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Preplanned Studies

Development of a Landscape Pattern Health Index and
Association with Stroke Mortality Using GWQS Regression
— Ningbo City, Zhejiang Province, China, 2001-2023
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Summary
What is already known about this topic?
Urban landscape patterns influence population health
and are traditionally measured using landscape indices.
However, current indices suffer from a single-
dimensional focus, multicollinearity, and limited health
relevance.

What is added by this report?

Using a two-stage Generalized Weighted Quantile Sum
(GWQS) regression, we developed a Landscape Pattern
Health Index (LPHI),

composition/configuration metrics. This index revealed

integrating

seasonal protective/hazard effects and represents a
holistic tool for assessing urban landscape health
impacts.

What are the implications for public health
practice?

The LPHI identifies high-risk areas and seasonal
priorities, thereby guiding targeted interventions to
mitigate health risks through landscape optimization.

ABSTRACT

Introduction: Urban landscape patterns impact
population health; however, traditional indices are
limited by single-dimensional focus, multicollinearity,
and weak health relevance. Developing a holistic
Landscape Pattern Health Index (LPHI) is critical for
planning healthy cities.

Methods: Using data from Ningbo (China), this
study integrated 2001-2023 land use data (reclassified
into 7 types) and 2009-2016 street-level stroke
mortality data. A two-stage Generalized Weighted
Quantile Sum (GWQS) regression addressed the
temporal data discrepancy, first deriving weights from
2009-2016 health data, then calculating the LPHI for
the full 2001-2023 period. Quasi-Poisson regression
was used to validate the association between the LPHI
and stroke mortality.
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Results: An interquartile-range increase in the
Protective Composite Index reduced stroke mortality
by 20% (warm seasons) and 22% (cold seasons), while
the Hazard Composite Index increased risk by 29%
(warm) and 20% (cold). The LPHI demonstrated
significant associations with stroke mortality, with the
Protective Composite Index reducing risk and the
Hazard Composite Index increasing it across both
seasons.

Conclusion: The study suggests that the LPHI can
serve as a bridge between landscape ecology and public
health, with the potential to identify high-risk areas
and seasonal priorities. This approach could guide
targeted interventions through landscape optimization,
supporting evidence-based healthy urban planning.

Urban landscape patterns influence population
health through the spatial distribution of green spaces
(1) and water bodies (2) that mitigate pollution and
promote physical activity, whereas industrial land use
increases cardiovascular risks (3). Configurations such
as high edge density in green spaces may facilitate
physical activity and cohesion,
impervious surface complexity may exacerbate urban
heat island effects and pollutant accumulation,
indirectly influencing stroke risk via microclimatic and
Landscape patterns are

social whereas

physiological ~ pathways.
typically quantified using indices; however, existing
indices often focus on a single dimension and face
challenges, such as multicollinearity and limited
relevance. Inspired by the Air Quality Health Index
(AQHI)(4), we developed the Landscape Pattern
Health Index (LPHI) that integrates statistical
robustness, practical utility, and public health
guidance, all critical for Healthy City initiatives.

In environmental health, generalized weighted
quantile sum (GWQS) regression models can assess the
health impacts of exposure to mixed air pollutants and
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chemicals, effectively reducing collinearity among
components. Unlike dimension-reduction techniques
such as Principal Component Analysis (PCA), which
create latent factors not tied directly to health
outcomes, GWQS regression derives component
weights explicitly from associations with health,
generating more interpretable and health-relevant
composite indices, reducing multicollinearity among
correlated indicators, enabling integrated health-
oriented indices creation, and advancing evidence-
based strategies for urban landscape optimization.
Based on data from Ningbo, we employed GWQS
regression to construct an LPHI, offering a tool for
planning healthy cities.

We collected annual land use data (500m resolution)
from the MCDI12Q1 land cover  dataset
(https://earthexplorer.usgs.gov/)  from  2001-2023,
reclassified into seven major categories: impervious
surface, grassland, cropland, bare land, wetland,
waterbody, and forest/shrubland. Stroke was chosen as
the outcome as it is the leading cause of death in China
(5), and existing literature suggests its susceptibility to
environmental influences mediated by landscape
patterns, including air quality, temperature extremes,
and opportunities for physical activity (6). Daily street-
level stroke mortality data from the Ningbo CDC were
aggregated into annual counts at the street-unit level to
achieve spatiotemporal alignment with landscape and
covariate data. However, owing to data availability,
these data were sourced from 2009-2016. To reconcile
the temporal mismatch between the landscape
(2001-2023) and health (2009-2016) data, a two-
stage  analytical ~ approach  was  employed
(Supplementary Material, available at https://weekly.
chinacdc.cn/). Briefly, Stage 1 established metric-
health associations and derived weights using
2009-2016 data; Stage 2 applied these weights to
calculate the LPHI for the 2001-2023 period.
Meteorological and pollutant (e.g., PM; 5) data were
sourced from the China Meteorological Forcing
Dataset (7) and China High Air Pollutants Datasets
(8), respectively. Data on key meteorological and air
quality confounders were incorporated as covariates in
subsequent regression models to isolate independent
associations between landscape patterns and stroke risk,
following adjustment to a 1 km resolution using
bilinear interpolation. Nighttime-light data (500m
resolution) were applied to reflect economic disparities
across streets. Summary statistics for stroke deaths,
pollutant concentrations, meteorological factors, and
nighttime light intensity across street-units during
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warm and cold seasons (2009-2016) are provided in
Supplementary Table S1.

For urban landscape patterns, we selected six indices:
one composition metric (Percentage of Landscape,
PLAND) and five configuration metrics [patch density
( PD), largest patch index (LPI), edge density (ED),
mean shape index (SHAPE_MN), and aggregation
index (AI)]. The selection was based on the rationale
that these metrics quantify fundamental spatial
characteristics, such as the abundance, size, shape, and
connectivity of landscape elements, which are theorized
to influence environmental exposure (e.g., pollution
and heat) and health-promoting opportunities (e.g.,
physical activity), thereby constituting plausible
pathways to population health.

The analysis applied a two-stage GWQS regression.
First, landscape metrics were scaled into quartiles, and
bootstrap sampling (100 iterations) was applied to
estimate weights linking metrics to health outcomes,
generating a land use-specific health index classified as
protective or hazardous based on their association
direction. Second, metrics sharing consistent protective
or hazardous associations were aggregated via GWQS
to derive composite LPHIs (protective and hazardous),
thereby enabling a holistic assessment of the health
impacts of landscape patterns. To validate the
effectiveness of the constructed LPHIs, a separate
quasi-Poisson regression was applied, modeling stroke
mortality as a function of the LPHI scores, while
including the same set of covariates for adjustment.
Statistical analyses were conducted using R software
(version 4.2.3; R Core Team, R Foundation for
Statistical Computing, Vienna, Austria).

Supplementary Table S2 (available at https://weekly.
chinacdc.cn/) details the health indices constructed for
each land-use type, revealing harmful associations
between stroke mortality and indices for impervious
surfaces and bare land. Protective associations were
identified for grassland, cropland, wetland, waterbody,
and forest/shrubland. Spatial configuration metrics
(e.g., PD) outweighed landscape composition by
weighting  the components of health indices,
underscoring their predominant influence on health
(Supplementary Table S3, available at https://weekly.
chinacdc.cn/).

Figure 1 shows the constituent weights of protective
and hazardous composite indices. The warm-season
Protective Composite Index prioritized grassland-PD
(20.04%), grassland-Al (17.81%), and
forest/shrubland-LPI  (15.88%), emphasizing the
importance of fragmented green spaces. In contrast,
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FIGURE 1. Weights of the constituent factors of the season-specific LPHI.

Note: Weights represent the relative contribution of each landscape metric derived from the GWQS regression for the (A)
Protective Composite Index (Warm); (B) Hazard Composite Index (Cold); (C) Protective Composite Index (Warm); (D)
Hazard Composite Index (Cold). The sum of the weights for each composite index is 100%. The metrics are sorted in
descending order of their weights.

Abbreviation: Grassland-PD=Grassland Patch Density; Grassland-Al=Grassland Aggregation Index; Forest/Shrubland-
LPI=Forest/Shrubland Largest Patch Index; Waterbody-ED=Waterbody Edge Density; Wetland-PD=Wetland Patch Density;
Forest/Shrubland-PD=Forest/Shrubland Patch Density; Waterbody-PD=Waterbody Patch Density; Waterbody-LPI=
Waterbody Largest Patch Index; Wetland-LPI=Wetland Largest Patch Index; Grassland-LPI=Grassland Largest Patch Index;
Waterbody-PLAND=Waterbody Percentage of Landscape; Impervious surface-ED=Impervious Surface Edge Density;
Impervious surface-SHAPE_MN=Impervious Surface Mean Shape Index; Bareland-PLAND=Bareland Percentage of
Landscape; Bareland-LPI=Bareland Largest Patch Index; Bareland-SHAPE_MN=Bareland Mean Shape Index; Bareland-
ED=Bareland Edge Density; Bareland-PD=Bareland Patch Density; Bareland-Al=Bareland Aggregation Index.

the cold-season Protective Composite Index relied on
grassland-Al (23.42%), grassland-PD (21.14%), and
waterbody-ED (13.96%), reflecting enhanced natural
vegetation and water connectivity during colder

months. The

overwhelmingly driven by impervious surface ED

Hazard Composite Index was
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(warm: 72.86%; cold: 69.07%) and SHAPE_MN
(warm: 9.04%j cold: 10.20%), indicating that irregular
impervious patches posed a year-round risk.

For the composite LPHIs (Table 1), the Hazard
Composite Index had higher mean values in warm

(1.16, IQR=1.64) than cold (1.13, /QR=1.58) seasons,
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TABLE 1. Descriptive statistics of the constructed LPHI (2001-2023) and Percentage change (mean and 95% posterior
intervals) in stroke mortality associated with an interquartile range (/QR) increase in LPHI.

Descriptive Statistics

Seasons LPHI Mean QR Median Min Max Stroke mortality (%) P
Protective Composite Index 0.90 0.48 0.92 0.01 1.66 -20 (-26, —-13) <0.001
Warm Hazard Composite Index 1.16 1.64 1.46 0.00 247 +29 (+19, +40) <0.001
Cold Protective Composite Index 0.94 0.46 0.92 0.02 2.03 -22 (-28, -16) <0.001
Hazard Composite Index 1.13 1.58 1.38 0.00 2.41 +20 (+11, +29) <0.001

Note: ‘+’ indicates a percentage increase in stroke mortality associated with an IQR increase in LPHI, whereas ‘-’ represents a percentage

decrease linked to an IQR increase in LPHI.

Abbreviation: LPHI=Landscape Pattern Health Index; /QR=interquartile range.

with extreme ranges spanning 0.00-2.47. The
Protective Composite Index exhibited similar means
across seasons (warm: 0.90; cold: 0.94), but a higher
maximum in cold seasons (2.03 compared to 1.66),
suggesting a stronger protective potential of natural
landscapes in winter. Regression results confirmed the
validity of the LPHI: each /QR increase in the
Composite Index reduced the stroke
mortality risk by 20% (13%-26%) in warm seasons
and 22% (16%-28%) in cold seasons. Conversely, the
Hazard Composite Index increased risk by 29%
(19%—-40%) and 20% (11%-29%), respectively (all
P < 0.001). Together, these findings demonstrate a
robust association between the LPHI and stroke
mortality, supporting its validity as a framework for
assessing the health effects of urban landscape patterns.

Protective

DISCUSSION

Regarding the associations between indices
constructed for individual land use types and stroke
mortality, grassland, cropland, wetland, waterbodies,
and forest/shrubland reduced risks in both seasons,
whereas impervious surfaces and bare land increased
risks. This aligns with the known benefits of green (1)
and blue spaces (2). Vegetated areas are likely to
mitigate the risk through pollutant absorption,
microclimate  regulation, and stress reduction.
Although no direct studies have linked impervious
surfaces or bare land to stroke mortality, built
environment density is positively correlated with stroke
risk (6). Impervious surfaces, particularly those with
complex shapes and extensive edges, intensify the
urban heat island effect (9). This can elevate stroke risk
through temperature-dependent pathways such as
stress, which reduces
perfusion in warm seasons and heightens cold-induced
hemodynamic instability in cold seasons (70).

Barelands lacking vegetation may similarly experience

exacerbated heat cerebral
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extreme temperature €Xposure.

The LPHI, developed through GWQS regression,
addresses the key limitations of traditional indices,
including single-dimensional focus, multicollinearity,
and weak health linkages, by systematically integrating
both landscape composition (e.g., impervious surfaces
and green space coverage) and configuration metrics
(e.g., patch density and aggregation). Its dual
protective-hazardous index design provides a holistic
framework to assess both risk-mitigating and risk-
amplifying landscape features, revealing that the
protective effects of grasslands and water bodies
depend on features such as fragmented green spaces
(facilitating ~ activity) in warm seasons, whereas
hazardous risks from impervious surfaces relate to edge
complexity, whose irregular configurations
heat island effect or pollutant
accumulation, thereby increasing the risk of stroke. By

may
exacerbate the

prioritizing metrics with strong health associations, the
LPHI bridges landscape ecology and public health and
offers a robust tool for quantifying the impact of urban
forms on health outcomes.

A key innovation of this study is the development of
the LPHI via GWQS regression. Our findings suggest
that this approach can translate complex landscape
patterns into a composite tool with potential public
health utility. The significant associations observed
support the idea that the LPHI can holistically assess
health risks and benefits from urban landscapes, which
could enable better prioritization of interventions, such
as enhancing green space connectivity or managing
impervious surface expansion, to mitigate population
health risks.

However, the LPHI
limitations. Validated in Ningbo, its generalizability

framework has several
may face challenges owing to varying local land use,
climate, and health contexts. The 500m resolution
remote sensing data may overlook microscale features
with neighborhood-level health impacts, such as small
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park accessibility. Socioeconomic factors, such as
income inequality, indirectly inferred from nighttime
light data, should be explicitly integrated. Relying
solely on stroke mortality restricted the study's scope.
Stroke, a chronic disease with acute manifestations,
requires the precise alignment of long-term landscape
exposures (e.g., pre-2009 data gaps) with acute triggers
(partially addressed here). Different diseases (e.g.,
asthma and tumors) exhibit distinct environmental
sensitivities (e.g., tumors to industrial pollution),
necessitating multi-disease validation. Static residential
assumptions ignore migration (e.g., rural-to-urban
moves) and biased associations for chronic diseases,
such as stroke, influenced by past exposure. These gaps
highlight the need for higher-resolution data, explicit
socioeconomic indicators, multiple diseases, and
longitudinal analyses to enhance LPHI’s utility.

Despite these limitations, the LPHI bridges
landscape ecology and public health, offering a scalable
tool for healthy urban planning. In the big data era,
real-time sensing (e.g., Sentinel-2) and machine
learning may be integrated to predict landscape health
risks (e.g., impervious surface growth) and guide smart
interventions, such as green corridor prioritization.
This aligns with the need to deepen LPHI public
health applications using data-driven insights for
enhanced risk control. Given the burden of stroke and
environmentally sensitive diseases, integrating LPHI
into policies fosters proactive place-based strategies.
This ensures that landscape design matches health
priorities, supports sustainability and population health
while leveraging technology for precision public health.
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SUPPLEMENTARY MATERIAL

TEMPORAL SCOPE OF HEALTH OUTCOME AND LANDSCAPE DATA.
Due to data availability constraints, the health outcome data (stroke mortality) used in this study were sourced
from 2009-2016, while the landscape pattern indices were derived from land use data collected from 2001-2023. To
account for this temporal discrepancy in our analysis, a two-step approach was employed, as outlined below:

Step 1: Establishing Weights of Landscape Indices
For the 2009-2016 period, we aimed to establish the weights of landscape indices associated with health
outcomes. First, we standardized the landscape indices into 4 quantiles. Using a bootstrap sampling method with
100 resamples and maximum likelihood estimation, we estimated the weights, w;, of each landscape index, q;
(i=1~c, where c=6), associated with the health outcome. This was done by solving the equation:

C
E (u) =o+Bx (2 Wiqi) +7'g
=T

A detailed explanation of GWQS regression model parameters is provided below:

E(u): The expected number of deaths from stroke. This is the value that the model ultimately aims to predict,
reflecting the theoretically expected number of stroke deaths based on landscape indices and other covariates.

a: The intercept term. When all landscape index variables (q;) are 0 and other covariates (z) are also 0, «
represents the expected number of stroke deaths, serving as a baseline value for the model.

wi: The weight of the landscape index q;. Its value range is 0<w;<1 and ) ;; w;=1. These weights determined the
relative importance of each landscape index in comprehensively influencing stroke mortality.

q;: Landscape indices. Here, i = 1—c (c=0), representing different quantitative indicators of landscape patterns
such as PLAND and PD. They participated in the model calculation after being standardized into four quantiles.

B: The regression coefficient of the weighted index () i, wiq;). This was used to measure the degree of influence
of the weighted comprehensive value of the landscape indices on the expected number of stroke deaths. Its
significance in influencing the results was determined using a significance test (P < 0.05).

z: A row vector of other covariates that need to be adjusted, such as PM, s, relative humidity, economic
development level, and other factors. The superscript T in z! denotes the transpose operation, converting this row
vector into a column vector for proper matrix multiplication with the coefficient vector ¢ .

¢: The regression coefficient column vector for the covariates z, reflecting the degree of influence of each
corresponding covariate on the expected number of stroke deaths.

The model was subject to the constraints ) ; ; w;=1 and 0<w;<l. For each bootstrap sample, we estimated the
model parameters (B,w;), and evaluated the significance of the landscape index quantile weight w; based on the
significance of the regression coefficient B (P < 0.05). We then averaged the results from the significant bootstrap

SUPPLEMENTARY TABLE S1. Summary statistics on stroke deaths, pollutant concentrations, meteorological factors and
nighttime light intensity across street-units in Ningbo during warm and cold seasons (2009-2016).

Indicators Warm Seasons Cold Seasons
Total count Mean SD Median Min Max Total count Mean SD Median Min Max
Stroke Deaths/n 18,331 010 032 0 0 6 25201 014 039 0 0 5
Air pollutants
PM, /(ug/m°) 315 1343 2895 427 116.71 56.71 27.25 50.63 8.96 450.59
NO,/(ug/m®) 2752 980 2676 4.92 85.67 47.97 1540 47.02 7.24 134.47
Meteorology
Daily mean temperature/C 2522 395 2555 925 3558 875 497 833 -822 24.09
Relative humidity/% 77.77 10.84 7839 30.44 100.00 72.38 14.75 73.32 12.15 100.00
Wind speed/(m/s) 240 116 217 022 19.49 243 113 223 0.08 10.20
NTL/(nWem™sr™") 8.39 12.36 269 0.00 68.24 8.39 1236 269 000 68.24
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SUPPLEMENTARY TABLE S2. Descriptive statistics of the constructed health index (2001-2023) for each land use type
and their direction of association with stroke mortality.

Warm Seasons Cold Seasons
Index Descriptive Statistics Descriptive Statistics
Mean IQR Median Min Max RR (95% CI P Mean IQR Median Min Max RR (95% Gl P
Impervious surface 1.49 2.89 1.96 0.00 3.00 1.13(1.08,1.18) <0.001 1.48 270 1.89 0.00 3.00 1.09(1.04,1.14) <0.001
Grassland 1.31 052 1.25 0.00 2.87 0.74 (0.68,0.82) <0.001 1.29 0.56 1.21 0.00 2.83 0.75(0.69,0.82) <0.001
Cropland 155 197 1.96 0.00 3.00 0.93(0.89,0.97) 0.002 1.55 1.97 1.97 0.00 3.00 0.91(0.87,0.95) <0.001
Bareland 150 1.22 147 0.00 3.00 1.10(1.03,1.18) 0.007 143 1.14 1.24 0.00 3.00 1.11(1.03,1.18) 0.004
Wetland 163 1.41 1.66 0.00 3.00 0.90(0.84,0.97) 0.005 1.64 148 1.66 0.00 3.00 0.89(0.83,0.95) 0.001
Waterbody 144 076 148 0.00 2.52 0.78(0.71,0.87) <0.001 1.44 0.79 1.48 0.00 2.58 0.80(0.73,0.88) <0.001

Forest/Shrubland 1.45 1.24 144 0.00 3.00 0.86(0.81,0.91) <0.001 144 140 1.40 0.00 2.99 0.88(0.83,0.94) <0.001

Note: RR (95% Cl) >1 indicates a harmful association with health outcomes, whereas RR (95% CI) <1 suggests a protective association.
Abbreviation: C/=confidence interval; RR=relative risk.

SUPPLEMENTARY TABLE S3. Weights of the constituent factors of the season-specific health index for each land use type
(%).

Warm Seasons (%) Cold Seasons (%)
Ind Landscape Spatial Landscape Spatial
ndex Composition Configuration Composition Configuration
PLAND Al ED LPI PD SHAPE_MN PLAND Al ED LPI PD SHAPE_MN
Impervious 0.07 022 97.77 0.09 0.08 1.78 0.03 038 93.99 0.06 0.14 5.41
surface
Grassland 0.09 49.13 0.05 6.83 41.76 2.14 0.07 51.82 0.06 7.13 37.74 3.17
Cropland 0.03 0.70 0.03 124 97.92 0.08 0.04 093 0.04 060 98.32 0.06
Bareland 22.45 7477 059 0.07 0.93 1.17 13.77 80.80 0.24 0.03 0.47 4.69
Wetland 1.66 3.67 8.31 26.74 59.60 0.01 1.76 065 6.70 33.41 57.47 0.02
Waterbody 0.02 21.21 1.19 26.34 48.32 2.91 0.05 13.35 0.14 32.62 46.21 7.64
Forest/Shrubland 0.02 0.09 0.02 43.38 56.02 0.47 0.05 0.72 0.04 38.12 59.99 1.07

Abbreviation: PLAND=Percentage of Landscape; Al= Aggregation Index; ED=Edge Density; LPI= Largest Patch Index; PD= Patch
Density; SHAPE_MN= Mean Shape Index

samples to obtain the final weights for each index.

Step 2: Calculating the Landscape Pattern Health Index (LPHI)

In the second step, using the weights obtained from the first-step analysis, we calculated the Landscape Pattern
Health Index (LPHI) for the 2001-2023 period. Specifically, for the 2001-2023 landscape data, we first re-
standardized the landscape indices into four quantiles and then utilized the weighted index formula WQS=} 7, w; g;
for the calculation, WQS: weighted quantile sum. By separating the analysis into these two steps, we were able to
effectively utilize the available data and establish a comprehensive understanding of the relationship between
landscape patterns and health outcomes, despite differences in their temporal scopes.
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