an
effective design of monitoring and management
strategies.

An Omicron BA.2 epidemic occurred in Shanghai,
China in early March 2022. The objective of our study
is to quantify the spatial spread of the epidemic across
Shanghai subdistricts and identify risk factors. This
study provides quantitative estimates of the epidemic
arrival time, growth rate, and infection attack rate
(IAR) as of May 31, 2022, and uses a generalized linear
mixed effect model (GLMM) to explore their
associations with demographic and socioeconomic
characteristics of the population, human mobility, and
interventions at the subdistrict level. We found that
the epidemic growth rate was positively associated with
the epidemic arrival time and subdistricts farther away
from the (likely) origin of the outbreak had lower
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growth rates. The IAR was negatively correlated with
the arrival time, distance from the initial outbreak
location, subdistrict location, and booster coverage in
the population aged 65 years and above; a positive
association was found for population density and gross
domestic product (GDP). This study highlights the
role of the geographical structure of the city, human
mobility, population characteristics, and adopted
interventions in shaping the dynamics of the epidemic.

Shanghai is divided into 16 districts and 216
subdistricts. In the initial phase of the outbreak, grid
management was implemented at the subdistrict level
and entailed partial lockdown and mass nucleic acid
screening for high-risk areas and non-high-risk areas.
Afterward, eastern Shanghai entered a population-wide
lockdown on March 28, and then the rest of Shanghai
entered a lockdown phase on April 1 (Supplementary
Figure S1, available in https://weekly.chinacdc.cn/).
The city-wide lockdown was fully lifted on June 1,
2022.

Daily aggregated data on the number of infections
and individual-level data of all severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infections
were extracted from multiple publicly available official
data sources. The initial (identified) focus of the
outbreak was the cultural activity center of Shiquan
subdistrict in Putuo District, where a cluster of 14
SARS-CoV-2 positive individuals was detected starting
from March 1, 2022 ().

To describe the time course of the Omicron
outbreak in Shanghai, we estimated the following three
indicators at the subdistrict level: 1) epidemic arrival
time (i.e., the date of the first confirmed infection in a
subdistrict), 2) IAR (i.e., the cumulative number of
reported infections in a subdistrict divided by the total
population in that subdistrict), and 3) epidemic growth
rate.

To explore potential risk factors associated with the
epidemic arrival time, growth rate, and IAR across
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subdistricts, we included several covariates that belong
to four general categories: demographic characteristics,
socioeconomic characteristics, human mobility, and
interventions (Supplementary Table S1, available in
https://weekly.chinacdc.cn/). The arrival time of the
epidemic represents a response
measuring the spread of the infection; however, we also
considered it as an explanatory variable when exploring
its association with the epidemic growth rate and IAR.

A correlation analysis was conducted to assess
collinearities between the independent variables. We
built a GLMM model to estimate the proportion of
variance in the response variables ascribable to intra-
and inter-district variation. The significance level was
set to 0.1 for candidate variable selection, and 0.05 for
multivariate regression. To test whether the random
model was appropriately chosen, we also estimated
spatial autocorrelation between residuals using Moran’s
I statistic. To quantify the uncertainty of model
selection, a generalized estimating equation (GEE)
model accounting for spatial clustering was used in a
sensitivity analysis. The detailed statistical methods are
presented in the Supplementary Material. All the
analyses were performed in R 4.1.0 (R Foundation for
Statistical Computing, Vienna, Austria).

As of May 31, 2022, a total of 626,840 SARS-CoV-
2 infections had been reported in 99.54% of the
Shanghai subdistricts. High heterogeneity in the spatial
distribution of infections was found across subdistricts,
with 27.78% of the subdistricts accounting for more
than 70% of all infections (Supplementary Figure S2,
available in https://weekly.chinacdc.cn/).

The spatial spread of the epidemic showed a clear
spatial trend from the city center to adjacent areas, and

variable when

a continuous spread toward suburban and rural areas.
The spatial distribution of the arrival time was highly
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heterogeneous, with 35.19%, 41.67%, and 97.69% of
the subdistricts reporting infections within the first
week, second week, and a month, respectively.

We analyzed the correlation between the epidemic
arrival time and the geographical distance from the
initial outbreak location. The regression model showed
that compared to the geographic and effective
distances, the pre-epidemic flow of travelers showed a
slightly weaker correlation with the epidemic arrival
time (Figure 1).

By fitting a linear regression model to the logarithm
of the daily number of new confirmed infections from
February 26 to April 1, 2022, the overall epidemic
growth rate for Shanghai was estimated to be 0.23 per
day [95% confidence interval (CI): 0.22-0.25].
Excluding 6 subdistricts reporting no infections before
the lockdown and 49 subdistricts with R%<0.6, as well
as 3 subdistricts with only two data points, we analyzed
the estimated growth rates for the remaining 158
subdistricts. The growth rate was lognormal-
distributed, with a range of 0.06 to 0.39, which was
positively associated with the arrival time of the
epidemic (Figure 2A-2C).

The results of the univariate analysis were reported
in the Supplementary Table S2  (available in
https://weekly.chinacdc.cn/). The final selected model
showed that the arrival time positively correlated with
the growth rate of the epidemic [odds ratio (OR): 1.03,
95% CI: 1.02-1.04]. Subdistricts located in the
suburban ring (OR: 0.85, 95% CI: 0.73-0.98) and
outside the suburban ring (OR: 0.59, 95% CI
0.49-0.70) were associated with a significantly lower
epidemic growth rate (Figure 2D). The residuals did
not show significant spatial autocorrelation with
Moran’s [ analysis. The results were robust after
removing the outliers. We obtained similar results with
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FIGURE 1. Scatter plots of the correlation between epidemic arrival time and (A) geographical distance, (B) effective

distance, and (C) baseline flows.

Note: Dots in the scatter plot were colored by different districts.
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FIGURE 2. Epidemic growth rate and its associated factors. (A) Geographical distribution of growth rates for 158
subdistricts. (B) Distribution of the estimated epidemic growth rate (per day) by subdistrict and fit of a log-normal distribution.
(C) Scatter plot of the epidemic growth rate and arrival time. (D) Factors associated with the growth rate.

Note: In panel A, of the 216 subdistricts, 6 subdistricts reporting no infections before the lockdown, 49 subdistricts with an
R*<0.6, and 3 subdistricts with only two data points for estimating their growth rates, were excluded from the regression; the
excluded subdistricts are shown in white. In panel C, dots were colored by different districts. In panel D, dots and lines
indicate point estimates and 95% confidence intervals of the odds ratio. Odds ratio was calculated as exponentiated
regression coefficients. Numbers on the side of the dots indicate the numerical value of the point estimate.

Abbreviation: Ref.=reference category.

* indicates P-value<0.05;

** indicates P-value<0.01;

*** indicates P-value<0.001.

a GEE model (Supplementary Table S3, available in
https://weekly.chinacdc.cn/).

As of May 31, 2022, the overall IAR in Shanghai
was estimated to be 2.42%. However, the IAR was
highly heterogeneous across subdistricts, ranging from
0 to 13.75%. The epidemic arrival time was
significantly associated with the IAR. The final selected
model showed that the arrival time was negatively

correlated with the IAR (OR: 0.59, 95% CI
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0.46-0.75). Among the investigated demographic
characteristics, population density was positively
associated with the IAR (OR: 1.38, 95% CI
1.20-1.60). Among the socioeconomic characteristics,
subdistricts that were farther apart from the initial
outbreak location were associated with a significantly
lower IAR (OR: 0.96, 95% CI: 0.95-0.98). GDP at
the district level positively correlated with the IAR
(OR: 151, 95% CI. 1.23-1.85). Compared to
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subdistricts located in the inner ring, subdistricts
located farther away from the inner ring were
significantly associated with lower IARs (OR for
middle ring: 0.51, 95% CI: 0.35-0.73; OR for outer
ring: 0.43, 95% CI: 0.32-0.58; OR for suburban ring:
0.16, 95% CI. 0.11-0.24; OR for outside suburban
ring: 0.05, 95% CI: 0.03-0.08). Among the vaccine-
related covariates, booster coverage for people aged 65
years and above was associated with a significantly
lower IAR (OR: 0.73, 95% CI: 0.55-0.96, Figure 3).
Moran’s [ for the residuals showed no significant
spatial autocorrelation. The results were robust after
removing the outliers, and similar results were obtained

with a GEE model (Supplementary Table S4, available

A

in https://weekly.chinacdc.cn/).

DISCUSSION

This study highlights the heterogeneous spread of
the 2022 Omicron BA.2 epidemic in Shanghai, and
identifies associations between different metrics of
spatial spread at the subdistrict level and demographic
and socioeconomic characteristics of the population,
human mobility patterns, and adopted interventions.

The identified (likely) focus of the outbreak was the
cultural activity center of the Shiquan Subdistrict in
Putuo District. However, we could not rule out the
possibility that the Omicron outbreak might have
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FIGURE 3. Infection attack rate and its associated factors. (A) Geographical distribution of the infection attack rates at the
subdistrict level as of May 31, 2022. (B) Distribution of the infection attack rate by subdistrict and fit of a log-normal
distribution. (C) Scatter plot of the infection attack rate and arrival time. (D) Factors associated with the infection attack rate.
Note: In panel C, dots were colored by different districts. In panel D, dots and lines indicate point estimates and 95%
confidence intervals of the odds ratio. Odds ratio was calculated as exponentiated regression coefficients. Numbers on the
side of the dots indicate the numerical value of the point estimates.

Abbreviation: GDP=gross domestic product; Ref.=reference category.

* indicates P-value<0.05;

** indicates P-value<0.01;

*** indicates P-value<0.001.
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originated from multiple sources that resulted in
chains prior to the
identification of the first local transmission event.

Our findings suggest that the subdistricts with
stronger connections to the initial outbreak location
had higher chances of being reached by the epidemic
early on, which is consistent with observations for the
2009 HINTI influenza pandemic and 2003 SARS
epidemic (2). The epidemic growth rate was positively
associated with the arrival time of the epidemic,
suggesting that the targeted interventions implemented
in high-risk areas were insufficient to slow down
transmission (3).

Human mobility is generally considered to be key in
determining the risk of infection and the spread of
epidemics (4-5). However, in our multivariate
regression models, we found that pre-epidemic
population flows were not significantly associated with
the IAR or growth rate. This could be explained by its
strong collinearity with the epidemic arrival time,
which ultimately had a strong impact on determining
the type and timing of adoption of control measures
(6).

Subdistricts with a higher GDP were found to have
a higher IAR, consistent with a previous study (7).
This indicates that subdistricts with a higher GDP
trend to have more factories and enterprises, causing
more gathering and higher risk of transmission
accordingly.

Initially, the outbreak spread in and around the
inner ring. Previous literature also found that the
COVID-19 pandemic in the United States was
characterized by a geographically localized mosaic of
transmission along an urban-rural gradient (8-9),
suggesting that geographic distance may play an
important role in SARS-CoV-2 spread. Finally, the
public health impact of COVID-19 vaccines has
already been widely discussed in the literature (10-13)
and our study confirms previous evidence.

Our study suffers from limitations that are rooted in
the uncertainty and fragmentary nature of publicly
available sources, such as a high level of missing data
for key variables, such as the date of symptom onset.
Additionally, the population flows were provided by
China Unicom and thus may suffer from the limitation
intrinsic of mobile phone data. Moreover, we cannot
exclude the possibility that there are other potential
risk factors that were not considered in our study (e.g.,
housing
Meteorological factors may play an important role to
explain the heterogeneity in the temporal and spatial

simultaneous transmission

conditions and meteorological factors).

Chinese Center for Disease Control and Prevention

spread of infectious diseases, but we did not include
them here as the variation may be very limited across
the small study location and the short study period.
Finally, this study does not provide causal
relationships, but only provides associations between
different metrics of the epidemic spread with a set of
indicators.

In conclusion, this study provides a quantitative
description of the spatiotemporal spread of the
Omicron BA.2 variant in Shanghai at the subdistrict
level. Our findings highlight the role of the
geographical structure of the city, human mobility,
socioeconomic characteristics of the population, and
adopted interventions in shaping the dynamics of the
epidemic. Disentangling these factors might contribute
to a deeper understanding the transmission dynamics
and ecology of COVID-19 and guide the design of
monitoring and management strategies.
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SUPPLEMENTARY MATERIAL

Generalized Linear Mixed Effect Model

Arrival time. We built a generalized linear mixed effect model (GLMM) to estimate the proportion of variance in
the response variables attributable to intra- and inter-district variation. For the arrival time, we used a GLMM with
random intercept effect and log link function to assess its association with geographical distance from the initial
outbreak location. We used the concept of “effective distance” (7), wherein the distance between locations depends
on the strength of their link; in our case, the strength of the link is measured as the outflows from initial outbreak
location.

Epidemic growth rate. Similarly, we used a GLMM with random intercept, random slope, and log link function
to explore whether and to what extent the arrival time correlates with the epidemic growth rate, while controlling
for other covariates. To select which explanatory variables to include in the final model, we first used univariate
regression for candidate variable selection, then we run multivariate regressions. Finally, we performed a forward
stepwise model selection based on Akaike’s Information Criterion (AIC) and likelihood ratio test.

The specification of the final GLMM for the epidemic growth rate is the following:

g(/iz‘j) = a + Piarrival_time; + ﬁzjringl_j +

where ¢ is a log link function; 7 represents the subdistrict; j represents the distric; a represents the
intercept; arrival_time; and ring,denote the fixed effects of the arrival time and ring where the subdistrict is located; #
represents the district-specific random intercept effects; 3,; represents the district-specific random slope effects; and
pi=E (Y}j| u; 35;) is the mean of the response variable (i.e., the epidemic growth rate) ¥; for a given value of the
random effects.

Infection attack rate. To explore driving factors associated with the infection attack rate, we used the same
GLMM. After model selection, the specification of the final GLMM for IAR is the following:

g( M,»j) =+ ﬂljarriml_timel-j + ﬁzdmsityij + ﬁ3jrz'ngl_j + Bydistance;+ 35 GDP;; + ﬂGbowter_GSij +u

where ¢ is a log link function; 7 represents the subdistrict; j represents the district; a represents the
intercept; arrival_time;, demz‘tyl,j,rz’ngy, distance, GDPy;, and booster_65;; denote the fixed effects of the arrival time,
population density, ring where the subdistrict is located, distance from the initial outbreak location, GDP, and
booster vaccination coverage of people aged 65 years and above; u; represents the district-specific random intercept
effects; By and f;; represents the district-specific random slope effects; and p; = E (Y,-J-| u; By, 63].) is the mean of the
response variable (i.e., the infection attack rate) ¥} for a given value of the random effects.

Observations with a Cook’s Distance greater than 20 times the mean value were considered outliers and excluded
from the analysis. Odd ratios were calculated by exponentiating the coefficients and confidence interval from the
regression results. Diagnostics were performed to assess regression assumptions.

Generalized Estimating Equation Model
In addition to the GLMM, we also built a generalized estimating equation (GEE) model to regress the epidemic
growth rate and infection attack rate. The GEE model relies on a similar specification of the initial GLM fitting, but
with no random effects. To further account for spatial clustering and possible correlation structure, GEE uses #; to
define the clustering structure of the data with a working correlation matrix that defines the correlation within each
cluster (i.e., district). We provide the results for the exchangeable correlation matrix, but independent and
unstructured matrices were explored as well and gave very similar results.
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SUPPLEMENTARY TABLE S1. Definition and data sources for potential risk factors.

Type Factors Level Data source

Demographic characteristics*

1. Population density (x1,000 people/km?) Subdistrict 6th and 7th Census (2-3)
2. Proportion of people aged 65 years old and over (%) Subdistrict 6th and 7th Census (2-3)
3. Ratio of population with household registration to the effective population (%) Subdistrict ggiEQ(Z?i Statistics Year

Socioeconomic characteristics

4. Distance from the initial outbreak location, i.e., cultural activity center in

Shiquan Subdistrict of Putuo District (km) Subdistrict  Amap (5)

Shanghai Statistics Year

5. Gross domestic product (GDP) (x100 million CNY) District Book (4)
L Shanghai Statistics Year
6.C f 9
overage of green area (%) District Book (4)

7. Ring where the subdistrict is located
e Inner ring: subdistricts with more than half of the area within the Inner-city
Elevated Beltway;
e Middle ring: subdistricts between the Inner-city Elevated Beltway and the
Middle Ring Road;
e Quter ring: subdistricts between the Middle Ring Road and the Outer Ring
Road, i.e., S20;
e Suburban ring: subdistricts between the S20 Road and the Highway around
Shanghai City, i.e., G1501;
e Outside the suburban ring: subdistricts outside the G1501 Road

Human behavior?
8. Baseline flows during pre-epidemic (x1,000 trips): daily average population
flows (inflows, outflows and inner flows) for a given subdistrict in the last week of Subdistrict China Unicom (6)
February, i.e., between February 21 and February 27, 2022.
9. Outflows from the initial outbreak location (i.e., Shiquan Subdistrict) to other
215 subdistricts during pre-epidemic (x1,000 trips): daily average outflows Subdistrict China Unicom (6)
between February 21 and February 27, 2022

Vaccine and non-pharmaceutical interventions

Subdistrict Public sources

10. Vaccine coverage (%)’

e Primary vaccination coverage of total population

e Booster vaccination coverage of total population Subdistrict

e Primary vaccination coverage of people aged 65 years old and over

e Booster vaccination coverage of people aged 65 years old and over

11. Whether a given subdistrict was classified as high-risk area or not, during

grid management phase between March 16 and March 27, 2022

12. Lockdown time of eastern and western Shanghai, defined as subdistricts

east and west of the Huangpu River

e Eastern Shanghai: March 28

e Western Shanghai: April 1

13. Reduction in daily population flows after lockdown (%): the subtraction of

daily average flows during early lockdown (between April 1 and April 7, 2022)  Subdistrict ~ China Unicom? (6)

from the baseline flows and the division by the baseline
Abbreviation: CNY=Chinese Yuan.
* Subdistrict-level population data after 2017 were derived from the 7th National Census of China and the latest reports by local authorities.
For the subdistricts with unavailable population data after 2017, the subdistrict-level population data for 2020 were inferred from the
population size of each district in 2020 and the population proportion of each subdistrict in the Sixth National Census in 2010.
T The population flow data is provided by one of the largest national mobile carriers in China, China Unicom, and is aggregated based on all
users’ mobile phone activity records across the city, including geographic location. We then aggregated the daily inflows, outflows, and
internal flows at the subdistrict level.
$ The numerator is vaccinated individuals, and the denominator is census population. If floating population who was vaccinated was counted
in the numerator, it may result in coverage exceeding 100%. Besides, census population for some subdistricts is not up to date, possibly
leading to overestimation of coverage. Thus, the coverage would be truncated to 100%, if exceeding 100%.

Public sources and internal
report

Subdistrict Public sources

Subdistrict Public sources

S2 CCDC Weekly /Vol.5/No. 5 Chinese Center for Disease Control and Prevention
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Epidemic growth rate

Infection attack rate (%)

Effect
Estimate  Pr(>|z|) 95% CI Estimate  Pr(>|z|) 95% CI

Population density 1.01 <0.001***  (1.003, 1.01) 2.16 <0.001***  (1.95, 2.39)
Proportion of people aged >65 1.07 0.271 (0.95, 1.20) 0.99 0.140 (0.97, 1.004)
E\Ztigﬁ‘;fc‘;?/zugzma‘t’;’g: household registrationto 4 0.918 (0.93, 1.06) 205  <0.001*** (1.67,2.52)
Distance from initial outbreak location 0.91 0.036* (0.83, 0.99) 0.93 <0.001***  (0.92, 0.94)
GDP 1.03 0.591 (0.92, 1.17) 2.23 0.050 (1.08, 4.60)
Coverage of green area 1.00 0.763 (0.98, 1.03) 0.93 0.401 (0.81, 1.08)
Ring where the subdistrict is located

Inner ring Ref - - Ref - -

Middle ring 0.94 0.373 (0.82, 1.08) 0.46 0.009**  (0.30, 0.72)

Outer ring 0.94 0.424 (0.81, 1.09) 0.40 0.005**  (0.26, 0.63)

Suburban ring 0.82 0.021* (0.70, 0.97) 0.15 <0.001***  (0.09, 0.24)

Outside suburban ring 0.61 <0.001***  (0.50, 0.74) 0.05 <0.001***  (0.03, 0.08)
Baseline flows 1.02 0.593 (0.95, 1.10) 1.86 <0.001***  (1.53, 2.27)
Outflows from initial outbreak location 1.04 0.089 (0.99, 1.08) 1.54 <0.001***  (1.39, 1.72)
Primary coverage of total population 0.99 <0.001*** (0.99, 0.996) 0.44 0.074 (0.18, 1.08)
Booster coverage of total population 0.99 <0.001*** (0.98, 0.996) 0.11 <0.001***  (0.06, 0.22)
Primary coverage of people aged >65 1.00 0.381 (1.00, 1.00) 0.81 0.370 (0.52, 1.26)
Booster coverage of people aged >65 1.00 0.726 (0.99, 1.00) 0.74 0.150 (0.50, 1.11)
High-risk area 0.93 0.141 (0.85, 1.02) 1.70 <0.001*** (1.29, 2.25)
Lockdown time

March 28 - - - Ref - -

April 1 - - - 4.53 <0.001***  (2.35, 8.76)
Reduction in flows after lockdown - - - 1.05 <0.001***  (1.04, 1.07)
Arrival time 1.02 <0.001***  (1.01, 1.03) 0.53 0.004**  (0.37,0.75)
Abbreviation: GDP=gross domestic product; Cl/=confidence intervals; Ref=reference.
* P<0.05;
**P<0.01;
*** P<0.001.
SUPPLEMENTARY TABLE S3. Generalized estimating equation model for growth rate.

Exchangeable Independence Unstructured

Effect

Estimate Pr(>|z|)

95% CI  Estimate Pr(>|z|)

95% CI

Estimate Pr(>[z]) 95% CI

Intercept
Arrival time
Ring where the subdistrict is located
Inner ring
Middle ring
Outer ring
Suburban ring

Outside suburban ring

0.13 <0.001*** (0.12, 0.15)
1.03 <0.001*** (1.02, 1.04)

Ref
1.00
1.05
1.01
0.79

0.986
0.253
0.865
0.061

(0.88, 1.14)
(0.94, 1.26)
(0.90, 1.14)
(0.61, 1.01)

0.13 <0.001*** (0.12, 0.15)
1.03 <0.001*** (1.02, 1.04)

Ref -

1.00 0.983
1.09 0.254
1.01  0.869
0.79 0.060

(0.88, 1.14)
(0.94, 1.26)
(0.90, 1.14)
(0.61, 1.01)

0.13 <0.001*** (0.12, 0.15)
1.03 <0.001*** (1.02, 1.04)

Ref
1.00
1.09
1.01
0.79

0.985 (0.88, 1.14)
0.253  (0.94, 1.26)
0.866  (0.90, 1.14)
0.061 (0.61,1.01)

Note: Total N=158. df=152.

Abbreviation: Cl=confidence intervals; Ref=reference.

* P<0.05;
** P<0.01;
*** P<0.001.
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SUPPLEMENTARY TABLE S4. Generalized estimating equation model for infection attack rate.

Effect Exchangeable Independence Unstructured
Estimate Pr(>|z]) 95%Cl Estimate Pr(>|z]) 95% Cl/ Estimate Pr(>[z]) 95% CI
Intercept 0.01 <0.001*** (0, 0.03) 0.01  <0.001***(0.01, 0.03) 0.01 <0.001*** (0, 0.04)
Arrival time 0.75 0.013* (0.59, 0.94) 0.74 0.009** (0.59, 0.93) 0.73 0.008** (0.58, 0.92)
Population density 1.51 0.001** (1.20, 1.91) 1.57  <0.001***(1.26, 1.96) 1.65 <0.001***(1.29, 2.10)
E)':;flg‘r’f from the initial outbreak 101 0653 (098 103) 101 0536 (0981.03) 101 0442 (0.98,1.04)
GDP 135 <0.001***(1.17,1.56)  1.35 <0.001***(1.20,1.53)  1.33  0.001** (1.13, 1.58)
Ring where the subdistrict is located
Inner ring Ref - - Ref - - Ref - -
Middle ring 0.45 <0.001***(0.34, 0.59) 0.42 <0.001***(0.32, 0.56) 0.44  <0.001***(0.31, 0.63)
Outer ring 0.46  <0.001***(0.36, 0.58) 0.43 <0.001***(0.34, 0.55) 0.44 <0.001***(0.34, 0.58)
Suburban ring 018  <0.001**(0.13,0.24)  0.17  <0.001***(0.13,0.23)  0.17  <0.001*** (0.12, 0.24)
Outside suburban ring 0.06 <0.001***(0.04, 0.09) 0.05 <0.001***(0.04, 0.08) 0.06 <0.001***(0.04, 0.09)
gg‘\’;t;:s";‘(’frage ofpeopleaged= 67 0.001" (0.53,0.84) 067 0002 (0.53,0.86) 068  0.002* (0.54,0.87)

Note: Total N=216. df=198.

Abbreviation: Cl=confidence intervals; Ref=reference.
* P<0.05;

** P<0.01;

*** P<0.001.

Jiading

New area
Songjiang

Fengxian

=

Eastern Shanghai Western Shanghai

SUPPLEMENTARY FIGURE S1. Geographic division of eastern and western Shanghai.

Note: Eastern and western Shanghai are naturally separated by the Huangpu River (blue layer). Specifically, eastern
Shanghai contained the districts of Pudong New Area, Fengxian, Jinshan, Chongming, as well as partial Minhang and
Songjiang; while the rest areas were grouped into western Shanghai.
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SUPPLEMENTARY FIGURE S2. Temporal dynamics and geographical distribution of confirmed severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infections. (A) Visualization of the ring where the subdistrict is located. (B)
Geographical distribution of confirmed SARS-CoV-2 infections at the subdistrict level. (C) Daily number of new confirmed
infections by date of reporting and by date of sample collection.

Note: Shanghai is divided into 16 districts (light grey boundary) and 216 subdistricts (black boundary) shown in panel A. The
colored area corresponds to the ring where the subdistrict is located.
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Preplanned Studies

Modeling the Prediction on the Efficacy of a Homologous Third
Dose of CoronaVac Against SARS-CoV-2 Omicron BA.1, BA.2,
BA.2.12.1, and BA.4/5 — China, 2020-2021

Xinhua Chen'; Xufang Bai'; Xinghui Chen'; Nan Zheng'; Juan Yang'; Juanjuan Zhang'’; Hongjie Yu'**

Summary

What is already known about this topic?
Previous studies have reported vaccine efficacy or
effectiveness against severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) Omicron subvariants for
several vaccine platforms. However, there are currently
few data on estimates of inactivated platform
coronavirus disease 2019 (COVID-19) vaccines,
especially against the globally dominant subvariant —
Omicron BA.5.

What is added by this report?

The study predicts vaccine efficacy against four
Omicron subvariants — Omicron BA.1, BA.2,
BA.2.12.1, and BA.4/5 — after vaccination with a
homologous third dose of CoronaVac across clinical
endpoints and age groups.

What are the implications for public health
practice?

The results suggest that CoronaVac-elicited immunity
may not provide adequate protection against Omicron
subvariants after the homologous third dose, and a
heterologous booster and Omicron-specific vaccination

may be alternative strategies.

The severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) Omicron variant, a designated variant
of concern (VOC) by the World Health Organization
(WHO), was first identified in November 2021 in
South Africa (7). Three major subvariants, BA.1, BA.2,
and BA.3, were identified nearly simultaneously. Soon
after its discovery, BA.1 rapidly emerged to become the
dominant subvariant worldwide. Gradually, BA.2 and
its constituent subvariants, such as BA.2.12.1, overtook
BA.1 as the dominant variant worldwide. More
recently, two new subvariants, BA.4 and BA.5, were
first discovered in South Africa. As of October 1, 2022,
the Omicron BA.5 subvariant has been observed in
139 countries across all six WHO regions and has
become a globally dominant subvariant due to its
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substantial growth advantages and faster spread
compared to previous subvariants (2). Preliminary data
suggest that highly divergent mutations in the spike
protein of Omicron may be associated with a high level
of humoral immune evasion.

There are limited efficacy or effectiveness data on
the Omicron
inactivated vaccine, and the duration of protection
after a homologous inactivated vaccine booster dose

subvariants for the CoronaVac

has not been fully explored. Given the extensive
resources and time required to identify and distinguish
variants in vaccine trials, statistical models were used to
predict CoronaVac-specific efficacy against Omicron
BA.1, BA.2, BA.2.12.1, and BA.4/5 across three
clinical endpoints — infection, symptomatic
coronavirus disease 2019 (COVID-19), and severe
COVID-19 — 28 days and 6 months after a
homologous third dose.

Age-specific neutralizing data was extracted from a
randomized, double-blind, placebo-controlled, phase
1/2 clinical trial of CoronaVac among healthy adults
aged 18 years and older (3) (Supplementary Table S1,
available in https://weekly.chinacdc.cn/). Briefly, in the
clinical trial, blood samples were obtained from a
group of predefined participants who were vaccinated
with a homologous third dose of 3 pg of CoronaVac
28 days or 6 months after two primary series doses of
CoronaVac. Fold change data on neutralizing
antibodies against SARS-CoV-2 Omicron subvariants
compared to the prototype strain were extracted from a
published study, which separately estimated the
reduction fold of geometric mean antibody titers
(GMTs) through a live virus neutralization assay (4)
(Supplementary Table S2, available in https://weekly.
chinacdc.cn/).

Following the models by Khoury et al. (5), the
vaccine protection of CoronaVac, for 28 days and 6
months after the homologous third dose with the
relationship between neutralizing antibody levels, and
vaccine efficacy were predicted. Model details and
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parameters are summarized in the Supplementary
Table S3 (available in https://weekly.chinacdc.cn/). All
statistical analyses were performed using R software
(version 4.0.1, R Core Team, Vienna, Austria).

For vaccine-induced protection against infection
caused by four Omicron subvariants, the predicted

efficacies of CoronaVac were very low even with

homologous booster doses, with less than 30% and
10% of the predicted efficacy against Omicron
subvariants 28 days and 6 months after a homologous
third dose, respectively. Age did not significantly affect
the predicted efficacy against virus infection over time
in the model results (Figure 1).

For protection from symptomatic illness from
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FIGURE 1. Predicted efficacy of CoronaVac against SARS-CoV-2 Omicron subvariants across three clinical endpoints. (A)
SARS-CoV-2 infection; (B) Symptomatic COVID-19; (C) Severe COVID-19.
Note: The number on the top of the bar represents the predicted efficacy, and the vertical line represents the 95%

confidence interval.

Abbreviation: COVID-19=coronavirus disease 2019; SARS-CoV-2=severe acute respiratory syndrome coronavirus 2.
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Omicron infection, the predicted efficacies against
BA.4/5 were 24.2% [95% confidence interval (CI):
22.3%-25.2%) and 26.2% (95% CI: 24.2%-27.3%)
for younger adults (18—64 years old) and older adults
(>65 years old) 28 days after the homologous third
dose, respectively. Predicted efficacies against BA.4/5
were 7.3% (95% CI: 6.6%—7.7%) for younger adults
and 10.4% (95% CI: 9.4%-10.9%) for older adults 6
months after the homologous third dose (Figure 1).
Compared with other Omicron subvariants, the
predicted efficacies against BA.4/5 were similar to
those against BA.2.12.1 but lower than those against
BA.1 and BA.2 after the homologous third dose of
CoronaVac. For severe COVID-19, the predicted
efficacies against Omicron BA.4/5 were 71.6% (95%
CI.  694%-72.7%) and 36.5% (95% CI.
34.0%-37.7%) 28 days and 6 months after the
homologous third dose for young adults, respectively.
For older adults, the predicted efficacies were 73.9%
(95% CI. 71.8%-74.9%) and 45.9% (95% CI:
43.3%-47.2%) 28 days and 6 months after the
homologous third dose, respectively, with no
significant difference compared with younger adults
(Figure 1).

DISCUSSION

The study predicted the efficacy against the
Omicron BA.1, BA.2, BA.2.12.1, and BA.4/5
subvariants after a homologous third dose of
CoronaVac across three clinical endpoints. Vaccine
protection against infection and symptomatic illness
caused by the Omicron subvariants was found to be
not adequate, even after a homologous third dose, and
that protection was not maintained for 6 months.
Although a homologous booster dose of CoronaVac
would increase its efficacy to more than 70% for
protection from severe illness within one month after a
booster, the predicted efficacy from homologous
boosting will wane, gradually declining to less than
50% after 6 months.

Compared to the Wuhan-Hu-1 reference genome,
the Omicron variant has more than 30 mutations in
the spike protein, nearly half of which are in the
receptor-binding domain (6). This degree of genetic
change in such an important part of the virus raised
serious concerns about strong immune evasion and
significant reductions in vaccine efficacy (7). Regarding
Omicron subvariants, BA.2.12.1 and BA.4/5 increased
evasion of neutralizing antibodies compared with BA.2
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and BA.1 (8). In plasma from individuals who received
an inactivated vaccine (CoronaVac) or receptor
binding domain (RBD) protein (ZF2001) booster six
months after two doses of CoronaVac, BA.1 and BA.2
showed no significant difference in resistance to
neutralization by plasma. However, BA.2.12.1 showed
increased immune evasion capability over BA.2, and
BA.4/BA.5 exhibited even greater evasion, with the
major contributions made from L452R and F486V
mutations (8—9). Such a large degree of immune escape
for BA.4/5 may partly verify our predicted results of a
lower efficacy, compared to ancestral strains, across all
three clinical endpoints.

A previous study reported that the effectiveness of
booster vaccination against a documented Omicron
BA.2 infection and severe/critical illness in Shanghai
Municipality, China, a city with widespread usage of
inactivated  vaccines, was 18.0% (95% CI
17.0%-18.9%) and 92.8% (95% CI. 90.2%-94.7%),
respectively. The study also found that a homologous
booster dose provided 9 months of >80% protection
against more severe outcomes, which was similar to
predicted efficacies against Omicron BA.2 in this study
(10). Another study reported that the effectiveness of
three doses of CoronaVac against mild or moderate
disease caused by Omicron BA.2 was 32.4%-51.0%,
with a relatively wide confidence interval of
8.3%—60.4%, which covered the range of symptomatic
estimates of 32.0%—46.0% were used in this study
(11). Besides, the observed effectiveness among
individuals with diabetes or kidney disease against
different clinical outcomes caused by BA.2 infection
was comparable to the predicted results of this study
(12-13). Of note, such a comparison should be made
cautiously due to differences derived from the study
definition of  clinical
characteristics of study participants, and timepoints

methodology, outcomes,
used to calculate effectiveness/efficacy. However, there
are currently few data on the effectiveness against
Omicron BA.4/5 of inactivated platform COVID-19
vaccines, which limits comparisons between real-world
evidence and our predictions. The efficacy 28 days and
6 months after a homologous third dose of CoronaVac
was predicted and it was found that the protective
effect against Omicron subvariants was not retained for
6 months due to antibody waning, indicating that a
homologous booster of inactivated vaccine may not be
a suitable regimen for controlling potential large-scale
transmission of the Omicron variant. More recent
booster

evidence has shown that heterologous

CCDC Weekly / Vol.5/No. 5 105



China CDC Weekly

vaccination induces strong humoral responses and
augments neutralization potency against the Omicron
variant. Specifically, a third dose of BNT162b2/Pfizer
vaccine given to those who received two primary doses
of CoronaVac could provide protective levels of
antibodies against Omicron (/4). A real-world study
also revealed that a BNT162b2/Pfizer vaccine booster
based on two doses of ChAdOxl nCoV-
19/AstraZeneca can provide 71.4% protection against
symptomatic illness caused by infection with the
Omicron variant (15). In addition, replacing vaccine
antigens and accelerating the development of
Omicron-specific vaccines may be alternative solutions.
For example, the first bivalent COVID-19 booster
made by Moderna that targets both the original virus
and the Omicron BA.1 variant was approved by
regulators in the United Kingdom and the Food and
Drug Administration (16). Besides, more and more
evidence showed that bivalent booster doses are
effective in preventing moderate and severe COVID-
19 caused by Omicron BA.4/5 infections compared
with previous monovalent mRNA vaccine doses only
(17-19).

The study was subject to at least two limitations.
First, only predictions of efficacy for an inactivated
vaccine of CoronaVac were made due to limited time-
varying neutralization data after boosting doses for
other-platform vaccines. Second, predicted estimates
need further verification by real-world evidence as
more effectiveness data of inactivated vaccines are
revealed.

In conclusion, the study provided predictions of
vaccine efficacy against the 4 SARS-CoV-2 Omicron
subvariants 28 days and 6 months after a homologous
third dose of CoronaVac across 3 clinical endpoints.
The findings suggest that CoronaVac-elicited
immunity may not provide adequate protection after a
homologous third dose. Heterologous boosting and
vaccination with an Omicron-specific booster may be a
viable strategy to protect people from Omicron
infection.
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SUPPLEMENTARY MATERIAL

SUPPLEMENTARY TABLE S1. Neutralizing antibody dynamics for CoronaVac by time period.

Neutralizing titers in

. Age Neutralization convalescent
GMTs (95% C
Reference Vaccine (years) assay (95% Cl) individuals (Phase I/l
trials)
28 days after the second dose: 49.1 (40.1-60.2)
6 months after the second dose: 6.7 (5.2-8.6)
CPE-based : .
. . 28 days after a homologous third dose: 143.3
18-55  microneutralization 163.7
assa (112.3-182.8)
y 6 months after a homologous third dose: 36.4
) (28.7-46.1)
Xin etal., (1) CoronaVac 28 days after the second dose: 41.2 (34.2-49.6)
6 months after the second dose: 3.4 (2.9-4.1)
CPE-based . ’
65-85  microneutralization 28 days after a homologous third dose: 158.5 163.7
assa (96.9-259.2) ’
y 6 months after a homologous third dose: 53.2
(39.7-71.1)

Abbreviation: C/=confidence interval.

SUPPLEMENTARY TABLE S2. Fold change in neutralization antibody levels of the Delta and Omicron variants compared to
prototype strains.

Vaccine Type of neutralization assay Fold change from original study Data source

Plague-neutralizing antibody to BA.2.12.1,
BA.4, and BA.5 in individuals with three
doses of BioNTech or CoronaVac
vaccines, natural infection and
breakthrough infection (2).

BA.1: 8.0 (95% CI: 6.2-9.6)

BA.2: 7.0 (95% CI: 5.2-8.3)
BA.2.12.1: 11.8 (95% CI: 11.0-13.3)
BA.4/5: 12.0 (95% CI- 11.4-13.3)

CoronaVac Live virus neutralization assay

Abbreviation: Cl=confidence interval.

SUPPLEMENTARY TABLE S3. Model parameters used in the prediction of efficacy

Model structure LL AlC Slope (k) Pooled SD
Fitting protection from symptomatic vs. severe COVID-19
Symptomatic - - 3.0 (2.2-4.2)
Severe -66.08 138.16 2.94 (2.14-4.04) 0.44
Fitting protection from symptomatic COVID-19 vs. SARS-CoV-2 infection
Infection -61.10 128.20 2.88 (2.19-3.78) 0.44

Note: "-" means not applied.
Abbreviation: LL=log-likelihood; AIC=Akaike information criterion; SD=standard deviation; COVID-19=coronavirus disease 2019; SARS-
CoV-2=severe acute respiratory syndrome coronavirus 2.
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Preplanned Studies

A Retrospective Modeling Study of the Targeted
Non-Pharmaceutical Interventions During the
Xinfadi Outbreak in the Early Stage of the
COVID-19 Pandemic — Beijing, China, 2020
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Summary

What is already known about this topic?

China has repeatedly contained multiple severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2)
outbreaks through a comprehensive set of targeted non-
pharmaceutical interventions (NPIs). However, the
effectiveness of such NPIs has not been systematically
assessed.

What is added by this report?

A multilayer deployment of case isolation, contact
tracing, targeted community lockdowns, and mobility
restrictions could potentially contain outbreaks caused
by the SARS-CoV-2 ancestral strain, without the
requirement of city-wide lockdowns. Mass testing
could further aid in the efficacy and speed of
containment.

What are the implications for public health
practice?

Pursuing containment in a timely fashion at the
beginning of the pandemic, before the virus had the
opportunity to spread and undergo extensive adaptive
evolution, could help in averting an overall pandemic
disease burden and be socioeconomically cost-effective.

Three years into the coronavirus disease 2019
(COVID-19)
respiratory syndrome coronavirus 2 (SARS-CoV-2)

pandemic, several severe acute
variants have emerged with increasing potency in the
human population, causing considerable morbidity
and mortality worldwide, while Chinese mainland has
been able to maintain local containment through an
extensive set of targeted non-pharmaceutical
interventions (NPIs) (7). Here we developed a fully
stochastic, spatially structured, agent-based model of
SARS-CoV-2 ancestral strain and reconstructed the
Beijing Xinfadi outbreak between June 11 and July 10,

2020. This quantitatively assessed the feasibility and
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prerequisites for containing the virus before it had the
opportunity to acquire its high transmissivity and
immune-evasive properties. We found that screening
for symptoms and among high-risk populations served
as an aid in uncovering the cryptic community
transmission in the early stages of the outbreak.
Effective contact tracing greatly reduces transmission.
Targeted community lockdowns and temporal
mobility restrictions could slow down the spatial
spread of the virus. Mass testing could further improve
the speed at which the outbreak is contained. Our
analysis suggests that the containment of SARS-CoV-2
ancestral strains is certainly feasible. Early in time
measures to stop further spread of the outbreak,
prevent mutation of the virus into a more deadly
variant are cost-effective and can save lives.

The Beijing Xinfadi Wholesale Market outbreak was
initially identified on June 11, 2020, shortly after the
successful suppression of the initial wave in Wuhan
that ended in March 2020 and caused by the ancestral
strain of SARS-CoV-2, with the D614G mutation
reintroduced from outside China (2). Other details of
the outbreak have been previously described (3-5). It is
ideal to imitate a generic model of initial containment
other than China following the
emergence and exportation of SARS-CoV-2 ancestral
strain, as few adaptive mutations had been acquired
and the herd immunity was negligible (no available
vaccine and few prior SARS-CoV-2 infections) during
the outbreak. The timing gap between the initial and
the Xinfadi Wholesale Market outbreaks also allowed
Beijing to expand its SARS-CoV-2 molecular testing
capacity (with an initial testing capacity of 100,000
tests per day ramped up to 500,000 tests per day by
July 7, 2020), permitting mass testing of the
population at risk.

We first analyzed the highly detailed line-list data of
the outbreak that had been extracted from the

for countries
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Notifiable Infectious Disease Reporting System and
the Epidemiological Investigation Information System
of the People’s Republic of China to characterize the
epidemiological patterns of the outbreak. We then
developed a fully stochastic, spatially structured agent-
based model to reconstruct the containment effort and
recover the epidemiologic patterns observed in the
epidemiological data. The model structure, detailed in
the Supplementary Material and Supplementary Tables
S1-S5 (available in https://weekly.chinacdc.cn/), was
well informed by high-resolution population mobility
data, allowing us to explicitly model the targeted
testing and intervention programme at high spatial
Lastly, eight  possible
scenarios Table 1) by

created

(Levels 1-8,

resolution.
intervention

w¢E

progressively layering additional NPIs on top of the
prior scenario, to dissect the relative contribution of

each intervention individually to the overall
containment of the Xinfadi outbreak.
We ran 500 simulations with each scenario

capturing the stochasticity of the transmission process.
For each simulation, the following summary statistics
were calculated to quantify the impact of each
intervention individually: 1)
reproduction number (R), defined as the average of
the individual reproduction number of each individual
infected after the implementation of NPIs; 2) the total
number of infections (V) before July 10, 2020 (the end
date of the Xinfadi outbreak); and 3) the proportion of
undetected infections. The details of each NPI in

the overall effective

TABLE 1. Hypothetical intervention parameters of each NPI in different simulation scenarios.

NPI Level1 Level2 Level3 Level 4 Level 5 Level 6 Level 7 Level 8
Symptom surveillance
Percentage of detected symptomatic 667 667 667 66.7 66.7 66.7 66.7 66.7
infections (%)
Mask wearing
Eercentage of population wearing masks _ 20 20 20 20 20 20 20
in the workplace (%)
Eercentage of populatlon wearing masks _ 50 50 50 50 50 50 50
in the community (%)
Closure of the Xinfadi Wholesale Market
Date of closure _ _ 2020- 2020- 2020- 2020- 2020- 2020-
06-13 06-13 06-13 06-13 06-13 06-13

Quarantine of key population
Workers at the Xinfadi Wholesale Market - -

Visitors to the Xinfadi Wholesale Market - -

Residents around the Xinfadi Wholesale
Market

Contact tracing
Percentage of traced household contact
(%)
Percentage of traced work contact (%) - -
Percentage of traced community contact
(%)
Residential community lockdown

Duration of lockdown after the

identification of the last case (days)
Mobility restrictions™

Percentage of mobility reductions in high-

risk region (%)

Percentage of mobility reductions in

moderate-risk region (%)

Percentage of mobility reductions in low-

risk region (%)

Mass testing
Rounds of RT-PCR testing - -

Centralized Centralized Centralized Centralized Centralized

Home Home Home Home Home

Lockdown Lockdown Lockdown Lockdown Lockdown
- 100 100 100 100
- 100 100 100 100
- 70 70 70 70
- - 14 14 14
- - - 70 70
- - - 50 50
- - - 20 20
- - - - 3

Note: “~” means not applicable.

Abbreviation: NPI=non-pharmaceutical intervention; RT-PCR=reverse transcription-polymerase chain reaction.
* The intervention parameters of mobility restrictions are defined as percentages of reductions in population flows between different risk
regions during the Xinfadi outbreak, detailed in the Supplementary Table S5 (available in https://weekly.chinacdc.cn/).
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response to the Xinfadi outbreak were described in the
Supplementary Materials. The model was coded in
Python (version 3.10.4, Python Software Foundation,
Fredericksburg, VA, US). The statistical analyses and
visualization were performed using R (version 4.0.2, R
Foundation, Vienna, Austria).

A total of 368 SARS-CoV-2 infections were reported
during the Xinfadi outbreak, including 335 (91.03%)
confirmed cases and 33 (8.97%) asymptomatic
infections (Figure 1A). Most of the infections were
clustered in or around Huaxiang Street, where the
Xinfadi Wholesale Market was located (Figure 1B),
and were aged between 20 and 59 years (Figure 1C).
Simulations closely imitate the real world. We present
one realization of the temporal distributions of the
reported infections (Figure 1D). Similar to the
observed distribution in Figure 1A, a total of 355
infections were detected in the simulated outbreak, of
which 18.87% were asymptomatic infections and
81.13% were confirmed cases. Figure 1IE-F show the
spatial distribution and age profile of the infections
aggregating from the results of 500 simulated
outbreaks. Both the

spatial ~patterns and age

distributions  were  similar to the real-world
Ay - B
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observations in Figure IB-C, with most of the
infections detected around the Xinfadi Wholesale
Market and in the working age population.

To quantify the relative contribution of each
individual NPI to outbreak containment, we
added each intervention to the
unmitigated chains of transmission. The estimated
effective reproduction numbers (R.4) and total number
of infections (/N) are reported in Figure 2A and
Figure 2B. We found heterogeneity across simulations
even under the same intervention intensity, reflecting
the intrinsic  stochasticity = of  SARS-CoV-2
transmission. We found that the outbreak could not be
contained with only symptom surveillance (Level 1)

consecutively

due to the pre-symptomatic and asymptomatic
transmission of SARS-CoV-2, with a median R,»= 2.05
and a median /N=13,421, respectively. Layering mask
wearing (Level 2) and closure of Xinfadi Wholesale
Market (Level 3) did not lead to significant
improvement, with all simulations having effective
reproduction numbers larger than 1.8, well above the
epidemic threshold. Quarantine of the key populations
(Level 4) could remove the potential infections from
the susceptible population at the early phase of viral
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FIGURE 1. Observed and simulated epidemiologic patterns during the Xinfadi outbreak. (A) Observed temporal distribution
of SARS-CoV-2 infections stratified by clinical type. (B) Observed spatial distribution of SARS-CoV-2 infections. (C)
Observed age distribution of SARS-CoV-2 infections. (D) Time series of SARS-CoV-2 infections stratified by clinical type
based on one simulated outbreak. (E) Spatial distribution of SARS-CoV-2 infections estimated based on 500 simulations. (F)
Age distribution of SARS-CoV-2 infections estimated based on 500 simulations.

Abbreviation: SARS-CoV-2=severe acute respiratory syndrome coronavirus 2.
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FIGURE 2. The impact of each NPI. (A) Effective reproduction numbers under different intervention scenarios. (B) Number
of infections under different intervention scenarios. (C) Proportion of undetected infections.

Note: The bars represent the median of 500 simulations, and the lines give the range of the 2.5 and 97.5 quantiles.
Abbreviation: NPI=non-pharmaceutical intervention, XFD Market=Xinfadi Wholesale Market.

shedding, thus effectively reducing the number of
infections (median N=2,967), but the further
could not be suppressed (median
R4=178). Contact tracing (Level 5), in contrast,

transmission

could significantly reduce further transmission, leading
to fewer infections (median N=1,141) and lower
effective reproduction numbers (median R,z = 1.19), but
for most simulations, the estimated Ry was still above
the epidemic threshold, indicating that containment
could not be achieved through Level 5 intervention
intensity. With lockdown of infected individuals’
residential communities (Level 6), the median R
hovered around the epidemic threshold of 1, resulting
in highly stochastic outcomes with the probability of
achieving containment at 50%. Implementing targeted
population mobility restrictions (Level 7) would
achieve the goal of containment, with the estimated
Ry ranging from 0.39 to 0.89 and the number of
infections less than 1,000 for all simulations. Although
the outbreak could be suppressed with Level 7
intervention intensity, additional mass testing at the
street/town level was adopted during the Xinfadi
outbreak, which could further reduce the effective
reproduction number and the number of infections,
with a median R,y = 0.64 and a median N=447, leading
to faster clearance and fewer infections. Furthermore,
we found that approximately 10.6% of the infections
were undetected in the absence of mass testing (Level
7), while the number of undetected infections fell to
3.6% after the implementation of mass testing (Level
8), indicating that the outbreak could be contained
earlier through mass testing, with more infections
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being detected and isolated, and thus the onward
transmission could be truncated (Figure 2C).

DISCUSSION

In this study, we demonstrated through both
empirical data and modeling analysis that a multilayer
deployment of targeted NPIs could easily contain
outbreaks caused by the SARS-CoV-2 ancestral strain.
We found that robust implementation of symptom
surveillance and high-risk population screening served
cryptic  community
transmission in the early stage of the outbreak.

as sentinels to  discover
Effective contact tracing combined with case isolation
and close contact quarantine has been shown to
substantially reduce transmission, highlighting the
importance of training and maintaining epidemiologic
teams with field experience. Targeted community
lockdown and rapid turnaround of molecular testing
for the confined population could further limit
undetected infections missed by contact tracing, as the
transmission of SARS-CoV-2 demonstrates
spatial clustering. It is more cost-effective than
population-wide lockdowns, with fewer people being

affected. Temporal reductions in mobility (rather than

clear

blanket lockdowns) in and out of regions with high
risk the spatial
dissemination of the outbreak. If conditions permit,

infection could slow down
population-wide mass testing could further improve
the speed of outbreak containment. These evidences
carried critical policy implications for the ongoing

COVID-19 pandemic and other epidemics caused by
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newly emerged pathogens.

Currently, the adaptive evolution of SARS-CoV-2
continues with no sign of slowing down, with multiple
sublineages of SARS-CoV-2 Omicron emerging
continuously and causing recurring Omicron waves
despite high levels of population immunity achieved by
vaccination and natural infection. In addition,
unmitigated spreading could also lead to spillover into
other animal reservoirs (6), leaving pathogen
eradication impossible to achieve. In contrast, at the
beginning of the pandemic, even with negligible
population immunity (i.e., no effective vaccine
available), due to the limited transmissibility of the
ancestral strain (Ry=2.5) (7), multiple regions across all
socioeconomic statuses successfully achieved temporal
suppression of SARS-CoV-2 in the early stage of the
pandemic through the implementation of NPIs. In
retrospect, had the virus been successfully contained in
the early stage of the pandemic, a great deal of the
global morbidity, mortality and tremendous
socioeconomic costs could have been avoided.

This study was subject to some limitations. First, it
suffers from the uncertainty of epidemiological
parameters from previous estimates, such as the
distribution of the generation interval and the age-
specific asymptomatic rates. Second, the temporal span
of our simulations is limited. Finally, we cannot
simulate all the NPIs during the Xinfadi outbreak,
such as the population screening based on the positive
environmental samples.

Our study clearly demonstrated that the
containment of the SARS-CoV-2 ancestral strain
would have been achievable through NPIs once a
reliable and scalable diagnostic test became available.
More broadly, the critical opportunity window for
containing a newly emerged pathogen is in the very
early stage of the pandemic, before the pathogen has
the opportunity to evolve and adapt in the human
population with greatly enhanced transmissibility and
immune evasion properties, if all countries decide to
pursue such strategies collectively. Furthermore,
sustaining SARS-CoV-2 local containment at the early
stage of the pandemic could buy some time to achieve
high immunization coverage as well as stockpile
effective antiviral drugs, potentially ensuring a smooth

112 CCDC Weekly /Vol.5/No. 5

transition to mitigation strategies while minimizing the
overall disease burden.
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SUPPLEMENTARY MATERIAL

Initial Infections
We defined the 169 infected workers at the Xinfadi Wholesale Market as initial infections. For each initial

infection 4, the time of infection tj,"f

was either generated by subtracting a randomly sampled incubation period from
the reported time of symptom onset (for a symptomatic case) or by subtracting a randomly sampled time delay from
infection to diagnosis from the time of laboratory confirmation (for an asymptomatic case). The sampled time of

infection was constrained within the exposure window identified by epidemiological investigation.

SARS-CoV-2 Transmission as Branching Processes
We first generated each initial infection 7% reproduction number R; (number of secondary infections caused by 7).
For unmitigated transmission, we assumed that R; followed a negative binomial distribution NB(R,, ), where Ry is
the basic reproduction number representing the population average of R; and # is the dispersion parameter capturing

nf

the heterogeneity of SARS-CoV-2 transmission. For each secondary infection j € {R;}, the infection time t; is given

by t]l."f = tj."f +7;, where 7; denotes the generation interval of transmission from 7 to j, drawn from a generation
interval distribution Pg; (7). Then, we hypothesized that the proportion of asymptomatic infection ®,,,, decreased

with age. For a symptomatic case j, we assigned his or her symptom onset date t;.y " by drawing from the incubation
period distribution P, (7). The parameters reflecting the transmission dynamics and the natural history of
COVID-19 are summarized in Supplementary Table S1.

Population Structure Reflecting Demographics, Transmission Setting, and Activity

When transmission between primary infection 7/ and secondary infection j occurred, we first generated the
transmission setting based on the predefined probability that the transmission event occurred at home (@,,), in the
workplace (@,;) or in the community (@,,). The hypothesized conditional probabilities are summarized in
Supplementary Table S2, where we assumed that i) all service workers worked in the community and ii) all general
workers did not work on holidays or weekends. For any transmission event occurring in the community, the
activities of primary infection i (Act;) and secondary infection j (Act;) at the time of transmission were assigned
based on their occupation. Service workers who worked in the community could be assigned either work or social
activity, with probabilities of $*=0.6 and ¢=0.4, respectively. For general workers and nonworkers, we assumed
that only social activity was possible in the community (i.e., ¢ = 0).

The age of secondary infection j was then assigned based on transmission settings, age-stratified contact matrices
and age-specific susceptibility to SARS-CoV-2 infection. We defined the age-specific contact matrices [derived from
a prior study (6) and contact tracing data] as €, C**, and C” for houschold, workplace, and community contact,
respectively. Each cell of the matrix (c/,) represents the average number of contacts in age group # of an individual
in age group 2 in a given setting 7. For any contact in age group #, whether he or she became infected depended on
the age-specific susceptibility to SARS-CoV-2 infection rz‘s/eznf (derived from contact tracing data, Supplementary

Table S3). Therefore, the probability that ; is in age group 4 is given by

SUPPLEMENTARY TABLE S1. Parameters reflecting the transmission dynamics and the natural history of COVID-19.

Parameter Description Value
Ry Basic reproduction number 2.5(1)
B Dispersion parameter capturing the heterogeneity of 0.43 (2)

SARS-CoV-2 transmission

Pg(7) Distribution of generation interval (sha;iTng(SdI:;rtf:;%n?) 3)
46.7% for 0—18 years
D usymp Age-specific asymptomatic rate 32.1% for 19-59 years
19.7% for 60+ years (4)
Gamma distribution (derived from the epidemiological data)

(shape=2.25, rate=0.39)
Abbreviation: COVID-19=coronavirus disease 2019; SARS-CoV-2=severe acute respiratory syndrome coronavirus 2.

Pipey (T) Distribution of the incubation period
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SUPPLEMENTARY TABLE S2. Hypothetical probability that the transmission event occurred at home, in the workplace or in
the community.

Condition Hypothetical probability
Occupation of primary infection i (O) Time of transmission (t]’:"f) i Dk Bem
hhy_suscept;= 0
Workday 0 0.6 0.4
General worker
Holiday/weekend 0 0 1
Service worker - 0 0 1
Nonworker - 0 0 1
hh_suscept;> 0
Workday 0.5 0.3 0.2
General worker
Holiday/weekend 0.7 0 0.3
Service worker - 0.5 0 0.5
Nonworker = 0.7 0 0.3

Note: “~” means not applicable.
* bh_suscept; denotes the number of susceptible individuals in primary infection i’s home at the time of transmission.

SUPPLEMENTARY TABLE S3. Age-specific susceptibility to SARS-CoV-2 infection.

Age group (k)

Relative risk (riski"j)

0-14 years 0.25
15-29 years 0.79
3049 years 1
50-64 years 1.13
65+ years 1.32
. ginf
T Cag rzs/eﬂ]_
ajla; — T . ginf
Y, C, LISk,

where 4; is the age group of primary infection i The sex of secondary infections was generated completely at
random, except for individuals infected in the workplace aged 55-59 years (who were males because females retire
from work at 55 years of age).

To assign secondary infection j’s occupation, we first determined whether he or she was a worker (i.e., 18-59
years for a male; 18—54 years for a female) according to his or her age and sex. We then divided workers into general
workers (GW) and service workers (SW). Service workers were further divided into workers at the Xinfadi
Wholesale Market (XFD-SW) and other service workers (Other-SW). For any infected worker j, we stochastically
determined his or her specific occupation based on the predefined probability that the secondary infection j worked

Gw . e XED-SW
as a general worker (1, ), a service worker at the Xinfadi Wholesale Market (¢

Other—SW
Y

) or a service worker in other
places ( ). The hypothetical probabilities conditional on the transmission setting (77), activity (Acz;) and

occupation (0,) of primary infection 7 are summarized in Supplementary Table S4.

Population Interaction Network Based on Spatially Resolved Mobility Patterns

To emulate the spatial dispersion of SARS-CoV-2 infections, we first constructed the spatially resolved
population mobility patterns in Beijing on the basis of the mobility data and then developed a network interaction
model based on the constructed mobility patterns to stochastically assign the residential locations of each person
with an infection, the workplace of each worker and the location for social activity if the transmission occurred
through social contact. Details are described below.

Mobility data: The aggregated mobile phone signaling data were provided by China Unicom, one of the leading
mobile phone service providers in China. The data were aggregated as origin-destination matrices (O-D matrices)
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SUPPLEMENTARY TABLE S4. Hypothetical probability that the secondary infection ;7 worked as a general worker, a service
worker at the Xinfadi Wholesale Market or a service worker in other places.

Condition Hypothetical probability*
Tij Ac ti WJG W VI}YFD-S w l/[;)ther-s w

0;=GW

At home - 0.903 0 0.097

In the workplace - 1 0 0

In the community Social activity 0.903 0 0.097
0;=XFD-SW

At home - 0.72 0.2 0.08

In the community Work 0.4 0.2 0.4

In the community Social activity 0.72 0.2 0.08
0,=Other-SW

At home - 0.903 0 0.097

In the community Work 0.8 0 0.2

In the community Social activity 0.903 0 0.097
O,=Nonworker

At home - 0.903 0 0.097

In the community Social activity 0.903 0 0.097

Note: “~” means not applicable.
Abbreviation: GW=general worker; XFD-SW=service worker at the Xinfadi Market; Other-SW=service worker in other places.
* The probabilities are hypothesized based on epidemiological investigations of the outbreak and the demographical structures in Beijing

@)

stratified by age and sex group, where the rows and the columns represent the origin and destination streets/towns,
respectively. Each cell of the matrix represents the total number of trips of the subscribers from the origin to the
destination in a given age and sex group during a certain period of time (in hours).

Spatially resolved mobility patterns in Beijing: By aggregating the mobility data, we obtained the average number
of trips from the origin location O to the destination location D at time ¢ in a given age and sex group on workday
n&™ (t| age, sex) and on holiday ni® o (t] age, sex), respectively. Assuming that the working-age population goes
to work during morning rush hours (i.e., between 6:00 a.m. and 10:00 a.m. on workdays), we estimated the average
daily trips from location O to location D for work (neoh) as nsly = Zt » net (| wk_age), where wk_age refers to
working age groups (i.e., 18-59 years for males and 18—54 years for females). Since service workers provide social
services to the general population, we assumed that their spatial mobility patterns for work were in accordance with
and accounted for 10% of the population flows on holiday morning rush hours. Therefore, the average number of

daily trips of the service workers from O to D for work no_,D is given by ngosp = 0.1 X Xt 6 ne® o (¢| wk_age), and

that of the general workers n%’, ) can be derived as n%’, ) = n$% ) = ng’p. Trips at other times or of other age
groups were considered as social activities. Assuming that those who live in location D and work at location O would
travel from D to O in the morning and back from O to D in the evening, the average daily trips from O to D for
social activities are given as n,, ) whd =), n& (] all) = nS%E = n5° (on workday) and n)}) hid =), ney® o (t] all)-
nHep — Nposo (on holiday), Where all refers to all age and sex groups.

Then, the interaction matrices reflecting the population mobility patterns in Beijing in the absence of non-
pharmaceutical interventions were constructed based on the aggregated data before the Xinfadi outbreak (from June
1 to June 12, 2020), with each row of the matrices representing the origin street/town (i.e., residential location) and
each column representing the destination street/town (i.e., location for work or social activity). Specifically, the

interaction matrices for work are defined as £ (for general workers) and 7 (for service workers), of which each cell

gw
"0-p
represents the probability of working at location p for an individual living in location O, given as /4] = #
K"o-K
”O D .. . . . . . .. kd
and 7 o, p = Z# Similarly, the interaction matrices reflecting the social mobility patterns on workday (7<)
K70k
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n-‘”,u’kﬂ, n-‘”f,hlﬂl
. soc_hld soc_wkd _ O-D soc_hld _ 0-D .
and on holiday (7 ) are constructed as /)5 = i & dry5, = ] respectively.
K"o-k K"o-xK

Network interaction model: Locations of secondary infections were stochastically allocated using a spatially
structured network interaction model based on the constructed mobility patterns. We first created a unique block
identification number blk_id for each residential block and a unique household identification number hh_id for
each family, where residents of a block share the same blk_id and members of a household share the same hh_id.

Household transmission: For any transmission occurred at home,the residential location and household size of
the secondary infection j were the same as those of the primary infector 7, i.e., /oc_resiﬂ; = loc_resid,, bl/e_z’dj = blk_id,
hh_id; = hh_id;, hh_size; = hh_size,. The workplace of j (loc_wk;) is then chosen based on the mobility patterns, given as
Poe_wk=p) = 1 f:zjm, 4D (if / is a general worker) or Py, yi-p) =1 “}Z_”%_)D (if j is a service worker), where Py wi=p)
indicates the probability that j worked at location D.

Workplace transmission: If a transmission event occurred in the workplace, we have loc_wk; = loc_wk;. The
residential street/town of the secondary infection j was then allocated according to the mobility patterns, given as
Pline_resid=0) = 1 gg_) ok’ We further randomly chose a b/k_id and a hh_id for j within his or her residential street/town
and stochastically generated ;’s household size based on the age-specific household size distribution (6).

Community transmission: For any transmission that occurred in the community, we first allocated a transmission

trans tran.

location (loc;5"). If i infected j through work contact (i.e., Act; = work), we have o} = loc_wk;. Otherwise, if

o]
infected j through social contact (i.e., Act; = social), ZOE;r_ﬂ)fiS stochastically generated following the probabilities given
soc_whkd soc_hld

e (on a workday) or Plocrn=py = 1 (on a holiday). Then, ;’s residential street/town and

as P([”[?j;u:D) =1 loc_resid;—~D

mmx_

workplace are generated according to Act; and loc;5;": (i) if j was infected through work contact (i.e., Act; = work),

we have loc_ wk; = loc5]’. The residential location of j is randomly generated following the probability

Plise resia=0) =1 osioe wi- (1) If j was infected through social contact (i.e., Act; = social), we first randomly assigned ;s
e _WR;

soc_whkd
O_)lofl?’/lm'

=

residential location based on the population mobility patterns, given as Plisc_resid=0) = 1 (on workday) and

Plioc_psia=0) = 1 gjzﬁ; o (on holiday). The workplace of j (loc_wk,) is then chosen according to his or her occupation,

given as Py, wp=p) = 1 (if j is a general worker) or P, wk=p) =1 e idop (f 7 is a service worker). Finally, we
— — TSt

gw
/ucirefia".%D ;
randomly chose a blk_id and a hb_id for j within his or her residential street/town and stochastically generated ;’s

household size based on the age-specific household size distribution (6).

Non-Pharmaceutical Interventions (NPIs)

Symptomatic surveillance: Initially, we assumed that 33.3% of the people with symptomatic infections
(i.e., ®,,, = 33.3%) would seek medical attention after a mean time delay of 3.7 days from the onset of symptoms.
After the official report of the outbreak on June 13, 2020, with enhanced symptom surveillance in the community,
we assumed that more people with symptomatic infections (i.e., ®,,, = 66.7%) would seck health care consultation
after a shorter time delay with a mean of 2.7 days from symptom onset. Three RT-PCR (i.e., reverse transcription
polymerase chain reaction) tests for SARS-CoV-2 diagnosis were conducted on the 1st, 3rd and 7th days of
isolation. The sensitivity of RT-PCR testing was assumed to vary with time, following the estimates of a prior study
(8).

Mask wearing: We assume 20% of the population would wear masks in the workplace and 50% in the
community. The protective effect of mask wearing against further transmission and infection of SARS-CoV-2 was
assumed to be 9.5% and 18%), respectively (9-10).

Closure of the Xinfadi Wholesale Market: The Xinfadi Wholesale Market was closed on June 13, 2020.

Quarantine and testing of key populations: Workers at the Xinfadi Wholesale Market were quarantined in
centralized facilities for at least 14 days. Periodic RT-PCR testing was conducted on the 1st, 4th, 7th, and 14th days
of quarantine and the 2nd and 7th days after discharge. Visitors who had been to the Xinfadi Wholesale Market
between May 30 and June 12, 2020, were asked to stay at home for 14 days. RT-PCR testing was performed on the
Ist, 7th and 14th days of home quarantine. Residents living around the Xinfadi Wholesale Market were confined to
their living communities from June 13, 2020, until no new infections were reported for 14 consecutive days. Mass
testing was implemented every seven days during the lockdown period.
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Contact tracing: Close contact was defined as a person who interacted with a confirmed case from 4 days before
to 14 days after illness onset or with an asymptomatic carrier from 4 days before to 14 days after collection of the
first positive sample. We assumed that all household contacts were immediately quarantined, while all work contacts
and 70% of the community contacts quarantined with a mean time delay of 3 days. Centralized quarantine at
designated facilities for at least 14 days was required for all close contacts, with periodic RT-PCR testing on the 1st,
4th, 7th, and 14th days of quarantine and the 2nd and 7th days after discharge.

Residential community lockdown: Since June 13, 2020, residential communities with detected infections have
been on lockdown at the block level until 14 days after the identification of the last case, with stay-at-home orders
for all residents other than essential workers.

Mobility restrictions: During the Xinfadi outbreak, the street/town was upgraded to moderate risk once it had
reported more than one infection and then upgraded to high risk when more than 5 infections were reported, while
other regions, with or without one detected infection, remained low-risk areas. We quantified the reduction in
population flows and constructed the origin-destination mobility matrix between different risk regions based on

mobility data (Supplementary Table S5).

SUPPLEMENTARY TABLE S5. The hypothetical origin-destination mobility matrix depending on risk levels.

Risk level of the destination street/town

Risk level of the origin street/town Mobility within one street/town
High Moderate Low
High 0 0.1 0.3 0.3
Moderate 0.1 0.3 0.5 0.6
Low 0.3 0.5 0.8 0.9

Note: The risk level refers to the real-time risk level of the street/town at the time of transmission. The value in each cell of the matrix refers
to the average travel probability per person after the Xinfadi outbreak, given the risk level of the origin and destination regions.

Mass testing: Three rounds of RT-PCR testing were required for all residents living in streets/towns with detected
infections, with each round of mass testing being completed within 3—4 days. The interval between each round of
testing was usually 7 days.
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Methods and Applications

Estimating Changes in Contact Patterns in China Over the First
Year of the COVID-19 Pandemic: Implications for SARS-CoV-2
Spread — Four Cities, China, 2020

Yuxia Liang'; Cheng Peng'; Qian You'; Maria Litvinova’; Marco Ajelli’; Juanjuan Zhang'*; Hongjie Yu'**

ABSTRACT

Introduction: Previous studies have demonstrated
significant changes in social contacts during the first-
wave coronavirus disease 2019 (COVID-19) in
Chinese mainland. The purpose of this study was to
quantify the time-varying contact patterns by age in
Chinese mainland in 2020 and evaluate their impact
on the transmission of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2).

Methods: Diary-based surveys — were
performed for four periods: baseline (prior to 2020),
outbreak (February 2020), post-lockdown
(March—May 2020), and post-epidemic
(September—November 2020). We built a Susceptible-
Infected-Recovered (SIR) model to evaluate the effect
of reducing contacts on transmission.

Results: During the post-epidemic period, daily
contacts resumed to 26.7%, 14.8%, 46.8%, and
44.2% of the pre-COVID levels in Wuhan, Shanghai,
Shenzhen, and Changsha, respectively. This suggests a
moderate risk of resurgence in Changsha, Shenzhen,
and Wuhan, and a low risk in Shanghai. School closure
alone was not enough to interrupt transmission of
SARS-CoV-2 Omicron BA.5, but with the addition of
a 75% reduction of contacts at the workplace, it could
lead to a 16.8% reduction of the attack rate. To
control an outbreak, concerted strategies that target
schools, workplaces, and community contacts are
needed.

Discussion: Monitoring contact patterns by age is
key to quantifying the risk of COVID-19 outbreaks
and evaluating the impact of intervention strategies.

contact

After the first wave of coronavirus disease 2019
(COVID-19) in China in early 2020, social distancing
policies were gradually relaxed. A series of studies were
conducted to quantify the changes in contact patterns
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under different interventions, whose intensity and type
varied over time, and to estimate their impact on the
epidemic spread (I-3). Previous studies have shown a
dramatic decrease in the number of social interactions
in China during the early phase of the pandemic (7).
This was followed by a moderate increase in social
contacts after strict non-pharmaceutical interventions
(NPIs) were relaxed from March to May 2020 (2-3).
As of the fourth quarter of 2020, almost all schools and
workplaces had been opened (4-5), and daily life had
gradually resumed to a normal status. It is still
unknown to what extent social interactions had
resumed by the end of 2020 and how age-specific
contact patterns had affected severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) transmission
in China. The purpose of this study was to estimate
changes in contact patterns by age in Chinese
mainland over the course of the first year of the
COVID-19 pandemic. This study aimed to provide
valuable information about the risk of transmission
and transmission patterns by age in a post-COVID-19-
intervention context.

METHODS

To estimate changes in contact patterns by age in
the post-epidemic period, we conducted diary-based
contact surveys in Wuhan, Shanghai, Shenzhen, and
Changsha between September 16 and November 8,
2020 (Figure 1). The design of the survey
(Supplementary Material, available in https://weekly.
chinacde.cn/) was similar to that of our previous work
(I-2,6), where contact patterns during the pre-
pandemic (prior to 2020), outbreak (February 2020),
and post-lockdown (March to May 2020) periods were
investigated (Figure 1). A contact was defined as either
a two-way conversation involving three or more words
in the physical presence of another person or direct
physical contact (e.g., a handshake). We further
divided direct interpersonal contact into three types: 1)
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FIGURE 1. Number of reported locally transmitted (red) and imported (green) COVID-19 cases, summary of the main
interventions performed over time, and timeline of the surveys in Wuhan (A), Shanghai (B), Shenzhen (C), and Changsha

(D).

physical contact, 2) non-physical contact at a distance
of 1 meter or less, and 3) non-physical contact at a
distance of more than 1 meter. We also recorded
whether the participant and contact were wearing face
masks (i.e., both wore, neither wore, or one wore), and
the contact environment (i.e., indoor, outdoor, or
both).

We estimated contact matrices by age, dividing
participants into 16 age groups (0—4 years, 5—
9 years, ... , 7074 years, and 75 years and older). We
relied on data collected from this survey and three
other surveys conducted during the pre-pandemic,
outbreak, and post-lockdown periods to estimate
contact matrices representing mixing patterns for the
four cities (/-2,6).

We estimated the impact of daily life resumption on
the potential reproduction number (R) of a COVID-
19 outbreak by relying on the mixing patterns
estimated in contact surveys. The next-generation
matrix approach was used to estimate R. To evaluate
the impact on transmission dynamics of reducing
school, workplace, and community contacts, we
possible outbreak of SARS-CoV-2

Omicron BA.5 or another highly transmissible variant

simulated a

114 CCDC Weekly /Vol.5/No. 5

using an ordinary differential equation Susceptible-
Infectious-Removed  (SIR) model (Supplementary
Material, available in https://weekly.chinacdc.cn/). We
used Shanghai as a case study, based on the baseline
contact matrix by setting. We assumed that eliminating
contacts in a certain setting while keeping the contacts
in other settings the same as the baseline period would
indicate closure of that setting. We designed four
scenarios to estimate the effect of different social
distancing  strategies: 1) Baseline scenario (no
interventions): workplace, school, and community
contacts were at pre-COVID levels; 2) Scenario 1: no
contacts at school, while all other contacts were at pre-
COVID levels; 3) Scenario 2: no contacts at school
and a 75% reduction of contacts at the workplace,
while all other contacts were at pre-COVID levels; and
4) Scenario 3: no contacts at school, a 75% reduction
of contacts at the workplace, and a 90% reduction of
contacts in the community. Scenarios 2 and 3
simulated a 75% and 90% reduction of contacts in the
workplace and community, respectively. During the
first COVID-19 lockdown in Shanghai, we estimated a
nearly 90% reduction of workplace contacts and a 95%
reduction of contacts in the community (7). As
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achieving such a high level of reduction may be
difficult without imposing a strict lockdown, we used
more conservative estimates of a 75% and 90%
reduction of workplace and community contacts,
respectively.

All the analyses were performed in R (version 4.0.3,
R Foundation for Statistical Computing, Vienna,
Austria).

RESULTS

A total of 3,281 participants (858 from Wuhan, 832
from Shanghai, 797 from Shenzhen, and 794 from
Changsha) were recruited for the post-epidemic survey,
and 16,533 contacts were recorded in total. Compared
with the outbreak period, the average number of
contacts during the post-epidemic period significantly

>

‘Wuhan B Shanghai

Baseline period
Age of contact (years)

Outbreak period
Age of contact (years) T

Post-lockdown period
Age of contact (years) =

¢ of contact (years) Z

Post-epidemic period

Age of participant (years Age of participant (years)

increased by a factor of 1.9 (£<0.001), 0.5 (P<0.001),
1.5 (P<0.001), and 2.0 (P<0.001) in Wouhan,
Shanghai, Shenzhen, and Changsha, respectively
(Supplementary Table S1, heeps://

weekly.chinacdc.cn/). The largest resumption of

available in

contacts was observed for school-age individuals
(Supplementary Figure S1,  available in  hteps:/
weekly.chinacdc.cn/). In Wuhan, 18.9% of contacts
were non-physical contacts at a distance of at least 1
meter, 39.6% of contacts occurred with both or either
the participant or the contactee wearing a face mask,
and 9.6% of contacts occurred outdoors. Similar
contact patterns were observed in Shanghai, Shenzhen,
and Changsha (Supplementary Figure S2, available in
https://weekly.chinacdc.cn/).

The pre-pandemic (baseline)

revealed the typical age-mixing patterns observed in

contact matrices

Shenzhen Changsha

Age of participant (years)

FIGURE 2. Contact matrices by age group for the four study locations for the baseline period in (A-D), outbreak period
(E-H), post-lockdown period (I-L), and post-epidemic period (M—P). Each cell of the matrix represents the mean number of
contacts that an individual in a given age group has with other individuals, stratified by age groups. The color intensity

represents the number of contacts.
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previous studies (7) (Figure 2A-2D). During the
lockdown, most of the classic age-specific features were
absent, as the main contributor to contact patterns
was the mixing between household members
(Figure 2E-2H). Compared to the outbreak period,
more contacts gradually occurred among school-age
and working-age individuals during the post-lockdown
and post-epidemic periods (Figure 2I-2P). During the
post-epidemic period, the proportion of household
contacts was still remarkably high compared to the pre-
COVID era (Figure2), with household contacts
representing approximately half of the total number of
recorded contacts (i.e., 48.7% in Wuhan, 53.6% in
Shanghai, 43.2% in Shenzhen, and 47.6% in
Changsha); the proportion of community contacts was
still lower than 20% in the four study locations (i.e.,
7.7% in Wuhan, 10.7% in Shanghai, 18.9% in
Shenzhen, and 9.5% in Changsha) (Supplementary
Table S2, available in https://weekly.chinacdc.cn/).
Assuming a baseline reproduction number of
between 1.5 and 3.5 for SARS-CoV-2 considering pre-
COVID contact patterns, we used the next-generation

A

Estimated R considering changes
1n contact patterns
w

j N ‘| }

1.5 2.5 3.5
R, for baseline period

Estimated R considering changes
1n contact patterns
W

1 ] ‘I t

1.5 25 3.5

R, for baseline period

Outbreak period

¢ Post-lockdown period

matrix approach to investigate the risk of a new
epidemic outbreak under the estimated contact
patterns during different epidemic phases. Our results
show that in the post-epidemic phase, contacts had
increased to an extent that would have allowed the
emergence of new epidemic outbreaks in fully
susceptible populations (as was the case in China at the
time of the last survey — November 2020) for R,
around 2.5 in Wuhan, Shenzhen, and
Changsha, while the risk of resurgence would have
been low in Shanghai (Figure 3).

To estimate the effect of social distancing on a
possible outbreak of SARS-CoV-2 Omicron BA.5 or
another highly transmissible variant, we considered the
Shanghai population and assumed an
reproduction number of 4 [about 20% larger than
what was estimated at the onset of the 2022 Omicron
BA.2 outbreak in Shanghai (8)]. Compared with the
baseline scenario considering baseline (pre-COVID)
contact patterns, we found that a combination of
school closures with a 75% reduction of contacts at the
workplace could reduce the infection attack rate by

values
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FIGURE 3. Changes in the reproduction number (mean and 95% confidence interval) considering the estimated contact
patterns in the different periods in Wuhan (A), Shanghai (B), Shenzhen (C), and Changsha (D).
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— Baseline
Scenario 1

— Scenario 2

— Scenario 3

Baseline | SR
Scenario 1 90.6 i
Scenario 2 { I
Scenario 3 0
0 25 50 75 100

Infection attack rate (%)

Daily incidence of new infections (per 100 individuals)
[*)
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Time (days)

FIGURE 4. The effect of social distancing on the spread of SARS-CoV-2 in Shanghai was examined, assuming an effective
reproduction number of 4 and considering baseline (pre-COVID) contact patterns.

Note: The curves show the daily incidence of new infections per 100 individuals (mean and 95% confidence interval) under
different social distancing policies. The inset curve shows the infection attack rate (mean and 95% confidence interval) 200
days after the first COVID-19 case. Baseline scenario (no interventions): workplace, school, and community contacts are
back to the pre-COVID era; Scenario 1: no contacts at school, while all other contacts are back to the pre-COVID era;
Scenario 2: no contacts at school and 75% reduction of contacts at the workplace, while all other contacts are back to the
pre-COVID era; Scenario 3: no contacts at school, 75% reduction of contacts at the workplace, and 90% reduction of

contacts in the community.

16.8%; an additional 90% reduction of contacts in the
community was estimated to be sufficient to control an

outbreak (Figure 4).

DISCUSSION

In this study, we quantitatively estimated how
human contact patterns by age changed in four
Chinese cities during the first year of the COVID-19
pandemic. We found that, although the number of
contacts increased in the post-epidemic period
(approximately six months after the end of the first
COVID-19 wave), the average number of contacts per
day remained far from the baseline (pre-COVID) level.
In addition to the marked reduction in the mean
number of contacts per day, the age of the contacted
individuals had markedly changed, highlighting a drop
in social interactions with work colleagues and in the
community. However, we estimated that the increase
in mixing patterns was not sufficient to sustain local
transmission in Shanghai, while the risk of an epidemic
recurrence in the other three cities remained moderate
as of November 2020. During the period of our post-
epidemic survey (September 16 to November 8, 2020),
fewer than 100 local cases were reported in Chinese
mainland, and no local cases were reported in the four
study locations, which is consistent with our estimates

Chinese Center for Disease Control and Prevention

of the potential reproduction number. Finally, we
performed a modeling analysis to evaluate the impact
of social distancing in the event of a new SARS-CoV-2
outbreak of Omicron BA.5 or another highly
transmissible variant. Our findings support that,
although vaccination campaigns conducted in China
with current vaccine products (as of 2022) are key to
mitigating COVID-19 burden, if policymakers aim to
prevent SARS-CoV-2 transmission altogether, social
distancing measures are still essential.

Although workplaces, schools, and other public
places gradually reopened from February to November
2020, many restrictions were still in place to prevent
the resurgence of COVID-19. For example, 1) masks
were mandated and body temperature was measured to
enter indoor public places (9-10); 2) indoor mass
gatherings were limited in schools (77); and 3) cinemas
and theaters were operating at 75% or lower capacity,
with the audience required to wear face masks and
maintain a distance of at least one meter (/2). From
April to August 2020, China experienced several small-
scale local outbreaks (73). The interventions adopted
as well as the fear of infection may explain the slow
resumption of contacts highlighted by our surveys in
2020.

Our results are comparable to those obtained in
other studies that have assessed changes in contact

CCDC Weekly / Vol.5/No. 5 117
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patterns linked to the relaxation of COVID-19 control
measures (2,14-17). After lifting stay-at-home orders
and reopening workplaces in China, the United States,
and several European countries, the mean number of
contacts varied from two to nine per day, which is
consistently higher than the number of contacts during
lockdowns but significantly lower than the pre-
pandemic level. Moreover, similar to Jarvis et al. (74),
we found a larger proportion of indoor contacts than
what was observed in the pre-COVID era.

Our study suffers from the traditional limitations of
self-reported contact surveys, including recall, self-
reporting, and selection biases, which may have
affected our results. Although we explained the
anonymity and confidentiality of the survey to study
participants, we cannot rule out that the number of
contacts may have been underreported during the post-
epidemic period, when social distancing and other
precautions were still in place. Our modeling analysis is
intended to provide only general insights and is based
on a set of approximations. For instance, the model

does not explicitly consider symptomatic and
asymptomatic individuals, pre-symptomatic
transmission, the effect of  individual-level

interventions (e.g., test-trace-isolate, mask wearing), or
the level of immunity provided by the primary
vaccination cycle. Instead, we combine the effects of all
these aspects into a single indicator: the effective
reproduction number. Although this allowed us to
provide a first-level approximation of the reduction of
social contacts, more refined analyses are needed to
identify the proper interventions required to contain a
novel SARS-CoV-2 outbreak and/or mitigate the
COVID-19 burden and pressure on the healthcare
system.

Our study quantified contact patterns at different
time points during the first year of the COVID-19
pandemic in Chinese mainland and provided evidence
of a gradual recovery of contact patterns while social
distancing measures were gradually relaxed. Moving
forward, monitoring mixing patterns could inform
authorities about the risk of resurgence of novel
outbreaks caused by highly transmissible SARS-CoV-2
variants, and, in the event of an outbreak, social
distancing is likely to play a key role in limiting
SARS-CoV-2 transmission and mitigating the burden
of COVID-19.
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SUPPLEMENTARY MATERIAL

Inclusion Criteria
Individuals were eligible to participate if they met the following criteria: 1) being a local resident of Wuhan,
Shanghai, Shenzhen, or Changsha; 2) having lived in the selected city for more than 6 months in the past year; and
3) being present in the selected city at the time of the interview.

Survey Sampling

We planned to recruit 800 participants for each city, with equal sampling by age groups (0-9 years, 10-19 years,
20-29 years, 30-39 years, 40—49 years, 50-59 years, 60—69 years, 70 years and above) and sex. The survey was
conducted through computer-assisted telephone interviews based on a well-established platform (7-3), which used a
computerized random digital dialing system to randomly generate mobile phone numbers from the selected cities
and automatically dial to connect with the users. Calls were placed three times on the same day before being
classified as invalid. All calls were recorded and spot-checked for quality control of data collection. The person who
completed the questionnaire depended on the participant's age and accessibility to mobile phone users, as follows: 1)
self-completion and informed consent for participants aged 19-69 years; and 2) guardian-proxy completion for
individuals aged 0-18 years or 70 years and above. Participants aged 18 years and below or 70 years and above,
especially those without a telephone, were recruited through adults aged 19-69 years living in the same household.
Specifically, after a participant aged 19-69 years old finished his/her own questionnaire, the interviewer asked
whether there was a household member under 18 or over 70 years old in their household, and the participant could
complete a questionnaire on his/her behalf or not. When the phone call was answered, well-trained staff asked
participants to complete a questionnaire describing his/her contact behavior. Briefly, participants were asked to
record their contact behavior on two different days: the most recent weekday and weekend day.

Data Processing
We recruited participants with roughly equal sample sizes in eight age groups (0-9 years, 10-19 years, ..., 60-69
years, 70 years and above) and by sex. To obtain a representative sample of the general population, we resampled the
original data using multiple-stage bootstrapping, adjusting for age, sex, household size, day type (i.e., weekdays and
weekends), and the probability of being a student or worker by age group.

Modeling SARS-CoV-2 Transmission Estimation of the Reproduction Number

The reproduction number, R, was estimated using a next-generation matrix approach based on the age-specific
contact matrix for the COVID-19 outbreak period, the post-lockdown period, and the post-epidemic period, as
estimated from our survey in Wuhan, Shanghai, Shenzhen, and Changsha, according to the following equation:

Ry = 2o

Where,

B is the transmission rate;

v is the recovery rate. In an SIR model, the recovery rate is equivalent to the inverse of the duration of the
generation time.

p(M) is the spectral radius of matrix A/ and whose element Ajj represents the average number of contacts
between individuals in age group 7 with individuals in age group ;.

Impact of Social Distancing and Vaccination Strategies on
the SARS-CoV-2 Transmission

To estimate the impact of social distancing and vaccination strategies on the transmission dynamics of SARS-
CoV-2, we implemented a classic age-structured Susceptible-Infectious-Removed (SIR) model for the Shanghai
population. Briefly, susceptible and partially protected individuals (i.e., individuals who were previously infected or
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SUPPLEMENTARY TABLE S2. Mean of the number of reported contacts by setting during post-epidemic period.

City  Overall, mean (95% Cl)* Household, mean (%)*' Workplace, mean (%)*' School, mean (%)*" Community, mean (%)*"

Wuhan 3.9(3.0,5.3) 1.9 (48.7) 0.9 (23.1) 1.0 (25.6) 0.3(7.7)
Shanghai 2.8(2.4,3.1) 1.5 (53.6) 0.6 (21.4) 0.5 (17.9) 0.3(10.7)
Shenzhen 3.7 (2.8, 4.6) 1.6 (43.2) 0.9 (24.3) 0.9 (24.3) 0.7 (18.9)
Changsha 4.2(3.3,5.3) 2.0 (47.6) 0.9 (21.4) 1.3 (31.0) 0.4 (9.5)

*The mean and 95% confidence interval (C/) of mean were calculated based on bootstrap-adjusted samples. Specifically, the 95% CI are
2.5% quantiles and 97.5% quantiles of 100 means calculated from 100 representative samples.

T Proportion of the overall number of reported contacts were calculated as dividing the mean of each setting by the mean of overall contacts.
As some contacts occurred at multiple locations, the sum of proportion may exceed 100%.
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SUPPLEMENTARY FIGURE S1. Mean number of reported contacts by participant age during the baseline, outbreak, post-
lockdown, and post-epidemic periods in (A) Wuhan, (B) Shanghai, (C) Shenzhen, and (D) Changsha.

Note: The last age group for the baseline and outbreak periods in Wuhan, and the outbreak period in Shanghai, was 65
years and older due to the small sample size of older people.

vaccinated but whose immunity to infection has waned) can acquire the infection through contacts with infectious
individuals. Infectious individuals move to the removed compartment after an average infectious period of length
equivalent to the generation time (4). Individuals in the removed compartment (corresponding to temporarily
protected individuals) were not involved in the transmission process. Given that we were interested in simulating a
short period of time (a few months), we did not consider waning of protection and thus removed individuals could
not be re-infected.
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SUPPLEMENTARY FIGURE S2. Contact type, contacts with face masks, and contact environment by age. (A) The
proportion of physical contacts, non-physical contacts without 1m distancing, and non-physical contacts with 1m distancing
by age for Wuhan. (B-D) The same proportions for Shanghai, Shenzhen, and Changsha, respectively. (E-H) The same
proportions as (A-D), but for whether the participants and contacts were wearing face masks. (I-L) The same proportions as
(A-D), but for the proportion of contacts that occurred indoors, outdoors, and both.

Each model compartment is divided into sixteen 5-year age groups (0—4, 5-9, ..., 60-64, 75 years and above).
Susceptible and partially protected individuals are exposed to an age-specific force of infection regulated by the
average number of contacts per day that individuals of a given age group have with individuals of all age groups (i.e.,
the contact matrix). We used the following set of differential equations to simulate this process:

S=-8Y" Mig

i A
L=8)" M.is-- I
1= B My Si=
Rz'=’Y[j

where,

i and j represent the age group;

n=16 is the total number of age classes;

Si is the number of susceptible/partially protected individuals in age group 3

Ii is the number of infectious individuals in age group 7

Ri is the number of recovered/temporarily protected individuals in age group 4

Ni is the total number of individuals in age class 7 (i.e., Ni= Si + Ii + Ri). The age structure was derived from
Shanghai official records and the total population size is 24,197,001 (5).
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B is the transmission rate, which is determined to obtain the desired value of the reproduction number using the

next generation matrix approach;

v is the recovery rate. In an SIR model, the recovery rate is equivalent to the inverse of the duration of the

generation time, which was estimated to be 5.1 days (6).

S6

Mij is the average number of contacts between individuals in age group 7 with individuals in age group ;.
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