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ABSTRACT

Introduction: The increasing trend of
globalization has led to a heightened risk of imported
epidemics; however, existing surveillance systems
remain fragmented and reliant on laboratory
confirmation. We developed an open-source data-
driven hybrid modeling system to provide earlier and
more reliable alerts, designed to complement China’s
multipoint trigger early-warning framework.

Methods: This system integrates heterogeneous
signals, including official epidemiology, digital traces,
mobility, meteorology, and pathogen genomics, using
semantic harmonization and a hybrid analytic stack.
Seasonality-adjusted baselines with anomaly detection,
mobility- and climate-aware SEIR models, and short-
horizon learners generated calibrated early-warning
scores. Thresholds were constrained by positive
predictive value. Pilot studies were conducted for
coronavirus disease 2019 (COVID-19) in Yantai and
severe fever with thrombocytopenia syndrome virus
(SFTSV) in Shandong and Henan, with tuberculosis
indicators embedded for programmatic use.

Results: Across deployments, the system achieved
83.3% sensitivity and 76.9% positive predictive value,
providing a median lead time of 9.3 days before official
confirmation. Forecasting accuracy reached 92.1% for
COVID-19 in Yantai, 90.3% for SFTSV in Shandong,
and 89.8% for SFTSV in Henan. Early warnings were
aligned with subsequent confirmations and supported
targeted screening and resource allocation.

Conclusion: An open-source data-driven hybrid
modeling system can deliver calibrated and timely
alerts across diverse pathogens. By broadening inputs,
enabling cross-agency linkage, and offering operator-
oriented dashboards, it serves as a practical
complement to China’s national early-warning system
and has the potential for scaling out with One Health
inputs.
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Globalization and increased human mobility have
raised the risk of infectious diseases. International
tourist arrivals and global traffic have roughly doubled
since 2000 (7). During the coronavirus disease 2019
(COVID-19) pandemic, imported cases repeatedly
seeded local outbreaks in China, while the expanding
distribution of severe fever with thrombocytopenia
syndrome across East Asia illustrates cross border
spread of vector-borne diseases (2-3). Tuberculosis
(TB) remains a persistent global threat; with 10.6
million new cases and 1.3 million deaths in 2022; and
rebounds in China underscore the need for improved
prevention along travel corridors (4-5).

China has developed a nationwide surveillance
backbone, including the National Notifiable Infectious
Disease Reporting System (NIDRIS) and the China
Infectious Disease Automated-alert and Response
System (CIDARS) that provide direct case reporting
and rule-based signal generation from statutory
notifiable diseases (6-7). More recently, national
guidance emphasizes multi-point trigger early-warning
architecture aimed at integrating multiple data sources,
enhancing interoperability, and supporting multi-
agency collaboration (8-9). However, most current
pilot studies and applications rely primarily on report-
based analytics, such as space-time scan statistics,
which identify spatiotemporal clusters but remain
constrained by delayed confirmation, limited data
inputs, and weak predictive power (10-11). These
limitations reduce actionable lead time and restrict
applicability to pathogens with long incubation periods
or non-specific clinical presentations.

Epidemic intelligence explored
statistical, mechanistic models, and machine learning
approaches separately; however, few studies combine
them in hybrid frameworks balancing interpretability
and accuracy (/2-13). Existing studies often lack
interoperability ~ standards and  operator-facing
dashboards, limiting their scalability and usability in
real-world decision-making environments.

To address these gaps, we introduce an open-source
data-driven hybrid modeling system designed to
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complement  China’s national ~multi-point-trigger
early-warning architecture. The system integrates
heterogeneous open and partner-shared signals —
including epidemiological ~reports, digital traces,
mobility, meteorology, and pathogen genomics —
through semantic harmonization and hybrid analytics,
including  seasonality-adjusted  baselines,

detection, mobility- and climate-aware SEIR models,

anomaly

and short-horizon sequence learners. Interoperable
HL7 FHIR-aligned data contracts enable scalable
integration with health, customs, and laboratory
systems (14). While operator-oriented dashboards
follow established design principles for interpretability
and oversight (75). We present the system’s
architecture and pilot evidence across COVID-19 and
severe fever with thrombocytopenia syndrome virus
(SFTSV) and show how the same framework embeds
TB indicators for programmatic use, bridging open-
source data intelligence with the national early-warning
workflow.

METHODS

We selected three pathogen targets to test the
system’s One Health versatility across distinct
transmission modes and timescales: COVID-19 (acute
respiratory  disease requiring rapid community
forecasting), SFTSV (vector-borne disease requiring
ecological integration), and tuberculosis (chronic
disease requiring long-term strategic planning). The
pilot sites were chosen based on disease burden and
data feasibility; for SFTSV, Shandong and Henan
provinces were selected as high-endemicity regions in
China, providing sufficient case volume to validate
vector-driven models. For COVID-19, Yantai was
selected as a representative coastal port city that
experienced distinct waves of local transmission
triggered by importation. This setting offered clear
onset-to-suppression dynamics essential for validating
the community forecasting model’s sensitivity to
intervention measures. The system continuously
ingests  heterogeneous data, performs semantic
harmonization, runs hybrid analytics (statistical
baselines, mechanistic models, and deep-sequence
learners), and emits a calibrated early warning score
(EWS) for operations. Personally identifiable
information was not collected or processed (Figure 1).

Data Sources and Preprocessing
In this study, the term “open-source data” refers to
open-source intelligence (OSINT) and publicly
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FIGURE 1. Workflow from data
dissemination.

ingestion to alert

available datasets that are accessible without
proprietary restrictions. These include official bulletins,
digital signals, meteorological records, and anonymized

mobility data, distinct from internal hospital records or
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confidential line-list data.

Official epidemiology relies on national/provincial
bulletins and WHO/ECDC situation updates; digital
epidemiology integrates multichannel digital traces
such as search engine queries (Baidu Index, Wikipedia
Pageviews), social media discussions (Weibo), and
content from aggregators (Douyin/TikTok China,
Toutiao), all equipped with geotags and temporal
stamps; genomics provides sequence metadata for
pathogen context; context & covariates encompass
human mobility, meteorology, and holiday markers;
and for the vector signal SFTSV, national tick index
surveillance data is digitized from official graphs using
scale-mean abstraction to create daily or weekly
exogenous drivers, with monthly series derived through
calendar aggregation.

Model Development Methodology

In this study, we developed three distinct model
components integrated through a hybrid framework,
with  detailed methodologies provided in the
supplementary materials. The SFTSV model utilizes a
network transmission approach where the vector driver
is approximated by a Fourier series fitted to the
2018-2019 national tick index, assuming stationary
seasonal phenology. For the COVID-19 model, an
agent-based SEIR model was implemented on a
dynamic contact graph; biological parameters were
fixed to literature values to ensure identifiability,
focusing calibration solely on the effective contact
probability. Rifampicin-resistant tuberculosis
(RR-TB) incidence was estimated following the
WHO-recommended mathematical procedure
(Supplementary Table S1, available at https://weekly.
chinacdc.cn). Finally, these outputs were integrated via
hybrid fusion, employing logistic stacking as a meta-
learner to weigh mechanistic and deep learning signals
based on their historical performance.

RESULTS

System-level Alert Performance

Across pilots, the system operated at a pre-specified
threshold tuned for decision utility (PPV constraint >
0.70). Against officially confirmed events, the system
achieved 83.30% sensitivity and 76.90% positive
predictive value (PPV), with a median lead time of
9.30 days before first confirmation. Alerts and
confirmatory timelines are illustrated in the dashboard
traces (Figure 2E-F); adjudication logs indicate that
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most false positives arose from short sub-threshold
anomalies that did not consolidate into confirmed
events (Table 1).

Site-level Forecasting Performance

For SFTSV monthly incidence forecasting in
Shandong and Henan, the model’s predictions closely
tracked observed trends in both provinces, as illustrated
in Figure 3A-B. Using the pre-specified accuracy
metric with bootstrap 95% confidence intervals (CIs),
Shandong (2013-2015) achieved 90.29% accuracy
(95% CI: 85.79%, 93.84%). Henan (2009-2014;
including Xinyang) achieved 89.81% (95% CI:
86.24%, 93.08%).

Peak months and troughs aligned with the
seasonality captured by the mechanistic (tick- and
human-driven) transmission terms, and the model
reproduced the interannual amplitude differences
without overfitting (Figure 2A-B).

In the COVID-19
conducted for Yantai, community-scale forecasts
achieved 92.15% accuracy (95% CI: 86.99%, 93.96%)
under the same definition. In peak-focused validation
with 10,000 simulations (Poisson-drawn initial seeds
within the 95% interval), the model achieved a peak
timing accuracy of 88.43% (95% CI: 88.26%,
88.59%) and a peak magnitude accuracy of 91.16%
(95% CI: 91.04%, 91.30%). The forecast trajectories
and observed counts are shown in Figure 2C-D.

At the PPV-constrained threshold, the median lead
time was 9.3 days (overall). Most detected events had >
7 days’ advance notice; short-lead alerts (<7 days)
clustered in late-season periods with compressed
confirmation cycles (timeline examples in Figure 3E).

Our TB model, adapted from the recurrent
framework of Li (5), closely reproduced historical
trends (R2=O.95 for total incidence, 0.99 for RR-TB
incidence, and 0.82 for TB deaths), with a posterior
mean force of infection of 2.35 per year (95% CI:
1.16, 3.58). Projections to 2030 indicated an incidence
rate of 33.7 per 100,000 (95% CI: 30.80, 38.30),
below Li’s estimate of 44.9 but above the End TB
target of 13, suggesting China’s 2024-2030 goal (43)
is attainable. The model was implemented as an
interactive Shiny application to support visualization
and policy use.

community  forecasting

DISCUSSION

This study demonstrates that the system can
combine diverse open signals with hybrid models to
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FIGURE 2. Model performance across pilots. (A) Monthly SFTSV cases in Henan (2009-2014); (B) Monthly SFTSV cases in
Shandong (2011-2015). (C) Posterior distributions of COVID-19 predicted outcome intervals; (D) Beta-distributed probability
calibration for COVID-19 with 95% confidence intervals; (E) System alerts and official confirmations for true-positive events;
(F) Aggregate detection metrics including sensitivity and positive predictive value.

Abbreviation: PPV=positive predictive value; SFTSV=severe fever with thrombocytopenia syndrome virus; Cl/=confidence
interval; TP=true positive; FN=false negative; FP=false positive; COVID-19=coronavirus disease 2019.

produce calibrated early-warning scores constrained by
positive predictive values, reducing false alerts while
preserving  sensitivity. We tested three pathogen
contexts — COVID-19, SFTSV, and TB — and
observed their practical udility in both acute and
chronic use cases.

Semantic harmonization organized multi-source
evidence into consistent geotemporal units, reducing
ambiguity in sparse or fast-moving events. Hybrid
modeling integrated statistical baselines, mobility- and
climate-aware SEIR models (including a human-tick-
human pathway for SFTSV), and short-horizon
learners to preserve epidemiologic interpretability while
capturing nonlinearity. PPV-constrained probability
calibration translated model outputs into actionable
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alerts, improving resource allocation and limiting alert
fatigue. Together, these choices enabled earlier, more
precise alerts that aligned well with observed trends
without overfitting to site-specific conditions.

Relationship to Prior Work and

Added Value

While frameworks such as EWARS
outbreak management (8-9), their
statutory reports limits their timeliness (6). Previous
studies have often traded interpretability (statistical
baselines) for short-term accuracy (machine learning),
frequently lacking multisource integration. Our system
advances the field by 1) hybridizing statistical,
mechanistic, and sequence-based learners to balance

support

reliance on
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TABLE 1. System- and site-level performance summary.

Detection Median Forecast Peak timing Pe?k
Setting Pathogen Outcome sensitivity PPV, lead accuracy, %  accuracy, % magnitude o R B
granularity % ’ % time, (95% C;) (95% C;) accuracy, % / ¢ SRR=TBincidence " TBdeaths
days (95% CI)
ngrall Mixed Event-level 83.3 769 93
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Yantai, COVID- Community 92.15 88.43 91.16
Shandong 19 time series (86.99, 93.96) (88.26, 88.59) (91.04, 91.30)
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China National
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Note: “=” means no data. The indicators of TB are presented in the form of proportions.
Abbreviation: COVID-19=coronavirus disease 2019; SFTSV=severe fever with thrombocytopenia syndrome virus; Cl=confidence interval;

TB=tuberculosis.
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FIGURE 3. Dashboard (TB). (A) Incidence Trends and Projections; (B) Posterior Parameters and Model Application
Note: The system showed high stability in robustness checks under parameter perturbations.

Abbreviation: TB=tuberculosis.

interpretability with adaptability; 2) integrating open
signals beyond statutory notifications; and 3) achieving
high predictive accuracy and meaningful lead times
relative to uncalibrated systems.

Qualitatively, the hybrid framework offers distinct
advantages over the single-method  baselines.
Mechanistic SEIR models capture long-term seasonal
trends but lag during stochastic onsets, whereas
deepsequence learners offer high sensitivity but lack
epidemiological ~ transparency. By fusing these
approaches, our system stabilizes forecasts during peaks
while improving sensitivity during early onsets.
Quantitatively, the system demonstrated a median lead
time of 9.3 days relative to official confirmation. Given
the inherent reporting lags in traditional passive
surveillance (7), this represents a substantial window
for pre-emptive intervention.

Pathogen Landscape Perspective
A modular design allows flexible application across
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pathogen contexts. The same framework generates
outbreak alerts for COVID-19 and SFTSV while
embedding TB analytics to strengthen screening and
continuity of care. This adaptability enables emergency
response and long-term control through a unified
operational surface.

Operational utility differs across pathogen types. For
acute outbreaks, such as COVID-19 and SFTSV, the
system functions as a tactical early-warning tool,
issuing short-horizon alerts (lead time <14 days) to
trigger immediate containment measures such as
targeted screening or vector control. For chronic
diseases such as TB, the system serves a strategic
forecasting function, projecting long-term trends (e.g.,
to 2030) to guide resource allocation and policy target
setting. This multimodal capability aligns with the
tiered surveillance architecture advocated in recent
national guidance on intelligent multi-point trigger
systems (8-9).
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Implications for Public Health Practice

Embedding such a system into an operational setting
can accelerate detection, improve the allocation of
quarantine and laboratory resources, and better align
vector control with clinical responses during high-risk
periods. These functions align with national guidance
on building a multipoint-trigger early-warning
architecture (8-9) and with international calls to
strengthen public health forecasting (12). The system
also benefits from interoperable data contracts, such as
HL7 FHIR, which facilitate scalable integration across
health, customs, and laboratory agencies (14), as well
as operator-oriented dashboards designed for real-time
decision support (/5). In the short term, priorities
include regular recalibration, expanded data exchange
with partner agencies, and the incorporation of
operator feedback loops. In the medium term,
multisite evaluations are required to provide robust
evidence of improved timeliness and efficiency.

First, data-related issues exist in multiple aspects.
Digital traces are susceptible to “media noise”, and
smartphone-derived mobility data may underrepresent
the elderly. Meanwhile, meteorological data face
spatiotemporal alignment challenges. Second, there are
ecological and modeling-related constraints. The
national tick index has limited local granularity in
terms  of  ecological  constraints.  Structural
simplifications, ~assuming uniform mixing for
COVID-19 or simplified vector-host cycles for
SFTSV, may overlook microenvironmental
heterogeneity.  Finally, there are coverage and
parameter-related  problems. Pilot coverage was
geographically limited, and parameter uncertainty
persists as PPV thresholds need recalibration and TB
models depend on uncertain latent progression
parameters.
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SUPPLEMENTARY MATERIAL

DATA PROCESSING LAYER CONSTRUCTION

As illustrated in the Processing Layer of Figure 1, the system follows a two-stage construction protocol. 1)
Automated Data Collection: Built on a Browser/Server (B/S) architecture, utilizing timed task collection modules to
continuously ingest data via public APIs and web-scraping interfaces. 2) Data Cleaning & Preprocessing: Raw
inputs undergo a standardized pipeline: 1) Format Normalization parses heterogeneous text/JSON into structured
schemas; 2) Timestamp Alignment synchronizes all records to UTC+8; 3) Duplicate Removal eliminates redundant
entries via hash matching; and 4) Quality Assurance Protocols (e.g., winsorization) filter outliers to ensure data
integrity. Source-region normalization was performed using a Z-score with a small ridge.

Xs.tr — Ms,r

Xyt = AT (M

MODEL DEVELOPMENT METHODOLOGY

SFTSV Network Transmission Model (Human-Tick-Human)
Tick Index as a Seasonal Driver: A Fourier series approximates the tick indexTickIndex(#)to capture the annual
and biannual cycles:

TickIndex(#) = Ay + A; sin(wz) + B, cos(wi) + A, sin(2ws) + B, cos(2w?) )
estimated using the nonlinear least-squares method. This driver transmits the force of infection from the tick into
a human channel.

The monthly observed incidence {¥;},.; was modeled as a Poisson variable, with the mean A,(f) implied by the
state equations:

Y, ~ Pois(A4(6)),

log £(6) = ilog(Pois(Yk | As) +1077). )

=
where the small constant prevents numerical underflow. Posterior computation uses a grid/maximum A Posteriori
(MAP) strategy with log-posterior stabilization:

P(6 | D) o exp (log P(D | 6) + log P(6) — maxy log P(D | ")) 4)
followed by normalization and MAP selection. Sensitivity checks use a random-start local search over the prior
box.

We utilized 2018-2019 national tick surveillance data to derive a normalized seasonal function of vector activity.
The use of this later-period index to drive the historical model (2009-2015) is consistent with long-term
epidemiological observations, indicating that vector phenology follows relatively stable annual cycles driven by
climatic factors. Based on this, we assumed that the seasonal shape remained stationary, while allowing the
transmission amplitude to fit dynamically to the observed incidence in each year.

COVID-19 Community Network Model (agent SEIR on Dynamic Contact Graph)

Resident Classes: Residents were grouped according to mobility patterns: 1) fixed workplace/school (regular,
high-frequency travel), 2) no fixed workplace/retired/home-based (variable patterns), and 3) low mobility
(elderly/children).

Graph construction. Each household is a node with attributes (demography, mobility propensity). Edges
represent residential proximity (within unit/building/compound). During simulation, edges are dynamically
augmented by co-presence in venues (workplace/school, transit, shops/parks/clinics), forming a time-varying
multilayer graph.

A semi-mechanistic approach was adopted to ensure parameter identifiability. Biological parameters were fixed
based on established literature: the mean latent period was set to 5.2 days and the infectious period to 5.8 days.
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Agents transitioned between compartments (Susceptible-Exposed-Infectious-Recovered) based on these fixed
intervals and a time-varying force of infection derived from the dynamic contact graph. Consequently, the model
calibration focused solely on estimating the effective contact probability (5,) and the initial seed size, thereby
reducing dimensionality and preventing overfitting.

Estimation of Incidence of RR-TB (Rifampicin-Resistant Tuberculosis)
Total tuberculosis incidence 7(7) was obtained from the compartmental model as
](t) = wfmt : Efa:t(t) + Wilp * E:vlow(t) t+p- R(t) (5)

We then applied the mathematical procedure recommended by the World Health Organization to derive the
incidence of rifampicin-resistant (RR) TB, expressed by the following equation:

1,(2) = (1 = ) - prea?) - (1= {2)) + 12) - prrrs) + f red?)] (6)

Deep sequence Learners and Fusion
Parallel sequence models (LSTM/temporal CNN) use multistream inputsX, ;(normalized signals, recent cases,
mobility, and meteorology) to predict /-step-ahead counts:

_5’t+}1,z‘ = gw([)(t—wﬂ,z'a e 7‘Xt,i]) (7)
trained with a Huber loss and correlation-promoting regularizer:
T =Y L(yiges) = Aeorr (1. 51.) ®)

i
Outputs from statistical baselines, mechanistic models, and learners were Platt-scaled to calibrated probabilities

p(;;l) and fused by logistic stacking.

Pr(event,, =1) =0 (ozo + Z ozmlogitpg';)) 9)

m

An EWS combines stacked risk with anomaly flags:
EWS,; =) w,p") +m{S,; > b} +n, max(Z,,, 0), (10)

and triggers when EWS,; > 7. Threshold 7 is tuned to maximize F under a minimum PPV constraint (PPV>
0.70) using rolling-origin evaluation.

The logistic stacking layer functions as a meta-learner that assigns dynamic weights to the component models
based on their historical validation performance. This mechanism is designed to reconcile conflicting signals; for
instance, the system tends to assign higher weights to mechanistic SEIR outputs during stable seasonal periods
(capturing regular trend lines), while upweighting digital signals and deep learners during irregular onset phases,
where statistical anomalies precede official reporting. This dynamic weighting strategy aligns with the principles of
ensemble model averaging, in which component models are weighted according to their predictive performance in
specific contexts.

Semantic Harmonization and Knowledge Graph
An NLP pipeline performs named-entity and relation extraction over unstructured text and bulletins and
mapping to controlled vocabulary (disease/syndrome, host/vector, place, and intervention). Entities and relations
populate a knowledge graph G=(V,E) that 1) resolves aliases and administrative hierarchies
(district—city—province), 2) stores provenance, and 3) serves efficient retrieval for modeling features and operator

dashboards.

Statistical Baselines and Anomaly Detection
Syndromic/aggregate counts Y,, are modeled using a seasonality-adjusted quasi-Poisson Generalized Linear
Model (GLM) with trend and holiday effects; standardized residuals feed a one-sided Cumulative Sum (CUSUM)
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to generate anomaly evidence:

Y,, ~ QP(\,,), log \,, = Bo + Bit+ feas(f) + 7 H, + 6, (11)
Yt,r - xlﬂ

Zyy= ——, 5, =max{0, 5,1, + Z , — k},alert if§,, > b (12)
Var(Y,,)

SFTSV Network Transmission Model (Human-Tick-Human) Calculation Details
Human-tick-human force of infection. Let S,, E,, 1, R,, D, denote human compartments, N, = S, + E, + I, + R, The
total infection pressure is the sum of tick to human and human to human components:

S, AW/
A = ,B,h(t)ﬁ’TickIndex(r) + B,(1) ﬁ (13)
t t
Seasonal/behavioral modulation of transmission:
Bul#) = 10",
b, sin(a,£/365 + 27¢[365) + 1 (14)

ﬂ,t/v(t) =10 P
where f8',,(#) absorbs the proportionality constant K between the observed tick index and effective contacts (only
B',(2) is estimated).
State evolution (discrete-time):

S =8— A,
En=E+)\-0E,
Ly =1+ 0E, — pl, - 41, (15)

Ry =R +0I,
D,y = D, + pl,.
Here o is progression from exposed to infectious (latent-to-infectious rate), J is recovery, p is disease-induced
mortality (fixed from guidelines/meta-analysis as literature-based constants for the baseline run).
Bayesian parameter estimation. We estimate 6, b, o, ¢ under weakly informative uniform priors (reflecting
seasonality and scale).
b, ~ Unif(-10, —6),
b, ~ Unif(-10, —6),
a; ~ Unif(5.98, 6.61),
¢ ~ Unif{10, 100).

(16)

COVID-19 Community Network Model (agent SEIR on Dynamic Contact Graph)

Calculation Details
Two transmission phases. Phase-1 (lockdown/home isolation), housechold droplets and environment/aerosol
exposures dominate; Phase-2 (reopening) includes venue-specific contacts (work/school, transit, leisure). Let N;'™
represent household neighbors, M venue types, ¢,(#) expected contacts, and 7,,(#) time fraction in the venue m;n
vaccine effectiveness (susceptibility reduction). The probability of infection for node i on day # is modeled as:

AN =1= (1= 0) exp(=pent™ () TT (1= phome () = 1}), (17)

M . . home
no env. infection JEN]
.

no household infection

A0 =1- (1= n) expl=penvni(d) [T (1= promelfld) = 1) TT (1= p,,) . (18)

je j\[’ home meM

Here, p. is the per-contact transmission probability, and 7 denotes the time in the environment. The state
evolution follows the agent-level SEIR with daily updates.
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Xi(e) € {S, £, 1, R},

PriX(r +1) = E| Xi(z) = §} = p{2),
Pr{X(¢+1) = 1| X(s) = E} = 0,
PriXi(t+1) = R| Xi(t) = I} = .

(19)

and vaccination acts as a multiplicative susceptibility reduction (1-7). For network-level inference, a
cavity/percolation recursion approximates the probability that infection does not traverse edge j = 7 up to time #

Yol = T [1=Ball = dusile=1))],

kENT()i

) =1= [ [ [1= Byl = i)

JEN)

(20)

which improves stability on large graphs.

Estimation of Incidence of RR-TB (Rifampicin-Resistant Tuberculosis) Calculation

Details

Tuberculosis natural history. The compartmental model employed to represent the natural history of TB largely
replicates the structure proposed by Li et al., with only minor modifications. We reimplemented the model in Stan,
a probabilistic programming language written in C++, to situate the analysis of tuberculosis and other infectious
diseases within a coherent Bayesian framework. This model distinguishes between two latency pathways: fast (£,)
and slow (Egpoy). As no consensus on the definition of fast-progressing latent infection exists in the literature, we
adopted the progression parameters reported by Menzies et al., which are also used by the WHO. The annual rate of
progression from the fast-progression latent compartment to active tuberculosis (wy) was set at 0.0826 per person-
year, whereas the corresponding rate for the slow-progression latent compartment (wg,) was fixed at 0.0006 per
person-year. Disease status was classified into two groups based on the WHO guidance issued in 2013: newly
diagnosed TB (/,.,,) and retreated TB (7,,). Although the 2024 WHO revision refers to the latter category as being
re-registered for treatment, the retreated designation was retained in the present analysis. Future iterations of the
model will adopt the updated terminology. Individuals who were cured or completed their treatment were
transferred to the compartment, represented as recovery (R). Individuals in compartment R remain at risk of
recurrence and can return to an infectious state (Z,,). The model equations are as follows:

dS S(]nfw + Irfz)
ZZRAR L
A Sy + L)
A =(1-g)- ﬂTt = Whet * Epyy = M+ Epy,
dE;low S([new + ]ret)
— =& 6— = Wlow * Exlow -M- Eslaw»
dé[lt o (21)
dn;w = Wast * Eﬁ’ff + Welpw * ES/ow - (M+ CFRnew) : [new = Nnew * [new _f;lew . [m’wv
dlr@[
1 =t Dew * few Ly + P R= (M+ CFR.) * Ly = Nyt * Lyess
dR
Z :77m»w']new+77m']m—M'R—p~R.

Data flux and model calibration. Gao et al. estimated that the prevalence of LTBI in China in 2013 was 18.08%,
corresponding to approximately 247 million infections. Houben and Dodd estimated that there were 350 million
infections in China in 2014. We rely on the estimation conducted by Gao et al. because it is derived from large-scale
empirical data collected in China and, therefore, aligns more closely with the study population and methodological
framework. Therefore, our model-fitting starting point was set to 2013.

Robustness Checks
The performance estimates were stable in the rolling-origin evaluation under small perturbations of priors for the
SFTSV transmission modifiers and venue contact parameters for COVID-19. Bootstrap confidence intervals
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SUPPLEMENTARY TABLE S1. RR-TB calculation parameters and explanations.

Description Definition Value

Birth rates were modelled using logistic regression.
. B
logit (B) =In 1B = 5073 + bpt
B Birth rate Differentiating the implied logistic curve with respect to time gives the
corresponding ordinary differential equation
‘;—f — byB (1 B)
Background mortality rates were modelled using logistic regression.
logit (,/W) =1In m = bO,M ar bMt
M Background mortality rate Differentiating the implied logistic curve with respect to time gives the
corresponding ordinary differential equation

D ppM (1~ M)

dt
B8 Transmission rate Calibrated to match epidemiological data, with uniform priors [0, 30].
P Proportl(?ln of |:1fected |nt.j|V|duaIs that transition into the Fixed, 0.91
slow" progression LTBI compartment
The annual rate of progression from the "fast" .
Wiy .
fost progression LTBI to active TB. Fixed, 0.0826
The annual rate of progression from the "slow" .
o progression LTBI to active TB. FCe g
CFR,y Case fatality rate for newly diagnosed patients Calibrated to match epidemiological data, with uniform priors [0, 0.2].
CFR,; Case fatality rate for retreated patients Calibrated to match epidemiological data, with uniform priors [0, 0.2].
. ) Region varying.
Nnew Treatment success rate for newly diagnosed patients For China, the overall value was 0.94.
. Region varying.
Nrer Treatment success rate for retreated patients Bor ElhlineL i vl vl e s S,
. . . Region varying.
Fruew Treatment failure rate for newly diagnosed patients For China, the overall value was 0.0227.
. . Region varying.
fret Treatment failure rate for retreated patients For Sl e avaEll vele ves DA,
p Overall recurrence rate Region varying.
For China, the overall value was 0.0047.
(0 The proportion of recurrent cases out of the sum of new Computed from Fg(et )model as
' and recurrent cases at time z. r(t) = pIT
The cumulative risk that an incident case undergoes a
f non-relapse retreatment, defined as retreatment frew Was used as a proxy for f.
following treatment failure or return after default.
Different from the methods used by WHO, we constructed logistic
) The estimated proportions of RR-TB among newly regression to estimate the proportions.
Prew diagnosed patients at time . 10git (prew (£)) = In Prew (1) -b +bot
new 1 — Prew (t) 0, new new
Different from the methods used by WHO, we constructed logistic
rel) The estimated proportions of RR-TB among retreated regression to estimate the proportions.
ret H 1 rei Z
patients at time . logit (p,: () = In Pl 2y =Dbo,per + brost
1 ~ Pret (t)
The risk of RR-TB in recurrent cases relative to
PRRTB

. Calibrated to match epidemiological data, with uniform priors [1, 10].
previously untreated cases.

Abbreviation: LTBI=latent tuberculosis infection; TB=tuberculosis.

overlapped across sites, and alert metrics were consistent when restricted to weeks with complete multisource
coverage.

Uncertainty Quantification
We addressed the parameters and predictive uncertainty using distinct approaches tailored to each model
component. For the mechanistic SFTSV and TB models, we employed a Bayesian framework and reported
parameter estimates with 95% credible intervals (Crls) derived from the posterior distributions. For the COVID-19
community model and deepsequence learners, where analytical posteriors were intractable, we utilized bootstrap
resampling (/V=2,000 iterations) to generate 95% confidence intervals (CIs) for all predictive horizons.
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Evaluation Plan

Event Matching and Definitions: An ‘event match’ was defined as a system alert (EWS > threshold) occurring

within a 14-day window preceding the official confirmation date of a case cluster. To account for confirmation
delays, the official date was adjusted by subtracting the median reporting lag (2 days for COVID-19 and 5 days for
SFTSV) derived from the historical NIDRIS data. Multiple alerts triggered within a single window were aggregated
into a single ‘detected event’ to prevent double-counting. Forecast agreement (SFTSV monthly): Accuracy was
defined as (1-NMAE) x100% with 95% bootstrap Cls. Although standard statistical evaluations typically use
RMSE or MAE, we adopted this percentage-based metric to facilitate intuitive interpretation by public health
operators. This choice prioritizes communicative utility in operational dashboards over strict statistical conventions,
which is consistent with the user-centered design principles in public health surveillance.

S6

CCDC Weekly /Vol.8/No. 8

Sensitivity = — 1P
ensitivity = 5=
TP
PPV = TP + FP’
N

Speciﬁcity = m

. 1 2
Brier = 7 Z(Pt,i _)’t,i)
1

~ 3 =l
k=1

NMAE = max(y) — min(y)’

Accuracy = (1 - NMAE) x 100%.

(22)

(23)

24
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