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Tuberculosis — Henan Province, China, 2024
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ABSTRACT

Introduction: We explored risk factors for latent
tuberculosis infection (LTBI) and developed a risk
prediction model using machine learning algorithms.

Methods: Patients with active pulmonary TB in
months 3 to 6 of anti-TB treatment in Henan
Province, China, July—September 2024 were selected as
index Close contacts identified through
epidemiological investigation underwent tuberculin-
purified protein derivative testing to determine LTBI
status. Face-to-face questionnaires were conducted to
collect epidemiological data. The dataset was divided

cases.

into training and testing sets (6:4), using a fixed
random seed. Five models — logistic regression (LR),
decision tree (DT), random forest (RF), support vector
machines (SVM), and multilayer perceptron (MLP) —
were trained and evaluated using the mean squared
error (MSE) and coefficient of determination. The test
set was subjected to external validation. Receiver
operating characteristic curve analysis, area under the
curve (AUC), and Fl-scores were used to quantify
predictive performance.

Results: Among 795 close  contacts, LTBI
prevalence was 401 (50.5%). By MSE, models ranked:
SVM (0.121), RF (0.165), DT (0.197), LR (0.229), and
MLP (0.233). SVM identified five key predictors:
contact type of index case, key population classification,
residential area, frequency of participation in group
activities, and etiological results. Internal validation
showed strong performance (AUC=0.921, F1=0.858),

whereas  external  validation showed  moderate
performance (AUC=0.752, F1=0.694).
Conclusion: The SVM  model incorporating

contact type of index case, key population
classification, residential area, frequency of group
activity ~ participation, and  etiological  results
demonstrated robust predictive value for LTBI risk.
This model shows promise for the targeted screening
and management of high-risk populations.
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Latent tuberculosis infection (LTBI) refers to a

chronic immune response to  Mycobacterium
tuberculosis antigens, without clinical or radiological
evidence of active tuberculosis (ATB) (/). Prophylactic
treatment of LTBI plays an increasingly pivotal role in
TB control. It is estimated that 23% of the global
population has LTBI (2), and the overall disease
burden is relatively high in China. LTBI is a potential
reservoir for ATB, with 5%—10% of the LTBI cases
Therefore, LTBI

treatment directly affects the global prevention of

progressing to active disease.
future TB infections. LTBI research largely relies on
screening  high-risk  populations and  developing
targeted treatment strategies (3). Examining families
and other close contacts of patients with ATB is
warranted for the identification and management of
LTBI (4-6).

Machine learning techniques such as support vector
machines (SVM), random forest (RF), and artificial
neural networks have been widely used in disease
monitoring, diagnosis, and prognosis. These methods
effectively detect novel patterns within existing
datasets. In LTBI prediction, machine learning helps
identify risk indicators that may remain undetected
using conventional statistical approaches.

In this study, a survey and analysis of the close
contacts of patients with TB in Henan Province were
conducted. Five machine learning methods, namely,
SVM, RE, decision tree (DT), logistic regression (LR),
and multilayer perceptron (MLP), were used to predict
LTBI. Their predictive accuracies were systematically
compared to identify the optimal LTBI prediction
framework. Furthermore, targeted interventions were
proposed for high-risk populations identified using the
best-performing model, enabling a proactive shift in
TB prevention and control strategies.
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METHODS

This study used a univariate logistic regression
analysis for variable screening. Based on the 10 events
per variable criterion, which requires a minimum
sample size of 10-15 times the number of variables, 19
factors were analyzed. The estimated incidence of
LTBI among close contacts of patients with pulmonary
TB was approximately 30%. Therefore, the minimum
number of required outcome events was 10x19=190.
Consequently, the calculated minimum sample size
was 190/0.3=634 participants. Allowing for 20% loss
to follow-up, 760 close contacts were enrolled. To
facilitate enrollment, the final target sample size was set
to 800.

Index cases were identified through the Tuberculosis
Management Information System (the China Disease
Control and Prevention Information System) as
patients with ATB in Henan Province receiving
treatment for 3—6 months in 2024. LTBI was defined
as individuals who shared the same residence for at
least 7 days with an ATB patient during the period
from 3 months before the patient’s diagnosis to 14
days after diagnosis, and showed a strongly positive
purified protein derivative (PPD) test result. Non-
LTBI individuals were defined as those who were ruled
out for both active and latent TB infection, with no
more than one non-LTBI subject enrolled per patient
as a study participant. A PPD test was performed
according to the Chinese Guidelines for Preventive
Treatment of Tuberculosis and the PPD results were
recorded after 72 h. For PPD>10 mm, ATB is ruled
out based on the clinician’s diagnosis, and the
individual is determined to have latent TB infection.
For PPD<10 mm, if active and latent tuberculosis
infection are ruled out based on the clinician’s
diagnosis, the individual is classified as having a non-
latent infection. LTBI cases were household contacts of
patients with ATB (exposure>7 days between 3
months pre- and 14 days post-diagnosis) with a
strongly positive PPD test. Non-LTBI controls were
excluded for both ATB and LTBI, with up to one
control enrolled per patient. Close contacts of these
index cases were recruited after written informed
consent was obtained. After excluding individuals
owing to employment-related migration, refusal to
participate, or incomplete data during the field
investigations, 795 close contacts were finally included.
All contacts underwent tuberculin PPD testing and TB
screening and completed structured questionnaires at
designated TB care facilities. Questionnaire-derived
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variables and system-recorded clinical parameters of the
index cases were analyzed as potential predictors of
LTBI among close contacts.

The Delphi method was used to design the two
structured questionnaires. First, the Index Case
Questionnaire  was  completed by  designated
institutions based on medical records including
demographic, diagnosis, and treatment information.
The second questionnaire was completed by the
investigator during in-person interviews with close
contacts, supplemented by medical records retrieved
from the case-reporting information system. The
included  questions  regarding
sociodemographic  characteristics, lifestyle habits,
exposure history, and TB-related knowledge. If close

questionnaire

contacts were unable to participate because of physical
limitations, family members or guardians completed
the questionnaire on their behalf. Provincial TB
institutions  conducted  city-level ~ data
verification, followed by double data entry using Epi
Data 3.1 software (EpiData Association, Odense,
Denmark). The finalized databases were securely

control

transmitted to provincial authorities via encrypted
emails.

A database was established using EpiData 3.1, with
data collected in Microsoft Excel (Microsoft Office
Home and Student 2019, Microsoft Corporation,
Redmond, USA). Data analysis was conducted using
SPSS Modeler (version 18.0; IBM Corp, Armonk, NY,
USA) and SPSS 27.0. Qualitative data were analyzed
using the chi-squared test followed by univariate
logistic regression analysis. Machine learning models
including SVM, RF, DT, MLP, and LR were
developed to predict LTBI. The model performance
was evaluated using the mean squared error (MSE) and
coefficient of determination (R?). A lower MAE and
higher R? indicated superior predictive accuracy. The
predictive values of these models were further assessed
using receiver operating characteristic (ROC) curves
and Fl-scores, with external validation of the test set.
The MSE, R2, and area under the ROC curve (AUC)
were calculated using SPSS 27.0, integrated with
Python 3.12. A two-tailed test was applied, with
statistical significance set at o =0.05.

RESULTS

Baseline Characteristics of Close Contacts
After  excluding  individuals ~ with  missing
information owing to migrant work or refusal to
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participate in the field investigation, 795 close contacts
were included. LTBI accounted for 50.44% (n=401) of
the close contacts. Significant differences (P<0.05)
were observed between the LTBI and non-LTBI
groups in terms of marital status, educational level,
occupational type, residential area type, per capita
living space, household registration type, annual
household income, frequency of participation in group
activities, type of contact with index cases, Bacille
Calmette—Guérin (BCG) scar, weekly frequency of
sleep deprivation, population classification of index
cases, key population classification of index cases, and
etiological results of index cases (Table 1).

Construction of Machine Learning

Algorithm Models

Using LTBI status (binary outcome) as the
dependent variable and those with statistical
significance from the univariate analysis (Supplementary
Table S1, available at https://weekly.chinacdc.cn/) as
independent variables, the dataset was divided via a
random seed method into training and test sets in a
6:4 ratio. Risk prediction models were developed
using the following algorithms: LR: Binomial logistic
regression with forward stepwise selection. DT: C5.0
algorithm with default pruning parameters. RF: 100
decision trees (7,,..=100) with Gini impurity used for
node splitting. SVM: Regularization parameter set to
10, and regression precision tolerance=0.1. MLP:
Automatically determined number of hidden layer
neurons, hyperbolic tangent activation function for
hidden layers, and softmax activation for the output
layer.

Efficiency Analysis of Machine

Learning Models

The corresponding evaluation metrics were
calculated using Python 3.12. MSE and R? were used
to evaluate the prediction accuracy of the models
generated using each classifier algorithm. MSE was
used to measure the model's prediction error by
calculating the square of the difference between the
predicted and true values averaged across all samples. A
smaller MSE suggests a better prediction performance.
R? measures the variance in the dependent variable
accounted for by the model, suggesting its goodness of
fit. The R? values vary between 0 and 1, with values
closer to 1 indicating a superior fit and better
explanatory ability.

Models with a lower MSE and higher R? were

Chinese Center for Disease Control and Prevention

deemed more precise. The prediction accuracies in
descending order were as follows: SVM, RF, C5.0 (DT
model), LR, and MLP. Classifier performance was
further evaluated using sensitivity, specificity, and
with  higher values indicating better
performance. The SVM model outperformed the other
algorithms in terms of these metrics (Table 2).

accuracy,

Machine Learning Model Verification

The AUC and Fl-scores were used as the overall
evaluation metrics to assess the model performance.
The AUC is used to measure the overall discriminative
performance of the classifier. The AUC value ranges
from 0 to 1, with values closer to 1 suggesting better
model performance. An AUC value of 0.5 indicates
that the predictive ability of the model is equivalent to
random guessing. The closer the ROC curve is to the
upper left corner, the better the predictive value.

The Fl-score is the reconciled average of precision
(positive predictive value) and recall (sensitivity),
offering a comprehensive measure of performance. In
the case of an imbalanced dataset, the F1 score
accounts for both false positives and false negatives.
The score ranges from 0 to 1, with higher values
indicating better comprehensive performance.

In this study, the SVM model achieved the highest
performance in terms of both AUC and F1 scores, with
values of 0.921 and 0.858, respectively, for internal
validation, and 0.752 and 0.694, respectively, for
external validation. Overall, the SVM model exhibited
the best predictive performance (Supplementary
Table S2, available at https://weekly.chinacdc.cn/).

As shown in Figure 1, the SVM model consistently
yielded higher ROC curves in both the training and
test datasets, indicating its superior classification
performance compared with the other models. The
overlapping ROC curves of the MLP and LR models
suggest comparable performance. Notably, the RF and
C5.0 DT models demonstrated divergent trends; in the
training set, RF outperformed C5.0, whereas in the test
set, C5.0 outperformed RF. This difference could be
attributed to the small sample size of the test set.

The SVM-based LTBI risk-prediction model was
developed using variables relevant to the univariate
analysis. Repeated model iterations demonstrate stable
variable importance rankings without considerable
fluctuations. The training set showed 85.9% accuracy,
and the test set showed 68.3% accuracy (Table 2).

The top five predictors of LTBI onset, ranked by
variable importance, were: 1) type of contact with the
index case (14.76%); 2) key population classification of
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TABLE 1. Comparison of the baseline characteristics of close contacts.

LTBI Composition  non-LTBI Composition

Variant (n=401) __ratio (%) (n=394) ratio (%) OR (95% CI) P VIF
Sex 0.985 1.482
Male 157 39.2 154 39.1
Female 244 60.8 240 60.9 0.997 (0.750, 1.326)
Age groups (years) 0.065 1.487
15-18 12 3.0 11 2.8
19-60 312 77.8 280 71.1 1.021 (0.444, 2.352) 0.960
>60 77 19.2 103 26.1 0.685 (0.287, 1.635) 0.394
BMI (kg/m?) 0.971  1.111
18.5-23.9 228 56.9 227 57.6
<18.5 19 4.7 19 4.8 0.996 (0.514, 1.930) 0.990
>24 154 38.4 148 37.6 1.036 (0.774, 1.386) 0.812
Marital status <0.001 1.679
Unmarried 81 20.2 30 7.6
Married 310 771 350 88.8 0.328 (0.210, 0.512)  <0.001
Divorced/widowed 10 25 14 3.6 0.265 (0.106, 0.659) 0.004
Education level <0.001 1.599
lliterate 36 9.0 41 104
Primary/junior high school 185 52.5 232 58.9 0.908 (0.558, 1.479) 0.699
High school and above 180 37.9 121 30.7 1.694 (1.024, 2.803) 0.040
Careers <0.001 1.338
Other 84 20.9 97 24.6
Farmer 163 40.6 210 53.3 0.896 (0.627, 1.280) 0.547
Student/teacher 77 19.2 24 6.1 3.705 (2.152, 6.379)  <0.001
Healthcare/detainee 19 4.7 7 1.8 3.134 (1.256, 7.822) 0.014
Homemaker/unemployed 58 14.5 56 14.2 1.196 (0.748, 1.912) 0.455
Labor intensity 0.488 1.350
Light 261 65.1 248 62.9
Moderate 128 31.9 138 35.0 0.881 (0.655, 1.186) 0.655
Heavy 12 3.0 8 2.0 1.425 (0.573, 3.546) 0.573
Residence type 0.019 1.508
Rural 206 51.4 235 59.6
Urban 195 48.6 159 40.4 1.399 (1.057, 1.853)
Per capita living area (m?) <0.001 1.505
>20 320 79.8 349 88.6
<20 81 20.2 45 114 1.963 (1.323, 2.913)
Household registration type <0.001 1.298
Local residence 319 79.6 349 88.6
Migrant population 82 20.4 45 1.4 1.994 (1.344, 2.956)
Annual household income (CNY) 0.032 1.362
<30,000 179 44.6 204 51.8
30,000-50,000 143 35.7 107 27.2 1.523 (1.105, 2.100) 0.010
>50,000 79 19.7 83 21.1 1.085 (0.751, 1.567) 0.665
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Continued
Variant (nL=1:‘.?)I1) c"r':t'i’:f;;i)“ “(:';';'92?' c"r':t'i’:?;i)“ OR (95% Cl) P VIF
Exposure to dust 0.489 1.355
No 382 95.3 371 94.2
Yes 19 4.7 23 5.8 0.802 (0.430, 1.498)
Daily ventilation frequency 0.063 1.180
0-1 time 118 29.4 106 26.9
2-3 times 89 22.2 93 23.6 0.860 (0.581, 1.272) 0.449
>3 times 190 47.4 180 45.7 0.948 (0.680, 1.322) 0.754
None 4 1.0 15 3.8 0.240 (0.077, 0.744) 0.013
Frequency of group activity participation per week <0.001 1.763
Low 259 64.6 321 81.5
Moderate 87 21.7 61 15.5 1.768 (1.226, 2.549) 0.002
High 55 13.7 12 3.0 5.681 (2.979, 10.833) <0.001
Contact type <0.001 2.578
Household 292 73.7 348 90.2
Neighbor 13 3.3 10 2.6 1.549 (0.670, 3.585) 0.306
Relative 16 4.0 15 3.9 1.271 (0.618, 2.615) 0.514
Colleague/classmate 56 141 7 1.8 9.534 (4.280, 21.240) <0.001
Other 19 4.8 6 1.6 3.774 (1.488, 9.574) 0.005
Health education received 0.996 1.247
Yes 225 56.1 221 56.1
No 176 43.9 173 43.9 0.999 (0.755, 1.322)
BCG scar <0.001 1.150
Present 314 78.3 263 66.8
Absent 87 21.7 131 33.2 0.556 (0.405, 0.764)
Smoking status 0.312 1.106
Never 179 44.6 202 51.3
Occasional 5 1.2 6 1.5 0.940 (0.282, 3.134) 0.920
Frequent 75 18.7 56 14.2 1.511 (1.013, 2.256) 0.043
Quit smoking 10 25 8 2.0 1.411 (0.545, 3.652) 0.478
Passive smoking 132 32.9 122 31.0 1.221 (0.888, 1.678) 0.218
Weekly frequency of sleep deprivation <0.001 1.291
None 242 60.3 291 73.9
1-2 times 56 14.0 48 12.2 1.403 (0.920, 2.138) 0.115
3-5 times 53 13.2 35 8.9 1.821 (1.150, 2.884) 0.011
>5 times 50 125 20 5.1 3.006 (1.742,5.189)  <0.001
Comorbidities 0.867 3.256
None 310 77.3 308 78.2
One 75 18.7 67 17.0 1.112 (0.772, 1.603) 0.568
Two 12 3.0 15 3.8 0.795 (0.366, 1.726) 0.562
Three or more 4 1.0 4 1.0 0.994 (0.246, 4.008) 0.993
Index case variables (source of infection status)
Sex 0.942 1.103
Male 292 72.8 286 72.6
Chinese Center for Disease Control and Prevention CCDC Weekly / Vol.8/No. 3 75
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Continued
Variant (nL=T4?)I1) C"r’:t?:?;if“ “(‘;’:;'QT“?' C"r’:t'?:fgif“ OR (95% ClI) P VIF
Female 109 27.2 108 274 0.989 (0.724, 1.351) 0.942
Occupation <0.001 1.462
Other 24 6.0 28 71
Farmer 232 57.9 270 68.5 1.002 (0.565, 1.778) 0.993
Student/teacher 88 21.9 36 9.1 2.852 (1.461, 5.568) 0.002
Homemaker/unemployed 52 13.0 60 15.2 1.011 (0.523, 1.956) 0.974
Healthcare worker 5 1.2 0 0.0 >100 0.999
Key population classification <0.001 1.591
No 261 65.1 304 77.2
Diabetes 41 10.2 44 11.2 1.085 (0.688, 1.713) 0.725
Silicosis 9 2.2 6 1.5 1.747 (0.614, 4.973) 0.296
School or childcare staff 79 19.7 36 9.1 2.556 (1.667, 3.919) <0.001
Other 11 2.7 4 1.0 3.203 (1.008, 10.179) 0.048
Diagnosis delay 0.063 1.178
No delay 155 38.7 178 45.2
Delayed 246 61.3 216 54.8 1.308 (0.986, 1.735)
Treatment category 0.179 1.119
New case 356 88.8 361 91.6
Retreatment case 45 11.2 33 8.4 1.383 (0.862, 2.218)
Etiological results 0.027 1.126
Negative/not tested 96 239 122 31.0
Positive 305 76.1 272 69.0 1.425 (1.042, 1.950)

Note: Bold number means statistical significance.

Abbreviation: OR=odds ratio; Cl=confidence interval; BCG=Bacille Calmette—Guérin; CNY=Chinese Yuan; LTBI=latent tuberculosis

infection; VIF=variance inflation factor.

the index case (12.36%); 3) residential area of close
contacts (12.02%); 4) frequency of participation in

group activities (11.25%); 5) etiological results of the
index case (10.47%) (Table 3).

Result Interpretation

Through multi-factor logistic regression analysis, the
factors output by the SVM were interpreted. The
results showed that the index case was a classmates or
colleagues, the index case being a key population with
diabetes or silicosis, high frequency of group activity
participation per week, the index case having positive
etiological results, annual income exceeding 50,000
Chinese Yuan, sleep deprivation more than five times a
week, and having scars were risk factors for the
occurrence of latent TB infection. Living in an urban
or migrant population was a protective factor
(Supplementary Table S3, available at https://weekly.
chinacdc.cn/).
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DISCUSSION

Compared with conventional statistical methods,
machine learning algorithms offer advantages such as
higher accuracy, greater precision, and stronger
adaptability. Moreover, they have been widely used for
disease screening (7). In this study, data from patients
with TB and their close contacts from different areas of
Henan Province were analyzed to identify the optimal
model for predicting LTBI. The training dataset was
analyzed using SVM, RF, DT, MLP, and LR
algorithms. The performance of the models were
validated using a test dataset. The comparative
evaluation indicated the following MSE rankings from
lowest to highest: SVM (0.121), RF (0.165), C5.0
(0.197), LR (0.229), and MLP (0.233), confirming the
superior predictive performance of SVM. The SVM
model achieved an AUC of 0.921, Fl-score of 0.858,
sensitivity of 0.888, and specificity of 0.831. External
validation yielded an AUC of 0.752, Fl-score of
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TABLE 2. Evaluation table of each classifier algorithm prediction model in the training set.

Training set Test set
Model
MSE R? Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy
LR 0.229 0.086 0.702 0.601 0.627 0.629 0.583 0.591
C5.0 0.197 0.215 0.734 0.730 0.732 0.644 0.689 0.665
RF 0.165 0.342 0.891 0.712 0.779 0.536 0.656 0.665
SVM 0.121 0.517 0.888 0.831 0.859 0.659 0.711 0.683
MLP 0.233 0.073 0.662 0.581 0.602 0.621 0.596 0.624
Abbreviation: MSE=mean squared error; LR=logistic regression; RF=random forest; SVM=support vector machines; MLP=multilayer
perceptron.
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FIGURE 1. LTBI risk prediction model based on the SVM algorithm.
Abbreviation: SVM=Support vector machine; LTBI=Latent tuberculosis infection.

0.694, sensitivity of 0.659, and specificity of 0.711.
These

performance and strong alignment with accurate LTBI

results ~ demonstrate  robust  screening
status.

SVM, a supervised binary classification model, excels
in high-dimensional data analysis by isolating optimal
decision boundaries, making it widely applicable in
disease screening (8). Its advantages include reducing
structural risk to enhance generalizability, optimizing

both risk

concurrently, and the capacity to efficiently learn from

empirical and confidence intervals

small datasets while maintaining statistical validity
(9-10).

In this study, repeated iterations of the SVM model
yielded stable rankings of variable importance. The top
five predictors of LTBI were the type of contact with
the index case (14.76%), key population classification

Chinese Center for Disease Control and Prevention

of the index case (12.36%), residential area of close
contact (12.02%), frequency of participation in group
activities (11.25%), and etiological results of the index
case (10.47%).

These findings suggest that close contacts who were
coworkers or classmates of patients with pulmonary
TB demonstrated a significantly higher risk of
developing LTBI than contacts who lived in the same
household. This observation aligns with the research
conducted by Schepisi etal. (/) in school and
congregate settings. Furthermore, this aligns with the
increased risk of extrapulmonary transmission among
nonhousehold contacts in urban African contexts, as
reported by Kakaire etal. (72). This study also
detected a dose-response relationship between the risk
of LTBI and frequency of participation in group
activities. Gathering in institutional settings (e.g.,
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TABLE 3. Importance of input variables in LTBI risk prediction model based on SVM algorithm.

Importance of

Importance of Importance of

Variant . Variant . Variant .
forecasting forecasting forecasting
Contact type 0.1476 Etiological results of index 0.1047 O.ccupatlon of 0.0509
case index case
NEFRPIELET GEESIEIEN @ g Household registration type 0.0891 BCG scar 0.0281
index case
Residential area of close 0.1202 Annual household income 0.0712
contact
Frequency of grqup activity 01125 Weekly freqL_JenF;y of sleep 0.0568
participation deprivation

Abbreviation: SVM=support vector machines; LTBI=latent tuberculosis infection; BCG=Bacille Calmette—Guérin.

classrooms and meetings) prolongs exposure and
intensifies interpersonal proximity. In overcrowded
environments with poor ventilation, these conditions
synergistically increase the risk of aerosol transmission
by increasing the density of respiratory droplet
exchange, extending the suspension time of M.
tuberculosis in confined spaces, and reducing effective
air exchange rates.

Additionally, close contact with bacteriologically
positive pulmonary TB patients was associated with a
greater risk of LTBI, consistent with the findings of Lei
etal. (/3). Patients with bacteriologically confirmed
pulmonary TB have higher levels of M. ruberculosis,
leading to stronger pathogenicity. Sputum and
respiratory droplets are rich in bacilli, which increases
the risk of infection. Finally, close contacts of index
cases  with human
immunodeficiency virus (HIV) infection are more
likely to develop LTBI. HIV co-infection is the most
critical risk factor for LTBI reactivation. HIV infection
results in a reduction in the number of CD4*T cells in
both lymphoid tissues and peripheral blood. Elevated
viral loads and rapid progression to acquired
immunodeficiency syndrome (AIDS) are associated
with an increased risk of LTBI (7/4). Finally, close
contacts in rural areas were at a higher risk of
developing LTBI. According to Gao etal., the
estimated annual rate of TB in rural areas is 1.5%. The
present study provides population-based evidence that
older adults in rural China have a high prevalence of
LTBI and relatively high risk of new infections
(15-16).

In screening with limited data, interpretable models
such as LR are often preferred because their advantages
readily inform public health strategies. However, this
study highlights the potential of machine learning for
capturing complex data relationships, thereby laying
the foundation for future multimodal integration.
Thus, developing and validating advanced machine
learning models remain essential for building precise
automated screening systems in the long term.

severe diseases such as

78 CCDC Weekly /Vol. 8/ No. 3

Although machine learning offers advantages such as
improved  sensitivity, specificity, and diagnostic
efficiency, it has some limitations. These shortcomings
include the requirement for extensive datasets, poor
interpretability of models, dependence on algorithms
and technologies, and issues related to data privacy and
security. Owing to population
distribution, prevalence rates, and other influencing
factors that lead to a shift in data distribution, caution
should be exercised when applying the model to other
populations. As more data can help the model to
generalize better, data from the target population will
continue to be collected in the future, merged with
source data, and used to train the model with a larger
dataset. Individuals with LTBI may exert greater effort
to recall and report risk factors related to TB. These
biases can systematically distort the feature values and
obscure the true distribution of certain predictors.
Participants may underreport sensitive information,
such as smoking or alcohol use, while potentially
overreporting behaviors such as physical exercise. The
specificity issues of the PPD test due to BCG
vaccination and  nontuberculous  mycobacterial
infection, as well as sensitivity issues due to
immunosuppression, may have affected the estimation
of the latent infection rates and risk factors in this
study. Moreover, integrating machine learning models
with biomarker-based diagnosis of M. rtuberculosis
infection may improve the application of prediction
tools.

The findings in this report are subject to at least two
limitations. First, the cross-sectional design can
identify factors associated with LTBI, but cannot
establish causality and may be susceptible to survivor
bias. Second, despite controlling for multiple known
risk factors, residual unmeasured confounding factors
such as genetic factors and subtle environmental
exposures may affect the model’s feature importance
and generalizability. Therefore, our findings should be
regarded as an initial step toward more accurate
identification of LTBI using machine learning. Future

variations in
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studies should establish longitudinal cohorts with long-
term follow-up for active TB outcomes to develop
prognostic models that truly predict progression risk.
Only through such efforts can artificial intelligence
realize its full potential for optimizing TB prevention
and enabling precision in public health.

In conclusion, this study suggests an SVM model
constructed using machine learning algorithms focused
on five predictors: types of close contacts, occupational
types of the index case, residential locations of close
contacts, frequency of participation in group activities,
and etiological results of the index case. These factors
showed strong predictive power for assessing the risk of
LTBI. Through precise stratification, costly testing and
treatment resources can be concentrated on those most
in need, thereby avoiding wastage of low-risk
populations. In large-scale community screenings, the
rapid prioritization of a large number of individuals
can be achieved, allowing limited human and material
resources to maximize their effectiveness. Our next step
will be to validate the model's performance across
heterogeneous populations using multicenter data and
explore hybrid models that integrate clinical variables
with biomarkers.
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SUPPLEMENTARY MATERIAL

SUPPLEMENTARY TABLE S1. Variable assignment table.

Variant Description of the assignment
Whether LTBI Yes=1, No=0
Marital status Unmarried=1, Married=2, Divorced/widowed=3
Educational level llliterate=1, Primary /Junior high school=2, High school and above=3
Occupation Other=1, Farmer=2, Student/Teacher=3, Healthcare/Detainee=4, Homemaker/Unemployed=5
Residence type of close contact Rural=1, Urban=2
Per capita living area >20 m?=1, <20 m?=2
Household registration type Local residence=1, Migrant population=2
Annual household income <30,000=1, 30,000-50,000=2, >50,000=3
Frequency of group activity participation Low=1, Moderate=2, High=3
Contact type Family member=1, Neighbor=2, Relative=3, Colleague/student=4, Other=5
BCG scar Yes=1, No=2
Weekly frequency of sleep deprivation None=1, 1-2 times=2, 3-5 times=3, >5 times=4
Occupation of index case Other=1, Farmers=2, Students/teachers=3, Domestic workers=4, Medical workers=5
Key population classification of index case Not a priority group=1, Diabetic=2, Silicosis=3, School or childcare staff=4, Other=5
Etiological results of index case Negative/not detected=1, Positive=2

Abbreviation: LTBI=latent tuberculosis infection; BCG=Bacille Calmette—Guérin.

SUPPLEMENTARY TABLE S2. Evaluation table of the prediction model of each classifier algorithm in the test set.

Training set Test set
Model
AUC F1 score AUC F1 score

LR 0.688 0.583 0.653 0.547
C5.0 0.786 0.742 0.733 0.675

RF 0.862 0.723 0.691 0.570
SVM 0.921 0.858 0.752 0.694
MLP 0.667 0.559 0.662 0.578

Abbreviation: AUC=area under the curve; LR=logistic regression; RF=random forest; SVM=support vector machines; MLP=multilayer
perceptron.
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SUPPLEMENTARY TABLE S3. Multivariate analysis.

Variant p Sy Wald > OR (95% ClI) P

Contact type 13.890 0.008

Household*

Neighbor 0.616 0.440 1.960 1.851 (0.782, 4.383) 0.162

Relative 0.085 0.384 0.049 1.088 (0.513, 2.309) 0.826

Colleague/classmate 1.644 0.489 11.292 5.177 (1.984, 13.509) 0.001

Other 0.913 0.700 1.701 2.492 (0.632, 9.823) 0.192
Key population classification 4.872 0.301

No*

Diabetes 0.758 0.385 3.887 2.135 (1.004, 4.537) 0.049

Silicosis 0.907 0.447 4.107 2.476 (1.030, 5.952) 0.043

School or childcare staff 0.606 0.425 2.028 1.833 (0.796, 4.220) 0.154

Other 22.029 17967 0.000 0.000 0.999
Residential area of close contact

Rural*

Urban -0.176 0.175 1.011 0.838 (0.595, 1.182) 0.315
Frequency of group activity participation per week 7.544 0.023

Low*

Moderate 0.349 0.201 3.007 1.417 (0.956, 2.102) 0.083

High 1.092 0.474 5.300 2.980 (1.176, 7.548) 0.021

Etiological results of index case

Negative/not tested*

Positive 0.484 0.176 7.563 1.623 (1.149, 2.291) 0.006
Household registration type

Local residence*

Migrant population -0.321 0.242 1.756 0.725 (0.451, 1.166) 0.185
Annual household income (CNY) 6.232 0.044

<30,000*

30,000-50,000 0.253 0.225 1.258 1.287 (0.828, 2.002) 0.362

>50,000 0.555 0.232 5.714 1.742 (1.105, 2.747) 0.017
Weekly frequency of sleep deprivation 12.235 0.007

None*

1-2 times -0.040 0.242 0.028 0.961 (0.598, 1.543) 0.868

3-5 times -1.138 0.363 9.843 1.249 (0.745, 2.093) 0.339

>5 times -0.843 0.377 5.005 2.710 (1.526, 4.813) 0.001
Occupation 4.370 0.358

Other*

Farmer -22.334 17964 0.000 0.000 0.999

Student/teacher -21.591 17964 0.000 0.000 0.999

Homemaker/unemployed -3.330 22270 0.000 0.036 1.000

Healthcare worker -21.864 17964 0.000 0.000 0.999
BCG scar

Present*

Absent 0.361 0.175 4.246 1.434 (1.018, 2.021) 0.039

Abbreviation: BCG=Bacille Calmette—Guérin; OR=o0dds ratio; CNY=Chinese Yuan; C/=confidence interval.
* When performing multivariate analysis for each group of variable categories, the first variable is used as the reference.
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