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ABSTRACT

Introduction:  The  increasing  trend  of
globalization  has  led  to  a  heightened  risk  of  imported
epidemics;  however,  existing  surveillance  systems
remain  fragmented  and  reliant  on  laboratory
confirmation.  We  developed  an  open-source  data-
driven  hybrid  modeling  system  to  provide  earlier  and
more  reliable  alerts,  designed  to  complement  China’s
multipoint trigger early-warning framework.

Methods:  This  system  integrates  heterogeneous
signals,  including  official  epidemiology,  digital  traces,
mobility,  meteorology,  and  pathogen  genomics,  using
semantic  harmonization  and  a  hybrid  analytic  stack.
Seasonality-adjusted baselines  with anomaly detection,
mobility-  and  climate-aware  SEIR  models,  and  short-
horizon  learners  generated  calibrated  early-warning
scores.  Thresholds  were  constrained  by  positive
predictive  value.  Pilot  studies  were  conducted  for
coronavirus  disease  2019  (COVID-19)  in  Yantai  and
severe  fever  with  thrombocytopenia  syndrome  virus
(SFTSV)  in  Shandong  and  Henan,  with  tuberculosis
indicators embedded for programmatic use.

Results:  Across  deployments,  the  system  achieved
83.3% sensitivity and 76.9% positive predictive value,
providing a median lead time of 9.3 days before official
confirmation.  Forecasting  accuracy  reached 92.1%  for
COVID-19 in Yantai, 90.3% for SFTSV in Shandong,
and 89.8% for SFTSV in Henan. Early warnings were
aligned  with  subsequent  confirmations  and  supported
targeted screening and resource allocation.

Conclusion:  An  open-source  data-driven  hybrid
modeling  system  can  deliver  calibrated  and  timely
alerts  across  diverse  pathogens.  By  broadening  inputs,
enabling  cross-agency  linkage,  and  offering  operator-
oriented  dashboards,  it  serves  as  a  practical
complement  to  China’s  national  early-warning  system
and has the potential for scaling out with One Health
inputs. 

 

Globalization  and  increased  human  mobility  have
raised  the  risk  of  infectious  diseases.  International
tourist arrivals and global traffic have roughly doubled
since  2000  (1).  During  the  coronavirus  disease  2019
(COVID-19)  pandemic,  imported  cases  repeatedly
seeded  local  outbreaks  in  China,  while  the  expanding
distribution  of  severe  fever  with  thrombocytopenia
syndrome  across  East  Asia  illustrates  cross  border
spread  of  vector-borne  diseases  (2–3).  Tuberculosis
(TB)  remains  a  persistent  global  threat;  with  10.6
million new cases and 1.3 million deaths in 2022; and
rebounds  in  China  underscore  the  need  for  improved
prevention along travel corridors (4–5).

China  has  developed  a  nationwide  surveillance
backbone, including the National Notifiable Infectious
Disease  Reporting  System  (NIDRIS)  and  the  China
Infectious  Disease  Automated-alert  and  Response
System  (CIDARS)  that  provide  direct  case  reporting
and  rule-based  signal  generation  from  statutory
notifiable  diseases  (6–7).  More  recently,  national
guidance emphasizes  multi-point trigger early-warning
architecture aimed at integrating multiple data sources,
enhancing  interoperability,  and  supporting  multi-
agency  collaboration  (8–9).  However,  most  current
pilot studies and applications rely primarily on report-
based  analytics,  such  as  space-time  scan  statistics,
which  identify  spatiotemporal  clusters  but  remain
constrained  by  delayed  confirmation,  limited  data
inputs,  and  weak  predictive  power  (10–11).  These
limitations  reduce  actionable  lead  time  and  restrict
applicability to pathogens with long incubation periods
or non-specific clinical presentations.

Epidemic  intelligence  research  has  explored
statistical,  mechanistic  models,  and  machine  learning
approaches  separately;  however,  few  studies  combine
them  in  hybrid  frameworks  balancing  interpretability
and  accuracy  (12–13).  Existing  studies  often  lack
interoperability  standards  and  operator-facing
dashboards,  limiting  their  scalability  and  usability  in
real-world decision-making environments.

To address these gaps, we introduce an open-source
data-driven  hybrid  modeling  system  designed  to
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complement  China’s  national  multi-point-trigger
early-warning  architecture.  The  system  integrates
heterogeneous  open  and  partner-shared  signals  —
including  epidemiological  reports,  digital  traces,
mobility,  meteorology,  and  pathogen  genomics  —
through semantic harmonization and hybrid analytics,
including  seasonality-adjusted  baselines,  anomaly
detection,  mobility-  and  climate-aware  SEIR  models,
and  short-horizon  sequence  learners.  Interoperable
HL7  FHIR-aligned  data  contracts  enable  scalable
integration  with  health,  customs,  and  laboratory
systems  (14).  While  operator-oriented  dashboards
follow established design principles  for  interpretability
and  oversight  (15).  We  present  the  system’s
architecture and pilot evidence across COVID-19 and
severe  fever  with  thrombocytopenia  syndrome  virus
(SFTSV)  and  show  how  the  same  framework  embeds
TB  indicators  for  programmatic  use,  bridging  open-
source data intelligence with the national early-warning
workflow. 

METHODS

We  selected  three  pathogen  targets  to  test  the
system’s  One  Health  versatility  across  distinct
transmission modes and timescales: COVID-19 (acute
respiratory  disease  requiring  rapid  community
forecasting),  SFTSV  (vector-borne  disease  requiring
ecological  integration),  and  tuberculosis  (chronic
disease  requiring  long-term  strategic  planning).  The
pilot  sites  were  chosen  based  on  disease  burden  and
data  feasibility;  for  SFTSV,  Shandong  and  Henan
provinces  were  selected  as  high-endemicity  regions  in
China,  providing  sufficient  case  volume  to  validate
vector-driven  models.  For  COVID-19,  Yantai  was
selected  as  a  representative  coastal  port  city  that
experienced  distinct  waves  of  local  transmission
triggered  by  importation.  This  setting  offered  clear
onset-to-suppression  dynamics  essential  for  validating
the  community  forecasting  model’s  sensitivity  to
intervention  measures.  The  system  continuously
ingests  heterogeneous  data,  performs  semantic
harmonization,  runs  hybrid  analytics  (statistical
baselines,  mechanistic  models,  and  deep-sequence
learners),  and  emits  a  calibrated  early  warning  score
(EWS)  for  operations.  Personally  identifiable
information was not collected or processed (Figure 1). 

Data Sources and Preprocessing
In  this  study,  the  term “open-source  data”  refers  to

open-source  intelligence  (OSINT)  and  publicly

available  datasets  that  are  accessible  without
proprietary restrictions. These include official bulletins,
digital signals, meteorological records, and anonymized
mobility data, distinct from internal hospital records or
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confidential line-list data.
Official  epidemiology  relies  on  national/provincial

bulletins  and  WHO/ECDC  situation  updates;  digital
epidemiology  integrates  multichannel  digital  traces
such as search engine queries (Baidu Index, Wikipedia
Pageviews),  social  media  discussions  (Weibo),  and
content  from  aggregators  (Douyin/TikTok  China,
Toutiao),  all  equipped  with  geotags  and  temporal
stamps;  genomics  provides  sequence  metadata  for
pathogen  context;  context  &  covariates  encompass
human  mobility,  meteorology,  and  holiday  markers;
and  for  the  vector  signal  SFTSV,  national  tick  index
surveillance data is digitized from official graphs using
scale-mean  abstraction  to  create  daily  or  weekly
exogenous drivers, with monthly series derived through
calendar aggregation. 

Model Development Methodology
In  this  study,  we  developed  three  distinct  model

components  integrated  through  a  hybrid  framework,
with  detailed  methodologies  provided  in  the
supplementary  materials.  The SFTSV model  utilizes  a
network transmission approach where the vector driver
is  approximated  by  a  Fourier  series  fitted  to  the
2018–2019  national  tick  index,  assuming  stationary
seasonal  phenology.  For  the  COVID-19  model,  an
agent-based  SEIR  model  was  implemented  on  a
dynamic  contact  graph;  biological  parameters  were
fixed  to  literature  values  to  ensure  identifiability,
focusing  calibration  solely  on  the  effective  contact
probability.  Rifampicin-resistant  tuberculosis
(RR-TB)  incidence  was  estimated  following  the
WHO-recommended  mathematical  procedure
(Supplementary  Table  S1,  available  at  https://weekly.
chinacdc.cn). Finally, these outputs were integrated via
hybrid  fusion,  employing  logistic  stacking  as  a  meta-
learner to weigh mechanistic and deep learning signals
based on their historical performance. 

RESULTS
 

System-level Alert Performance
Across  pilots,  the  system operated at  a  pre-specified

threshold tuned for  decision utility  (PPV constraint ≥
0.70).  Against  officially  confirmed  events,  the  system
achieved  83.30%  sensitivity  and  76.90%  positive
predictive  value  (PPV),  with  a  median  lead  time  of
9.30  days  before  first  confirmation.  Alerts  and
confirmatory timelines are illustrated in the dashboard
traces  (Figure  2E–F);  adjudication  logs  indicate  that

most  false  positives  arose  from  short  sub-threshold
anomalies  that  did  not  consolidate  into  confirmed
events (Table 1). 

Site-level Forecasting Performance
For  SFTSV  monthly  incidence  forecasting  in

Shandong and Henan,  the  model’s  predictions  closely
tracked observed trends in both provinces, as illustrated
in  Figure  3A–B.  Using  the  pre-specified  accuracy
metric  with bootstrap 95%  confidence  intervals  (CIs),
Shandong  (2013–2015)  achieved  90.29%  accuracy
(95%  CI:  85.79%,  93.84%).  Henan  (2009–2014;
including  Xinyang)  achieved  89.81%  (95%  CI:
86.24%, 93.08%).

Peak  months  and  troughs  aligned  with  the
seasonality  captured  by  the  mechanistic  (tick-  and
human-driven)  transmission  terms,  and  the  model
reproduced  the  interannual  amplitude  differences
without overfitting (Figure 2A–B).

In  the  COVID-19  community  forecasting
conducted  for  Yantai,  community-scale  forecasts
achieved 92.15% accuracy (95% CI: 86.99%, 93.96%)
under  the  same  definition.  In  peak-focused  validation
with  10,000  simulations  (Poisson-drawn  initial  seeds
within  the  95%  interval),  the  model  achieved  a  peak
timing  accuracy  of  88.43%  (95%  CI:  88.26%,
88.59%)  and  a  peak  magnitude  accuracy  of  91.16%
(95% CI:  91.04%,  91.30%).  The  forecast  trajectories
and observed counts are shown in Figure 2C–D.

At  the  PPV-constrained  threshold,  the  median  lead
time was 9.3 days (overall). Most detected events had ≥
7  days’  advance  notice;  short-lead  alerts  (<7  days)
clustered  in  late-season  periods  with  compressed
confirmation cycles (timeline examples in Figure 3E).

Our  TB  model,  adapted  from  the  recurrent
framework  of  Li  (5),  closely  reproduced  historical
trends  (R2=0.95  for  total  incidence,  0.99  for  RR-TB
incidence,  and  0.82  for  TB  deaths),  with  a  posterior
mean  force  of  infection  of  2.35  per  year  (95%  CI:
1.16, 3.58). Projections to 2030 indicated an incidence
rate  of  33.7  per  100,000  (95%  CI:  30.80,  38.30),
below  Li’s  estimate  of  44.9  but  above  the  End  TB
target  of  13,  suggesting  China’s  2024–2030  goal  (43)
is  attainable.  The  model  was  implemented  as  an
interactive  Shiny  application  to  support  visualization
and policy use. 

DISCUSSION

This  study  demonstrates  that  the  system  can
combine  diverse  open  signals  with  hybrid  models  to
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produce calibrated early-warning scores constrained by
positive  predictive  values,  reducing  false  alerts  while
preserving  sensitivity.  We  tested  three  pathogen
contexts  —  COVID-19,  SFTSV,  and  TB  —  and
observed  their  practical  utility  in  both  acute  and
chronic use cases.

Semantic  harmonization  organized  multi-source
evidence  into  consistent  geotemporal  units,  reducing
ambiguity  in  sparse  or  fast-moving  events.  Hybrid
modeling integrated statistical  baselines,  mobility- and
climate-aware  SEIR  models  (including  a  human-tick-
human  pathway  for  SFTSV),  and  short-horizon
learners to preserve epidemiologic interpretability while
capturing  nonlinearity.  PPV-constrained  probability
calibration  translated  model  outputs  into  actionable

alerts, improving resource allocation and limiting alert
fatigue.  Together,  these  choices  enabled  earlier,  more
precise  alerts  that  aligned  well  with  observed  trends
without overfitting to site-specific conditions. 

Relationship to Prior Work and
Added Value

While  frameworks  such  as  EWARS  support
outbreak  management  (8–9),  their  reliance  on
statutory  reports  limits  their  timeliness  (6).  Previous
studies  have  often  traded  interpretability  (statistical
baselines)  for  short-term  accuracy  (machine  learning),
frequently lacking multisource integration. Our system
advances  the  field  by  1)  hybridizing  statistical,
mechanistic,  and  sequence-based  learners  to  balance
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interpretability  with  adaptability;  2)  integrating  open
signals beyond statutory notifications; and 3) achieving
high  predictive  accuracy  and  meaningful  lead  times
relative to uncalibrated systems.

Qualitatively,  the  hybrid  framework  offers  distinct
advantages  over  the  single-method  baselines.
Mechanistic  SEIR  models  capture  long-term  seasonal
trends  but  lag  during  stochastic  onsets,  whereas
deepsequence  learners  offer  high  sensitivity  but  lack
epidemiological  transparency.  By  fusing  these
approaches, our system stabilizes forecasts during peaks
while  improving  sensitivity  during  early  onsets.
Quantitatively, the system demonstrated a median lead
time of 9.3 days relative to official confirmation. Given
the  inherent  reporting  lags  in  traditional  passive
surveillance  (7),  this  represents  a  substantial  window
for pre-emptive intervention. 

Pathogen Landscape Perspective
A  modular  design  allows  flexible  application  across

pathogen  contexts.  The  same  framework  generates
outbreak  alerts  for  COVID-19  and  SFTSV  while
embedding  TB  analytics  to  strengthen  screening  and
continuity of care. This adaptability enables emergency
response  and  long-term  control  through  a  unified
operational surface.

Operational utility differs across pathogen types. For
acute  outbreaks,  such  as  COVID-19  and  SFTSV,  the
system  functions  as  a  tactical  early-warning  tool,
issuing  short-horizon  alerts  (lead  time  <14  days)  to
trigger  immediate  containment  measures  such  as
targeted  screening  or  vector  control.  For  chronic
diseases  such  as  TB,  the  system  serves  a  strategic
forecasting function, projecting long-term trends (e.g.,
to 2030) to guide resource allocation and policy target
setting.  This  multimodal  capability  aligns  with  the
tiered  surveillance  architecture  advocated  in  recent
national  guidance  on  intelligent  multi-point  trigger
systems (8−9).
 

 

TABLE 1. System- and site-level performance summary.

Setting Pathogen Outcome
granularity

Detection
sensitivity,

%

PPV,
%

Median
lead
time,
days

Forecast
accuracy, %

(95% CI)

Peak timing
accuracy, %

(95% CI)

Peak
magnitude

accuracy, %
(95% CI)

Rtotalincidence R

RR−TBincidence R


TBdeaths

Overall
(all pilots) Mixed Event-level

alerts 83.3 76.9 9.3

Yantai,
Shandong

COVID-
19

Community
time series

92.15
(86.99, 93.96)

88.43
(88.26, 88.59)

91.16
(91.04, 91.30)

Shandong SFTSV Monthly
incidence

90.29
(85.79, 93.84) − −

Henan SFTSV Monthly
incidence

89.81
(86.24, 93.08) − −

China
(National) TB

National
annual

incidence
0.95 0.99 0.82

Note: “−” means no data. The indicators of TB are presented in the form of proportions.
Abbreviation:  COVID-19=coronavirus  disease 2019;  SFTSV=severe fever  with  thrombocytopenia  syndrome virus; CI=confidence interval;
TB=tuberculosis.

 

20

40

60

80

2014 2016 2018 2020 2022 2024 2026 2028 2030
Year

In
ci

de
nc

e 
ra

te
 (p

er
 1

00
,0

00
)

Incidence

Upload complete

Upload a xlsx file for targets

Method for model solution

End year of the projection

Upload a xlsx file for model calibration
or parameters update

Calibrate to TB-related data (number of
incident TB cases, TB deaths and
incident RRTB cases)?

Browse...

2,025 2,0502,035

2,025 2,028 2,031 2,034 2,037 2,040 2,043 2,046 2,049

Browse...

Posterior of parameters

Show 10  entries Search:

Euler

NO

TB_indicate_target_file.x

No file selected

A B

FIGURE 3. Dashboard (TB). (A) Incidence Trends and Projections; (B) Posterior Parameters and Model Application
Note: The system showed high stability in robustness checks under parameter perturbations.
Abbreviation: TB=tuberculosis.
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Implications for Public Health Practice
Embedding such a system into an operational setting

can  accelerate  detection,  improve  the  allocation  of
quarantine  and  laboratory  resources,  and  better  align
vector  control  with  clinical  responses  during  high-risk
periods.  These  functions  align  with  national  guidance
on  building  a  multipoint-trigger  early-warning
architecture  (8−9)  and  with  international  calls  to
strengthen  public  health  forecasting  (12).  The  system
also benefits from interoperable data contracts, such as
HL7 FHIR, which facilitate scalable integration across
health,  customs,  and  laboratory  agencies  (14),  as  well
as  operator-oriented dashboards designed for real-time
decision  support  (15).  In  the  short  term,  priorities
include  regular  recalibration,  expanded  data  exchange
with  partner  agencies,  and  the  incorporation  of
operator  feedback  loops.  In  the  medium  term,
multisite  evaluations  are  required  to  provide  robust
evidence of improved timeliness and efficiency.

First,  data-related  issues  exist  in  multiple  aspects.
Digital  traces  are  susceptible  to  “media  noise”,  and
smartphone-derived mobility data may underrepresent
the  elderly.  Meanwhile,  meteorological  data  face
spatiotemporal alignment challenges. Second, there are
ecological  and  modeling-related  constraints.  The
national  tick  index  has  limited  local  granularity  in
terms  of  ecological  constraints.  Structural
simplifications,  assuming  uniform  mixing  for
COVID-19  or  simplified  vector-host  cycles  for
SFTSV,  may  overlook  microenvironmental
heterogeneity.  Finally,  there  are  coverage  and
parameter-related  problems.  Pilot  coverage  was
geographically  limited,  and  parameter  uncertainty
persists  as  PPV  thresholds  need  recalibration  and  TB
models  depend  on  uncertain  latent  progression
parameters. 
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SUPPLEMENTARY MATERIAL
 

DATA PROCESSING LAYER CONSTRUCTION
As  illustrated  in  the  Processing  Layer  of  Figure  1,  the  system  follows  a  two-stage  construction  protocol.  1)

Automated Data Collection: Built on a Browser/Server (B/S) architecture, utilizing timed task collection modules to
continuously  ingest  data  via  public  APIs  and  web-scraping  interfaces.  2)  Data  Cleaning  &  Preprocessing:  Raw
inputs undergo a standardized pipeline: 1) Format Normalization parses heterogeneous text/JSON into structured
schemas; 2) Timestamp Alignment synchronizes all records to UTC+8; 3) Duplicate Removal eliminates redundant
entries  via  hash  matching;  and  4)  Quality  Assurance  Protocols  (e.g.,  winsorization)  filter  outliers  to  ensure  data
integrity. Source-region normalization was performed using a Z-score with a small ridge.

x̃s,t,r =
xs,t,r − µs,r

σs,r + ε
(1)

 

MODEL DEVELOPMENT METHODOLOGY
 

SFTSV Network Transmission Model (Human-Tick-Human)
TickIndex(t)Tick  Index  as  a  Seasonal  Driver:  A  Fourier  series  approximates  the  tick  index to  capture  the  annual

and biannual cycles:

TickIndex(t) = A + A sin(ωt) + B cos(ωt) + A sin(ωt) + B cos(ωt) (2)
estimated using the nonlinear least-squares method. This driver transmits the force of infection from the tick into

a human channel. {Yk}nk= λk(θ)The monthly observed incidence   was modeled as a Poisson variable, with the mean   implied by the
state equations:

Yk ∼ Pois(λk(θ)),
logL(θ) = n

∑
k=

log(Pois(Yk ∣ λk) + −). (3)

where the small  constant prevents numerical underflow. Posterior computation uses a grid/maximum A Posteriori
(MAP) strategy with log-posterior stabilization:

P(θ ∣ D) ∝ exp  (log P(D ∣ θ) + log P(θ) −maxθ′ log P(D ∣ θ′)) (4)
followed by normalization and MAP selection.  Sensitivity  checks  use  a  random-start  local  search over  the prior

box.
We utilized 2018–2019 national tick surveillance data to derive a normalized seasonal function of vector activity.

The  use  of  this  later-period  index  to  drive  the  historical  model  (2009–2015)  is  consistent  with  long-term
epidemiological  observations,  indicating  that  vector  phenology  follows  relatively  stable  annual  cycles  driven  by
climatic  factors.  Based  on  this,  we  assumed  that  the  seasonal  shape  remained  stationary,  while  allowing  the
transmission amplitude to fit dynamically to the observed incidence in each year. 

COVID-19 Community Network Model (agent SEIR on Dynamic Contact Graph)
Resident  Classes:  Residents  were  grouped  according  to  mobility  patterns:  1)  fixed  workplace/school  (regular,

high-frequency  travel),  2)  no  fixed  workplace/retired/home-based  (variable  patterns),  and  3)  low  mobility
(elderly/children).

Graph  construction.  Each  household  is  a  node  with  attributes  (demography,  mobility  propensity).  Edges
represent  residential  proximity  (within  unit/building/compound).  During  simulation,  edges  are  dynamically
augmented  by  co-presence  in  venues  (workplace/school,  transit,  shops/parks/clinics),  forming  a  time-varying
multilayer graph.

A  semi-mechanistic  approach  was  adopted  to  ensure  parameter  identifiability.  Biological  parameters  were  fixed
based  on  established  literature:  the  mean  latent  period  was  set  to  5.2  days  and  the  infectious  period  to  5.8  days.
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(βt)
Agents  transitioned  between  compartments  (Susceptible-Exposed-Infectious-Recovered)  based  on  these  fixed
intervals  and a time-varying force of  infection derived from the dynamic contact  graph.  Consequently,  the model
calibration  focused  solely  on  estimating  the  effective  contact  probability    and  the  initial  seed  size,  thereby
reducing dimensionality and preventing overfitting. 

Estimation of Incidence of RR-TB (Rifampicin-Resistant Tuberculosis)
I (t)Total tuberculosis incidence   was obtained from the compartmental model as

I(t) = ωfast ⋅ Efast(t) + ωslow ⋅ Eslow(t) + ρ ⋅ R(t) (5)

We  then  applied  the  mathematical  procedure  recommended  by  the  World  Health  Organization  to  derive  the
incidence of rifampicin-resistant (RR) TB, expressed by the following equation:

Irr(t) = I(t)[( − f) ⋅ pnew(t) ⋅ (( − r(t)) + r(t) ⋅ ρRRTB) + f ⋅ pret(t)] (6)
 

Deep sequence Learners and Fusion
Xt,i 

h
Parallel  sequence  models  (LSTM/temporal  CNN)  use  multistream  inputs (normalized  signals,  recent  cases,

mobility, and meteorology) to predict  -step-ahead counts:

ŷt+h,i = gω  ([Xt−w+,i, . . . ,Xt,i]) (7)

trained with a Huber loss and correlation-promoting regularizer:

J = ∑
t,i

L (yt,i, ŷt,i) − λcorr (y⋅,i, ŷ⋅,i) (8)

p(m)t,i

Outputs  from statistical  baselines,  mechanistic  models,  and learners  were  Platt-scaled  to  calibrated  probabilities
 and fused by logistic stacking.

Pr(eventt,i = ) = σ (α +∑
m
αm logitp(m)t,i ) (9)

An EWS combines stacked risk with anomaly flags:

EWSt,i = ∑
m
wm p̃

(m)
t,i + η{St,i > h} + η max(Zt,i, ), (10)

EWSt,i ≥ τ τ Fand triggers  when  .  Threshold    is  tuned to  maximize   under  a  minimum PPV constraint  (PPV≥
0.70) using rolling-origin evaluation.

The  logistic  stacking  layer  functions  as  a  meta-learner  that  assigns  dynamic  weights  to  the  component  models
based  on  their  historical  validation  performance.  This  mechanism  is  designed  to  reconcile  conflicting  signals;  for
instance,  the  system  tends  to  assign  higher  weights  to  mechanistic  SEIR  outputs  during  stable  seasonal  periods
(capturing  regular  trend  lines),  while  upweighting  digital  signals  and  deep  learners  during  irregular  onset  phases,
where statistical anomalies precede official reporting. This dynamic weighting strategy aligns with the principles of
ensemble model averaging, in which component models are weighted according to their predictive performance in
specific contexts. 

Semantic Harmonization and Knowledge Graph

G = (V,E)
An  NLP  pipeline  performs  named-entity  and  relation  extraction  over  unstructured  text  and  bulletins  and

mapping  to  controlled  vocabulary  (disease/syndrome,  host/vector,  place,  and  intervention).  Entities  and  relations
populate  a  knowledge  graph    that  1)  resolves  aliases  and  administrative  hierarchies
(district→city→province), 2) stores provenance, and 3) serves efficient retrieval for modeling features and operator
dashboards. 

Statistical Baselines and Anomaly Detection
Yt,rSyndromic/aggregate  counts    are  modeled  using  a  seasonality-adjusted  quasi-Poisson  Generalized  Linear

Model (GLM) with trend and holiday effects; standardized residuals feed a one-sided Cumulative Sum (CUSUM)
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to generate anomaly evidence:

Yt,r ∼ QP(λt,r), log λt,r = β + βt + fseas(t) + γ⊤Ht + δr (11)

Zt,r =
Yt,r − λ̂t,r√

V̂ar(Yt,r) , St,r = max{, St−,r + Zt,r − k}, alert ifSt,r > h (12)
 

SFTSV Network Transmission Model (Human-Tick-Human) Calculation Details
St,Et, It,Rt,Dt Nt = St + Et + It + RtHuman–tick–human force of infection. Let   denote human compartments,   The

total infection pressure is the sum of tick to human and human to human components:

λt = βth(t) StNt
TickIndex(t) + βhh(t) StItNt

(13)

Seasonal/behavioral modulation of transmission:
βhh(t) = bh ,

β
′
th(t) = bt

sin(αt t/ + πϕ/) + 
 .

(14)

β
′
th(t) K

β
′
th(t)where    absorbs  the  proportionality  constant    between  the  observed  tick  index  and  effective  contacts  (only

 is estimated).
State evolution (discrete-time):

St+ = St − λt,
Et+ = Et + λt − σEt,

It+ = It + σEt − µIt − δIt,
Rt+ = Rt + δIt,
Dt+ = Dt + µIt.

(15)

σ δ µHere    is  progression  from exposed  to  infectious  (latent-to-infectious  rate),    is  recovery,    is  disease-induced
mortality (fixed from guidelines/meta-analysis as literature-based constants for the baseline run).

bh, bt, αt, ϕBayesian  parameter  estimation.  We  estimate    under  weakly  informative  uniform  priors  (reflecting
seasonality and scale).

bh ∼ Unif(−,−),
bt ∼ Unif(−,−),
αt ∼ Unif(., .),
ϕ ∼ Unif(, ). (16)

 

COVID-19 Community Network Model (agent SEIR on Dynamic Contact Graph)
Calculation Details

N home
i

M cim(t) πim(t) m; η
i t

Two  transmission  phases.  Phase-1  (lockdown/home  isolation),  household  droplets  and  environment/aerosol
exposures dominate; Phase-2 (reopening) includes venue-specific contacts (work/school, transit, leisure). Let 
represent household neighbors,   venue types,   expected contacts, and   time fraction in the venue 
vaccine effectiveness (susceptibility reduction). The probability of infection for node   on day   is modeled as:

p()i (t) =  − ( − η) exp(−ρenvτ
home
i (t))ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

no env. infection

∏
j∈N home

i

( − ρhome{Ij(t) = })ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
no household infection

, (17)

p()i (t) =  − ( − η) exp(−ρenvτi(t)) ∏
j∈N home

i

( − ρhome{Ij(t) = }) ∏
m∈M

( − ρm)cim(t)πim(t). (18)

ρ⋅ τHere,    is  the  per-contact  transmission  probability,  and    denotes  the  time  in  the  environment.  The  state
evolution follows the agent-level SEIR with daily updates.
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Xi(t) ∈ {S,E, I,R},
Pr{Xi(t + ) = E ∣ Xi(t) = S} = pi(t),
Pr{Xi(t + ) = I ∣ Xi(t) = E} = σ,
Pr{Xi(t + ) = R ∣ Xi(t) = I} = γ. (19)

( − η)
j → i t

and  vaccination  acts  as  a  multiplicative  susceptibility  reduction  .  For  network-level  inference,  a
cavity/percolation recursion approximates the probability that infection does not traverse edge   up to time  :

ψj→i(t) = ∏
k∈N (j)i[ − βjk( − ψk→j(t − ))],

πi(t) =  − ∏
j∈N (i)[ − βij( − ψj→i(t))]. (20)

which improves stability on large graphs. 

Estimation of Incidence of RR-TB (Rifampicin-Resistant Tuberculosis) Calculation
Details

Efast

Eslow

ωfast

ωslow

Inew Iret

R R
Iret

Tuberculosis natural history. The compartmental model employed to represent the natural history of TB largely
replicates the structure proposed by Li et al., with only minor modifications. We reimplemented the model in Stan,
a  probabilistic  programming  language  written  in  C++,  to  situate  the  analysis  of  tuberculosis  and  other  infectious
diseases within a coherent Bayesian framework. This model distinguishes between two latency pathways: fast ( )
and slow ( ).  As  no consensus  on the  definition of  fast-progressing latent  infection exists  in  the  literature,  we
adopted the progression parameters reported by Menzies et al., which are also used by the WHO. The annual rate of
progression from the fast-progression latent compartment to active tuberculosis ( ) was set at 0.0826 per person-
year,  whereas  the  corresponding  rate  for  the  slow-progression  latent  compartment  ( )  was  fixed  at  0.0006  per
person-year.  Disease  status  was  classified  into  two  groups  based  on  the  WHO  guidance  issued  in  2013:  newly
diagnosed TB ( ) and retreated TB ( ). Although the 2024 WHO revision refers to the latter category as being
re-registered  for  treatment,  the  retreated  designation  was  retained  in  the  present  analysis.  Future  iterations  of  the
model  will  adopt  the  updated  terminology.  Individuals  who  were  cured  or  completed  their  treatment  were
transferred  to  the  compartment,  represented  as  recovery  ( ).  Individuals  in  compartment    remain  at  risk  of
recurrence and can return to an infectious state ( ). The model equations are as follows:

dS
dt

= B ⋅ N − β
S(Inew + Iret)

N −M ⋅ S,

dEfast

dt
= ( − g) ⋅ β S(Inew + Iret)

N − ωfast ⋅ Efast −M ⋅ Efast,

dEslow

dt
= g ⋅ β

S(Inew + Iret)
N − ωslow ⋅ Eslow −M ⋅ Eslow,

dInew
dt

= ωfast ⋅ Efast + ωslow ⋅ Eslow − (M + CFRnew) ⋅ Inew − ηnew ⋅ Inew − fnew ⋅ Inew,

dIret
dt

= fnew ⋅ Inew + fnew ⋅ Inew + ρ ⋅ R − (M + CFRret) ⋅ Iret − ηret ⋅ Iret,
dR
dt

= ηnew ⋅ Inew + ηret ⋅ Iret −M ⋅ R − ρ ⋅ R.

(21)

Data flux and model calibration. Gao et al. estimated that the prevalence of LTBI in China in 2013 was 18.08%,
corresponding to approximately 247 million infections. Houben and Dodd estimated that there were 350 million
infections in China in 2014. We rely on the estimation conducted by Gao et al. because it is derived from large-scale
empirical data collected in China and, therefore, aligns more closely with the study population and methodological
framework. Therefore, our model-fitting starting point was set to 2013. 

Robustness Checks
The performance estimates were stable in the rolling-origin evaluation under small perturbations of priors for the

SFTSV  transmission  modifiers  and  venue  contact  parameters  for  COVID-19.  Bootstrap  confidence  intervals
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overlapped  across  sites,  and  alert  metrics  were  consistent  when  restricted  to  weeks  with  complete  multisource
coverage.
 

Uncertainty Quantification
We  addressed  the  parameters  and  predictive  uncertainty  using  distinct  approaches  tailored  to  each  model

component.  For  the  mechanistic  SFTSV  and  TB  models,  we  employed  a  Bayesian  framework  and  reported
parameter estimates with 95% credible intervals (CrIs) derived from the posterior distributions. For the COVID-19
community  model  and  deepsequence  learners,  where  analytical  posteriors  were  intractable,  we  utilized  bootstrap
resampling (N=2,000 iterations) to generate 95% confidence intervals (CIs) for all predictive horizons.
 

 

SUPPLEMENTARY TABLE S1. RR-TB calculation parameters and explanations.
Description Definition Value

B Birth rate

logit (B) = ln
B

 − B = b,B + bBt

dB
dt

= bBB ( − B)

Birth rates were modelled using logistic regression.

Differentiating the implied logistic curve with respect to time gives the
corresponding ordinary differential equation

M Background mortality rate

logit (M) = ln
M

 −M = b,M + bMt

dM
dt

= bMM ( −M)

Background mortality rates were modelled using logistic regression.

Differentiating the implied logistic curve with respect to time gives the
corresponding ordinary differential equation

β Transmission rate Calibrated to match epidemiological data, with uniform priors [0, 30].

g Proportion of infected individuals that transition into the
"slow" progression LTBI compartment Fixed, 0.91

ωfast
The annual rate of progression from the "fast"

progression LTBI to active TB. Fixed, 0.0826

ωslow
The annual rate of progression from the "slow"

progression LTBI to active TB. Fixed, 0.0006

CFRnew Case fatality rate for newly diagnosed patients Calibrated to match epidemiological data, with uniform priors [0, 0.2].

CFRret Case fatality rate for retreated patients Calibrated to match epidemiological data, with uniform priors [0, 0.2].

ηnew Treatment success rate for newly diagnosed patients Region varying.
For China, the overall value was 0.94.

ηret Treatment success rate for retreated patients Region varying.
For China, the overall value was 0.85.

fnew Treatment failure rate for newly diagnosed patients Region varying.
For China, the overall value was 0.0227.

fret Treatment failure rate for retreated patients Region varying.
For China, the overall value was 0.0527.

ρ Overall recurrence rate Region varying.
For China, the overall value was 0.0047.

r (t) t
The proportion of recurrent cases out of the sum of new

and recurrent cases at time  . r (t) = ρ⋅R(t)
I(t)

Computed from the model as

f
The cumulative risk that an incident case undergoes a

non-relapse retreatment, defined as retreatment
following treatment failure or return after default.

fnew f was used as a proxy for  .

pnew (t) t
The estimated proportions of RR-TB among newly

diagnosed patients at time  . logit (pnew (t)) = ln
pnew (t)

 − pnew (t) = b,new + bnewt

Different from the methods used by WHO, we constructed logistic
regression to estimate the proportions.

pret (t) t
The estimated proportions of RR-TB among retreated

patients at time  . logit (pret (t)) = ln
pret (t)

 − pret (t) = b,ret + brett

Different from the methods used by WHO, we constructed logistic
regression to estimate the proportions.

ρRRTB
The risk of RR-TB in recurrent cases relative to

previously untreated cases. Calibrated to match epidemiological data, with uniform priors [1, 10].

Abbreviation: LTBI=latent tuberculosis infection; TB=tuberculosis.
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Evaluation Plan

( − NMAE) × %

Event  Matching  and Definitions:  An  ‘event  match’ was  defined  as  a  system alert  (EWS >  threshold)  occurring
within  a  14-day  window  preceding  the  official  confirmation  date  of  a  case  cluster.  To  account  for  confirmation
delays, the official date was adjusted by subtracting the median reporting lag (2 days for COVID-19 and 5 days for
SFTSV) derived from the historical NIDRIS data. Multiple alerts triggered within a single window were aggregated
into  a  single  ‘detected  event’  to  prevent  double-counting.  Forecast  agreement  (SFTSV  monthly):  Accuracy  was
defined  as    with  95%  bootstrap  CIs.  Although  standard  statistical  evaluations  typically  use
RMSE  or  MAE,  we  adopted  this  percentage-based  metric  to  facilitate  intuitive  interpretation  by  public  health
operators. This choice prioritizes communicative utility in operational dashboards over strict statistical conventions,
which is consistent with the user-centered design principles in public health surveillance.

Sensitivity = TP
TP + FN ,

PPV = TP
TP + FP ,

Specificity = TN
TN + FP .

(22)

Brier = 
n ∑

t,i
(pt,i − yt,i) (23)

NMAE =


n

n∑
k=

∣yk − ŷk∣
max(y) −min(y) ,

Accuracy = ( − NMAE) × %.

(24)
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