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ABSTRACT

Introduction:  We  explored  risk  factors  for  latent
tuberculosis  infection  (LTBI)  and  developed  a  risk
prediction model using machine learning algorithms.

Methods:  Patients  with  active  pulmonary  TB  in
months  3  to  6  of  anti-TB  treatment  in  Henan
Province, China, July–September 2024 were selected as
index  cases.  Close  contacts  identified  through
epidemiological  investigation  underwent  tuberculin-
purified  protein  derivative  testing  to  determine  LTBI
status.  Face-to-face  questionnaires  were  conducted  to
collect  epidemiological  data.  The  dataset  was  divided
into  training  and  testing  sets  (6:4),  using  a  fixed
random seed.  Five  models —  logistic  regression  (LR),
decision tree (DT), random forest (RF), support vector
machines (SVM), and multilayer perceptron (MLP) —
were  trained  and  evaluated  using  the  mean  squared
error (MSE) and coefficient of determination. The test
set  was  subjected  to  external  validation.  Receiver
operating  characteristic  curve  analysis,  area  under  the
curve  (AUC),  and  F1-scores  were  used  to  quantify
predictive performance.

Results:  Among  795  close  contacts,  LTBI
prevalence  was  401  (50.5%).  By  MSE,  models  ranked:
SVM (0.121), RF (0.165), DT (0.197), LR (0.229), and
MLP  (0.233).  SVM  identified  five  key  predictors:
contact type of index case, key population classification,
residential  area,  frequency  of  participation  in  group
activities,  and  etiological  results.  Internal  validation
showed  strong  performance  (AUC=0.921,  F1=0.858),
whereas  external  validation  showed  moderate
performance (AUC=0.752, F1=0.694).

Conclusion:  The  SVM  model  incorporating
contact  type  of  index  case,  key  population
classification,  residential  area,  frequency  of  group
activity  participation,  and  etiological  results
demonstrated  robust  predictive  value  for  LTBI  risk.
This  model  shows  promise  for  the  targeted  screening
and management of high-risk populations. 

 

Latent  tuberculosis  infection  (LTBI)  refers  to  a
chronic  immune  response  to  Mycobacterium
tuberculosis  antigens,  without  clinical  or  radiological
evidence of active tuberculosis (ATB) (1). Prophylactic
treatment of LTBI plays an increasingly pivotal role in
TB  control.  It  is  estimated  that  23%  of  the  global
population  has  LTBI  (2),  and  the  overall  disease
burden is relatively high in China. LTBI is a potential
reservoir  for  ATB,  with  5%–10%  of  the  LTBI  cases
progressing  to  active  disease.  Therefore,  LTBI
treatment  directly  affects  the  global  prevention  of
future  TB  infections.  LTBI  research  largely  relies  on
screening  high-risk  populations  and  developing
targeted  treatment  strategies  (3).  Examining  families
and  other  close  contacts  of  patients  with  ATB  is
warranted  for  the  identification  and  management  of
LTBI (4–6).

Machine learning techniques such as support vector
machines  (SVM),  random  forest  (RF),  and  artificial
neural  networks  have  been  widely  used  in  disease
monitoring,  diagnosis,  and  prognosis.  These  methods
effectively  detect  novel  patterns  within  existing
datasets.  In  LTBI  prediction,  machine  learning  helps
identify  risk  indicators  that  may  remain  undetected
using conventional statistical approaches.

In  this  study,  a  survey  and  analysis  of  the  close
contacts  of  patients  with  TB in  Henan Province  were
conducted.  Five  machine  learning  methods,  namely,
SVM, RF, decision tree (DT), logistic regression (LR),
and multilayer perceptron (MLP), were used to predict
LTBI.  Their  predictive  accuracies  were  systematically
compared  to  identify  the  optimal  LTBI  prediction
framework.  Furthermore,  targeted  interventions  were
proposed for high-risk populations identified using the
best-performing  model,  enabling  a  proactive  shift  in
TB prevention and control strategies.
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METHODS

This  study  used  a  univariate  logistic  regression
analysis  for variable screening.  Based on the 10 events
per  variable  criterion,  which  requires  a  minimum
sample size of 10–15 times the number of variables, 19
factors  were  analyzed.  The  estimated  incidence  of
LTBI among close contacts of patients with pulmonary
TB was approximately 30%.  Therefore, the minimum
number  of  required  outcome  events  was  10×19=190.
Consequently,  the  calculated  minimum  sample  size
was  190/0.3=634  participants.  Allowing  for  20%  loss
to  follow-up,  760  close  contacts  were  enrolled.  To
facilitate enrollment, the final target sample size was set
to 800.

Index cases were identified through the Tuberculosis
Management  Information  System  (the  China  Disease
Control  and  Prevention  Information  System)  as
patients  with  ATB  in  Henan  Province  receiving
treatment for 3–6 months in 2024. LTBI was defined
as  individuals  who  shared  the  same  residence  for  at
least  7  days  with  an  ATB  patient  during  the  period
from  3  months  before  the  patient’s  diagnosis  to  14
days  after  diagnosis,  and  showed  a  strongly  positive
purified  protein  derivative  (PPD)  test  result.  Non-
LTBI individuals were defined as those who were ruled
out  for  both  active  and  latent  TB  infection,  with  no
more  than one  non-LTBI subject  enrolled  per  patient
as  a  study  participant.  A  PPD  test  was  performed
according  to  the  Chinese  Guidelines  for  Preventive
Treatment  of  Tuberculosis  and  the  PPD  results  were
recorded  after  72  h.  For  PPD≥10  mm,  ATB  is  ruled
out  based  on  the  clinician’s  diagnosis,  and  the
individual  is  determined  to  have  latent  TB  infection.
For  PPD<10  mm,  if  active  and  latent  tuberculosis
infection  are  ruled  out  based  on  the  clinician’s
diagnosis,  the  individual  is  classified  as  having  a  non-
latent infection. LTBI cases were household contacts of
patients  with  ATB  (exposure≥7  days  between  3
months  pre-  and  14  days  post-diagnosis)  with  a
strongly  positive  PPD  test.  Non-LTBI  controls  were
excluded  for  both  ATB  and  LTBI,  with  up  to  one
control  enrolled  per  patient.  Close  contacts  of  these
index  cases  were  recruited  after  written  informed
consent  was  obtained.  After  excluding  individuals
owing  to  employment-related  migration,  refusal  to
participate,  or  incomplete  data  during  the  field
investigations, 795 close contacts were finally included.
All contacts underwent tuberculin PPD testing and TB
screening  and  completed  structured  questionnaires  at
designated  TB  care  facilities.  Questionnaire-derived

variables and system-recorded clinical parameters of the
index  cases  were  analyzed  as  potential  predictors  of
LTBI among close contacts.

The  Delphi  method  was  used  to  design  the  two
structured  questionnaires.  First,  the  Index  Case
Questionnaire  was  completed  by  designated
institutions  based  on  medical  records  including
demographic,  diagnosis,  and  treatment  information.
The  second  questionnaire  was  completed  by  the
investigator  during  in-person  interviews  with  close
contacts,  supplemented  by  medical  records  retrieved
from  the  case-reporting  information  system.  The
questionnaire  included  questions  regarding
sociodemographic  characteristics,  lifestyle  habits,
exposure  history,  and  TB-related  knowledge.  If  close
contacts were unable to participate because of physical
limitations,  family  members  or  guardians  completed
the  questionnaire  on  their  behalf.  Provincial  TB
control  institutions  conducted  city-level  data
verification,  followed  by  double  data  entry  using  Epi
Data  3.1  software  (EpiData  Association,  Odense,
Denmark).  The  finalized  databases  were  securely
transmitted  to  provincial  authorities  via  encrypted
emails.

A database  was  established using  EpiData  3.1,  with
data  collected  in  Microsoft  Excel  (Microsoft  Office
Home  and  Student  2019,  Microsoft  Corporation,
Redmond,  USA).  Data  analysis  was  conducted  using
SPSS Modeler (version 18.0; IBM Corp, Armonk, NY,
USA)  and  SPSS  27.0.  Qualitative  data  were  analyzed
using  the  chi-squared  test  followed  by  univariate
logistic  regression  analysis.  Machine  learning  models
including  SVM,  RF,  DT,  MLP,  and  LR  were
developed  to  predict  LTBI.  The  model  performance
was evaluated using the mean squared error (MSE) and
coefficient  of  determination  (R2).  A  lower  MAE  and
higher  R2  indicated  superior  predictive  accuracy.  The
predictive values of  these models  were further assessed
using  receiver  operating  characteristic  (ROC)  curves
and  F1-scores,  with  external  validation  of  the  test  set.
The MSE, R2,  and area under the ROC curve (AUC)
were  calculated  using  SPSS  27.0,  integrated  with
Python  3.12.  A  two-tailed  test  was  applied,  with
statistical significance set at α=0.05. 

RESULTS
 

Baseline Characteristics of Close Contacts
After  excluding  individuals  with  missing

information  owing  to  migrant  work  or  refusal  to
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participate in the field investigation, 795 close contacts
were included. LTBI accounted for 50.44% (n=401) of
the  close  contacts.  Significant  differences  (P<0.05)
were  observed  between  the  LTBI  and  non-LTBI
groups  in  terms  of  marital  status,  educational  level,
occupational  type,  residential  area  type,  per  capita
living  space,  household  registration  type,  annual
household income, frequency of participation in group
activities,  type  of  contact  with  index  cases,  Bacille
Calmette–Guérin  (BCG)  scar,  weekly  frequency  of
sleep  deprivation,  population  classification  of  index
cases,  key  population classification of  index cases,  and
etiological results of index cases (Table 1). 

Construction of Machine Learning
Algorithm Models

Using  LTBI  status  (binary  outcome)  as  the
dependent  variable  and  those  with  statistical
significance from the univariate analysis (Supplementary
Table  S1,  available  at  https://weekly.chinacdc.cn/)  as
independent  variables,  the  dataset  was  divided  via  a
random  seed  method  into  training  and  test  sets  in  a
6∶4  ratio.  Risk  prediction  models  were  developed
using  the  following  algorithms:  LR:  Binomial  logistic
regression  with  forward  stepwise  selection.  DT:  C5.0
algorithm  with  default  pruning  parameters.  RF:  100
decision trees  (ntree=100) with Gini  impurity  used for
node  splitting.  SVM:  Regularization  parameter  set  to
10,  and  regression  precision  tolerance=0.1.  MLP:
Automatically  determined  number  of  hidden  layer
neurons,  hyperbolic  tangent  activation  function  for
hidden  layers,  and  softmax  activation  for  the  output
layer. 

Efficiency Analysis of Machine
Learning Models

The  corresponding  evaluation  metrics  were
calculated using Python 3.12. MSE and R2 were used
to  evaluate  the  prediction  accuracy  of  the  models
generated  using  each  classifier  algorithm.  MSE  was
used  to  measure  the  model's  prediction  error  by
calculating  the  square  of  the  difference  between  the
predicted and true values averaged across all samples. A
smaller MSE suggests a better prediction performance.
R2  measures  the  variance  in  the  dependent  variable
accounted for by the model, suggesting its goodness of
fit.  The  R2  values  vary  between  0  and  1,  with  values
closer  to  1  indicating  a  superior  fit  and  better
explanatory ability.

Models  with  a  lower  MSE  and  higher  R2  were

deemed  more  precise.  The  prediction  accuracies  in
descending order were as follows: SVM, RF, C5.0 (DT
model),  LR,  and  MLP.  Classifier  performance  was
further  evaluated  using  sensitivity,  specificity,  and
accuracy,  with  higher  values  indicating  better
performance. The SVM model outperformed the other
algorithms in terms of these metrics (Table 2). 

Machine Learning Model Verification
The  AUC  and  F1-scores  were  used  as  the  overall

evaluation  metrics  to  assess  the  model  performance.
The AUC is used to measure the overall discriminative
performance  of  the  classifier.  The  AUC  value  ranges
from 0  to  1,  with  values  closer  to  1  suggesting  better
model  performance.  An  AUC  value  of  0.5  indicates
that the predictive ability of the model is equivalent to
random guessing.  The closer  the ROC curve is  to  the
upper left corner, the better the predictive value.

The  F1-score  is  the  reconciled  average  of  precision
(positive  predictive  value)  and  recall  (sensitivity),
offering  a  comprehensive  measure  of  performance.  In
the  case  of  an  imbalanced  dataset,  the  F1  score
accounts  for  both  false  positives  and  false  negatives.
The  score  ranges  from  0  to  1,  with  higher  values
indicating better comprehensive performance.

In  this  study,  the  SVM model  achieved  the  highest
performance in terms of both AUC and F1 scores, with
values  of  0.921  and  0.858,  respectively,  for  internal
validation,  and  0.752  and  0.694,  respectively,  for
external validation. Overall, the SVM model exhibited
the  best  predictive  performance  (Supplementary
Table S2, available at https://weekly.chinacdc.cn/).

As shown in Figure 1,  the SVM model  consistently
yielded  higher  ROC  curves  in  both  the  training  and
test  datasets,  indicating  its  superior  classification
performance  compared  with  the  other  models.  The
overlapping  ROC curves  of  the  MLP and  LR models
suggest comparable performance. Notably, the RF and
C5.0 DT models demonstrated divergent trends; in the
training set, RF outperformed C5.0, whereas in the test
set,  C5.0  outperformed  RF.  This  difference  could  be
attributed to the small sample size of the test set.

The  SVM-based  LTBI  risk-prediction  model  was
developed  using  variables  relevant  to  the  univariate
analysis.  Repeated model  iterations demonstrate  stable
variable  importance  rankings  without  considerable
fluctuations. The training set showed 85.9% accuracy,
and the test set showed 68.3% accuracy (Table 2).

The  top  five  predictors  of  LTBI  onset,  ranked  by
variable importance,  were:  1)  type of  contact  with the
index case (14.76%); 2) key population classification of
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TABLE 1. Comparison of the baseline characteristics of close contacts.

Variant LTBI
(n=401)

Composition
ratio (%)

non-LTBI
(n=394)

Composition
ratio (%) OR (95% CI) P VIF

Sex 0.985 1.482

Male 157 39.2 154 39.1

Female 244 60.8 240 60.9 0.997 (0.750, 1.326)

Age groups (years) 0.065 1.487

15–18 12 3.0 11 2.8

19–60 312 77.8 280 71.1 1.021 (0.444, 2.352) 0.960

≥60 77 19.2 103 26.1 0.685 (0.287, 1.635) 0.394

BMI (kg/m2) 0.971 1.111

18.5–23.9 228 56.9 227 57.6

<18.5 19 4.7 19 4.8 0.996 (0.514, 1.930) 0.990

≥24 154 38.4 148 37.6 1.036 (0.774, 1.386) 0.812

Marital status <0.001 1.679

Unmarried 81 20.2 30 7.6

Married 310 77.1 350 88.8 0.328 (0.210, 0.512) <0.001

Divorced/widowed 10 2.5 14 3.6 0.265 (0.106, 0.659) 0.004

Education level <0.001 1.599

Illiterate 36 9.0 41 10.4

Primary/junior high school 185 52.5 232 58.9 0.908 (0.558, 1.479) 0.699

High school and above 180 37.9 121 30.7 1.694 (1.024, 2.803) 0.040

Careers <0.001 1.338

Other 84 20.9 97 24.6

Farmer 163 40.6 210 53.3 0.896 (0.627, 1.280) 0.547

Student/teacher 77 19.2 24 6.1 3.705 (2.152, 6.379) <0.001

Healthcare/detainee 19 4.7 7 1.8 3.134 (1.256, 7.822) 0.014

Homemaker/unemployed 58 14.5 56 14.2 1.196 (0.748, 1.912) 0.455

Labor intensity 0.488 1.350

Light 261 65.1 248 62.9

Moderate 128 31.9 138 35.0 0.881 (0.655, 1.186) 0.655

Heavy 12 3.0 8 2.0 1.425 (0.573, 3.546) 0.573

Residence type 0.019 1.508

Rural 206 51.4 235 59.6

Urban 195 48.6 159 40.4 1.399 (1.057, 1.853)

Per capita living area (m2) <0.001 1.505
≥20 320 79.8 349 88.6

<20 81 20.2 45 11.4 1.963 (1.323, 2.913)

Household registration type <0.001 1.298

Local residence 319 79.6 349 88.6

Migrant population 82 20.4 45 11.4 1.994 (1.344, 2.956)

Annual household income (CNY) 0.032 1.362

<30,000 179 44.6 204 51.8

30,000–50,000 143 35.7 107 27.2 1.523 (1.105, 2.100) 0.010

>50,000 79 19.7 83 21.1 1.085 (0.751, 1.567) 0.665
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Continued

Variant LTBI
(n=401)

Composition
ratio (%)

non-LTBI
(n=394)

Composition
ratio (%) OR (95% CI) P VIF

Exposure to dust 0.489 1.355

No 382 95.3 371 94.2

Yes 19 4.7 23 5.8 0.802 (0.430, 1.498)

Daily ventilation frequency 0.063 1.180

0–1 time 118 29.4 106 26.9

2–3 times 89 22.2 93 23.6 0.860 (0.581, 1.272) 0.449

>3 times 190 47.4 180 45.7 0.948 (0.680, 1.322) 0.754

None 4 1.0 15 3.8 0.240 (0.077, 0.744) 0.013

Frequency of group activity participation per week <0.001 1.763

Low 259 64.6 321 81.5

Moderate 87 21.7 61 15.5 1.768 (1.226, 2.549) 0.002

High 55 13.7 12 3.0 5.681 (2.979, 10.833) <0.001

Contact type <0.001 2.578

Household 292 73.7 348 90.2

Neighbor 13 3.3 10 2.6 1.549 (0.670, 3.585) 0.306

Relative 16 4.0 15 3.9 1.271 (0.618, 2.615) 0.514

Colleague/classmate 56 14.1 7 1.8 9.534 (4.280, 21.240) <0.001

Other 19 4.8 6 1.6 3.774 (1.488, 9.574) 0.005

Health education received 0.996 1.247

Yes 225 56.1 221 56.1

No 176 43.9 173 43.9 0.999 (0.755, 1.322)

BCG scar <0.001 1.150

Present 314 78.3 263 66.8

Absent 87 21.7 131 33.2 0.556 (0.405, 0.764)

Smoking status 0.312 1.106

Never 179 44.6 202 51.3

Occasional 5 1.2 6 1.5 0.940 (0.282, 3.134) 0.920

Frequent 75 18.7 56 14.2 1.511 (1.013, 2.256) 0.043

Quit smoking 10 2.5 8 2.0 1.411 (0.545, 3.652) 0.478

Passive smoking 132 32.9 122 31.0 1.221 (0.888, 1.678) 0.218

Weekly frequency of sleep deprivation <0.001 1.291

None 242 60.3 291 73.9

1–2 times 56 14.0 48 12.2 1.403 (0.920, 2.138) 0.115

3–5 times 53 13.2 35 8.9 1.821 (1.150, 2.884) 0.011

>5 times 50 12.5 20 5.1 3.006 (1.742, 5.189) <0.001

Comorbidities 0.867 3.256

None 310 77.3 308 78.2

One 75 18.7 67 17.0 1.112 (0.772, 1.603) 0.568

Two 12 3.0 15 3.8 0.795 (0.366, 1.726) 0.562

Three or more 4 1.0 4 1.0 0.994 (0.246, 4.008) 0.993

Index case variables (source of infection status)

Sex 0.942 1.103

Male 292 72.8 286 72.6
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the  index  case  (12.36%);  3)  residential  area  of  close
contacts  (12.02%);  4)  frequency  of  participation  in
group  activities  (11.25%);  5)  etiological  results  of  the
index case (10.47%) (Table 3).
 

Result Interpretation
Through multi-factor logistic regression analysis, the

factors  output  by  the  SVM  were  interpreted.  The
results  showed that  the  index  case  was  a  classmates  or
colleagues, the index case being a key population with
diabetes  or  silicosis,  high  frequency  of  group  activity
participation  per  week,  the  index  case  having  positive
etiological  results,  annual  income  exceeding  50,000
Chinese Yuan, sleep deprivation more than five times a
week,  and  having  scars  were  risk  factors  for  the
occurrence  of  latent  TB infection.  Living  in  an  urban
or  migrant  population  was  a  protective  factor
(Supplementary  Table  S3,  available  at  https://weekly.
chinacdc.cn/).
 

DISCUSSION

Compared  with  conventional  statistical  methods,
machine  learning  algorithms  offer  advantages  such  as
higher  accuracy,  greater  precision,  and  stronger
adaptability. Moreover, they have been widely used for
disease screening (7).  In this study, data from patients
with TB and their close contacts from different areas of
Henan Province were analyzed to identify the optimal
model  for  predicting  LTBI.  The  training  dataset  was
analyzed  using  SVM,  RF,  DT,  MLP,  and  LR
algorithms.  The  performance  of  the  models  were
validated  using  a  test  dataset.  The  comparative
evaluation indicated the following MSE rankings from
lowest  to  highest:  SVM  (0.121),  RF  (0.165),  C5.0
(0.197), LR (0.229), and MLP (0.233), confirming the
superior  predictive  performance  of  SVM.  The  SVM
model  achieved an AUC of  0.921,  F1-score  of  0.858,
sensitivity  of  0.888,  and  specificity  of  0.831.  External
validation  yielded  an  AUC  of  0.752,  F1-score  of

Continued

Variant LTBI
(n=401)

Composition
ratio (%)

non-LTBI
(n=394)

Composition
ratio (%) OR (95% CI) P VIF

Female 109 27.2 108 27.4 0.989 (0.724, 1.351) 0.942

Occupation <0.001 1.462

Other 24 6.0 28 7.1

Farmer 232 57.9 270 68.5 1.002 (0.565, 1.778) 0.993

Student/teacher 88 21.9 36 9.1 2.852 (1.461, 5.568) 0.002

Homemaker/unemployed 52 13.0 60 15.2 1.011 (0.523, 1.956) 0.974

Healthcare worker 5 1.2 0 0.0 >100 0.999

Key population classification <0.001 1.591

No 261 65.1 304 77.2

Diabetes 41 10.2 44 11.2 1.085 (0.688, 1.713) 0.725

Silicosis 9 2.2 6 1.5 1.747 (0.614, 4.973) 0.296

School or childcare staff 79 19.7 36 9.1 2.556 (1.667, 3.919) <0.001

Other 11 2.7 4 1.0 3.203 (1.008, 10.179) 0.048

Diagnosis delay 0.063 1.178

No delay 155 38.7 178 45.2

Delayed 246 61.3 216 54.8 1.308 (0.986, 1.735)

Treatment category 0.179 1.119

New case 356 88.8 361 91.6

Retreatment case 45 11.2 33 8.4 1.383 (0.862, 2.218)

Etiological results 0.027 1.126

Negative/not tested 96 23.9 122 31.0

Positive 305 76.1 272 69.0 1.425 (1.042, 1.950)
Note: Bold number means statistical significance.
Abbreviation:  OR=odds  ratio;  CI=confidence  interval;  BCG=Bacille  Calmette–Guérin;  CNY=Chinese  Yuan;  LTBI=latent  tuberculosis
infection; VIF=variance inflation factor.

China CDC Weekly

76 CCDC Weekly / Vol. 8 / No. 3 Chinese Center for Disease Control and Prevention

Supplementary Table S3
https://weekly.chinacdc.cn/
https://weekly.chinacdc.cn/


0.694,  sensitivity  of  0.659,  and  specificity  of  0.711.
These  results  demonstrate  robust  screening
performance and strong alignment with accurate LTBI
status.

SVM, a supervised binary classification model, excels
in  high-dimensional  data  analysis  by  isolating  optimal
decision  boundaries,  making  it  widely  applicable  in
disease  screening  (8).  Its  advantages  include  reducing
structural  risk  to  enhance  generalizability,  optimizing
both  empirical  risk  and  confidence  intervals
concurrently, and the capacity to efficiently learn from
small  datasets  while  maintaining  statistical  validity
(9–10).

In this study, repeated iterations of the SVM model
yielded stable rankings of variable importance. The top
five  predictors  of  LTBI  were  the  type  of  contact  with
the  index  case  (14.76%),  key  population  classification

of  the  index  case  (12.36%),  residential  area  of  close
contact (12.02%),  frequency of participation in group
activities (11.25%), and etiological results of the index
case (10.47%).

These findings suggest that close contacts who were
coworkers  or  classmates  of  patients  with  pulmonary
TB  demonstrated  a  significantly  higher  risk  of
developing LTBI than contacts  who lived in the same
household.  This  observation  aligns  with  the  research
conducted  by  Schepisi  et al.  (11)  in  school  and
congregate  settings.  Furthermore,  this  aligns  with  the
increased  risk  of  extrapulmonary  transmission  among
nonhousehold  contacts  in  urban  African  contexts,  as
reported  by  Kakaire  et al.  (12).  This  study  also
detected  a  dose-response  relationship  between the  risk
of  LTBI  and  frequency  of  participation  in  group
activities.  Gathering  in  institutional  settings  (e.g.,

 

TABLE 2. Evaluation table of each classifier algorithm prediction model in the training set.

Model
Training set Test set

MSE R2 Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy
LR 0.229 0.086 0.702 0.601 0.627 0.629 0.583 0.591

C5.0 0.197 0.215 0.734 0.730 0.732 0.644 0.689 0.665

RF 0.165 0.342 0.891 0.712 0.779 0.536 0.656 0.665

SVM 0.121 0.517 0.888 0.831 0.859 0.659 0.711 0.683

MLP 0.233 0.073 0.662 0.581 0.602 0.621 0.596 0.624
Abbreviation:  MSE=mean  squared  error;  LR=logistic  regression;  RF=random  forest;  SVM=support  vector  machines;  MLP=multilayer
perceptron.
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FIGURE 1. LTBI risk prediction model based on the SVM algorithm.
Abbreviation: SVM=Support vector machine; LTBI=Latent tuberculosis infection.
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classrooms  and  meetings)  prolongs  exposure  and
intensifies  interpersonal  proximity.  In  overcrowded
environments  with  poor  ventilation,  these  conditions
synergistically  increase  the  risk  of  aerosol  transmission
by  increasing  the  density  of  respiratory  droplet
exchange,  extending  the  suspension  time  of  M.
tuberculosis  in  confined  spaces,  and  reducing  effective
air exchange rates.

Additionally,  close  contact  with  bacteriologically
positive  pulmonary  TB patients  was  associated  with  a
greater risk of LTBI, consistent with the findings of Lei
et al.  (13).  Patients  with  bacteriologically  confirmed
pulmonary  TB  have  higher  levels  of  M.  tuberculosis,
leading  to  stronger  pathogenicity.  Sputum  and
respiratory  droplets  are  rich  in  bacilli,  which  increases
the  risk  of  infection.  Finally,  close  contacts  of  index
cases  with  severe  diseases  such  as  human
immunodeficiency  virus  (HIV)  infection  are  more
likely  to  develop  LTBI.  HIV  co-infection  is  the  most
critical risk factor for LTBI reactivation. HIV infection
results in a reduction in the number of CD4+T cells in
both  lymphoid  tissues  and  peripheral  blood.  Elevated
viral  loads  and  rapid  progression  to  acquired
immunodeficiency  syndrome  (AIDS)  are  associated
with  an  increased  risk  of  LTBI  (14).  Finally,  close
contacts  in  rural  areas  were  at  a  higher  risk  of
developing  LTBI.  According  to  Gao  et al.,  the
estimated annual rate of TB in rural areas is 1.5%. The
present  study provides  population-based evidence  that
older  adults  in  rural  China  have  a  high  prevalence  of
LTBI  and  relatively  high  risk  of  new  infections
(15–16).

In screening with limited data, interpretable models
such as LR are often preferred because their advantages
readily  inform  public  health  strategies.  However,  this
study  highlights  the  potential  of  machine  learning  for
capturing  complex  data  relationships,  thereby  laying
the  foundation  for  future  multimodal  integration.
Thus,  developing  and  validating  advanced  machine
learning  models  remain  essential  for  building  precise
automated screening systems in the long term.

Although machine learning offers advantages such as
improved  sensitivity,  specificity,  and  diagnostic
efficiency, it has some limitations. These shortcomings
include  the  requirement  for  extensive  datasets,  poor
interpretability  of  models,  dependence  on  algorithms
and technologies, and issues related to data privacy and
security.  Owing  to  variations  in  population
distribution,  prevalence  rates,  and  other  influencing
factors that lead to a shift in data distribution, caution
should be exercised when applying the model to other
populations.  As  more  data  can  help  the  model  to
generalize  better,  data  from the  target  population  will
continue  to  be  collected  in  the  future,  merged  with
source data,  and used to train the model with a larger
dataset. Individuals with LTBI may exert greater effort
to  recall  and  report  risk  factors  related  to  TB.  These
biases  can systematically  distort  the  feature  values  and
obscure  the  true  distribution  of  certain  predictors.
Participants  may  underreport  sensitive  information,
such  as  smoking  or  alcohol  use,  while  potentially
overreporting  behaviors  such  as  physical  exercise.  The
specificity  issues  of  the  PPD  test  due  to  BCG
vaccination  and  nontuberculous  mycobacterial
infection,  as  well  as  sensitivity  issues  due  to
immunosuppression, may have affected the estimation
of  the  latent  infection  rates  and  risk  factors  in  this
study. Moreover,  integrating machine learning models
with  biomarker-based  diagnosis  of  M.  tuberculosis
infection  may  improve  the  application  of  prediction
tools.

The findings in this report are subject to at least two
limitations.  First,  the  cross-sectional  design  can
identify  factors  associated  with  LTBI,  but  cannot
establish  causality  and  may  be  susceptible  to  survivor
bias.  Second,  despite  controlling  for  multiple  known
risk  factors,  residual  unmeasured  confounding  factors
such  as  genetic  factors  and  subtle  environmental
exposures  may  affect  the  model’s  feature  importance
and generalizability. Therefore, our findings should be
regarded  as  an  initial  step  toward  more  accurate
identification of LTBI using machine learning. Future

 

TABLE 3. Importance of input variables in LTBI risk prediction model based on SVM algorithm.

Variant Importance of
forecasting Variant Importance of

forecasting Variant Importance of
forecasting

Contact type 0.1476 Etiological results of index
case 0.1047 Occupation of

index case 0.0509

Key population classification of
index case 0.1236 Household registration type 0.0891 BCG scar 0.0281

Residential area of close
contact 0.1202 Annual household income 0.0712

Frequency of group activity
participation 0.1125 Weekly frequency of sleep

deprivation 0.0568

Abbreviation: SVM=support vector machines; LTBI=latent tuberculosis infection; BCG=Bacille Calmette–Guérin.
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studies should establish longitudinal cohorts with long-
term  follow-up  for  active  TB  outcomes  to  develop
prognostic  models  that  truly  predict  progression  risk.
Only  through  such  efforts  can  artificial  intelligence
realize  its  full  potential  for  optimizing  TB  prevention
and enabling precision in public health.

In  conclusion,  this  study  suggests  an  SVM  model
constructed using machine learning algorithms focused
on five predictors: types of close contacts, occupational
types  of  the  index  case,  residential  locations  of  close
contacts, frequency of participation in group activities,
and  etiological  results  of  the  index  case.  These  factors
showed strong predictive power for assessing the risk of
LTBI. Through precise stratification, costly testing and
treatment resources can be concentrated on those most
in  need,  thereby  avoiding  wastage  of  low-risk
populations.  In  large-scale  community  screenings,  the
rapid  prioritization  of  a  large  number  of  individuals
can be achieved, allowing limited human and material
resources to maximize their effectiveness. Our next step
will  be  to  validate  the  model's  performance  across
heterogeneous  populations  using multicenter  data  and
explore  hybrid  models  that  integrate  clinical  variables
with biomarkers. 
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SUPPLEMENTARY MATERIAL
 

SUPPLEMENTARY TABLE S1. Variable assignment table.
Variant Description of the assignment

Whether LTBI Yes=1, No=0

Marital status Unmarried=1, Married=2, Divorced/widowed=3

Educational level Illiterate=1, Primary /Junior high school=2, High school and above=3

Occupation Other=1, Farmer=2, Student/Teacher=3, Healthcare/Detainee=4, Homemaker/Unemployed=5

Residence type of close contact Rural=1, Urban=2

Per capita living area ≥20 m2=1, <20 m2=2

Household registration type Local residence=1, Migrant population=2

Annual household income <30,000=1, 30,000–50,000=2, >50,000=3

Frequency of group activity participation Low=1, Moderate=2, High=3

Contact type Family member=1, Neighbor=2, Relative=3, Colleague/student=4, Other=5

BCG scar Yes=1, No=2

Weekly frequency of sleep deprivation None=1, 1–2 times=2, 3–5 times=3, >5 times=4

Occupation of index case Other=1, Farmers=2, Students/teachers=3, Domestic workers=4, Medical workers=5

Key population classification of index case Not a priority group=1, Diabetic=2, Silicosis=3, School or childcare staff=4, Other=5

Etiological results of index case Negative/not detected=1, Positive=2

Abbreviation: LTBI=latent tuberculosis infection; BCG=Bacille Calmette–Guérin.

 

SUPPLEMENTARY TABLE S2. Evaluation table of the prediction model of each classifier algorithm in the test set.

Model
Training set Test set

AUC F1 score AUC F1 score

LR 0.688 0.583 0.653 0.547

C5.0 0.786 0.742 0.733 0.675

RF 0.862 0.723 0.691 0.570

SVM 0.921 0.858 0.752 0.694

MLP 0.667 0.559 0.662 0.578
Abbreviation:  AUC=area  under  the  curve;  LR=logistic  regression;  RF=random  forest;  SVM=support  vector  machines;  MLP=multilayer
perceptron.
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SUPPLEMENTARY TABLE S3. Multivariate analysis.

Variant β sx χ
Wald  OR (95% CI) P

Contact type 13.890 0.008

Household*

Neighbor 0.616 0.440 1.960 1.851 (0.782, 4.383) 0.162

Relative 0.085 0.384 0.049 1.088 (0.513, 2.309) 0.826

Colleague/classmate 1.644 0.489 11.292 5.177 (1.984, 13.509) 0.001

Other 0.913 0.700 1.701 2.492 (0.632, 9.823) 0.192

Key population classification 4.872 0.301

No*

Diabetes 0.758 0.385 3.887 2.135 (1.004, 4.537) 0.049

Silicosis 0.907 0.447 4.107 2.476 (1.030, 5.952) 0.043

School or childcare staff 0.606 0.425 2.028 1.833 (0.796, 4.220) 0.154

Other 22.029 17967 0.000 0.000 0.999

Residential area of close contact

Rural*

Urban −0.176 0.175 1.011 0.838 (0.595, 1.182) 0.315

Frequency of group activity participation per week 7.544 0.023

Low*

Moderate 0.349 0.201 3.007 1.417 (0.956, 2.102) 0.083

High 1.092 0.474 5.300 2.980 (1.176, 7.548) 0.021

Etiological results of index case

Negative/not tested*

Positive 0.484 0.176 7.563 1.623 (1.149, 2.291) 0.006

Household registration type

Local residence*

Migrant population −0.321 0.242 1.756 0.725 (0.451, 1.166) 0.185

Annual household income (CNY) 6.232 0.044

<30,000*

30,000–50,000 0.253 0.225 1.258 1.287 (0.828, 2.002) 0.362

>50,000 0.555 0.232 5.714 1.742 (1.105, 2.747) 0.017

Weekly frequency of sleep deprivation 12.235 0.007

None*

1–2 times −0.040 0.242 0.028 0.961 (0.598, 1.543) 0.868

3–5 times −1.138 0.363 9.843 1.249 (0.745, 2.093) 0.339

>5 times −0.843 0.377 5.005 2.710 (1.526, 4.813) 0.001

Occupation 4.370 0.358

Other*

Farmer −22.334 17964 0.000 0.000 0.999

Student/teacher −21.591 17964 0.000 0.000 0.999

Homemaker/unemployed −3.330 22270 0.000 0.036 1.000

Healthcare worker −21.864 17964 0.000 0.000 0.999

BCG scar

Present*

Absent 0.361 0.175 4.246 1.434 (1.018, 2.021) 0.039
Abbreviation: BCG=Bacille Calmette–Guérin; OR=odds ratio; CNY=Chinese Yuan; CI=confidence interval.
* When performing multivariate analysis for each group of variable categories, the first variable is used as the reference.
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