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ABSTRACT

Introduction: Public health surveillance is crucial
for decision-making. Given the significant threat of
influenza to public health, developing predictive
models using multichannel surveillance systems is
imperative.

Methods: Data were collected from multichannel
surveillance  systems, including hospitals,
engines, and climatological and air pollutant
surveillance systems, in a southern Chinese city from
January 2023 to January 2025. Spearman’s correlation
analysis assessed the relationships between variables
and reported influenza cases. Several machine learning
models were used to predict trends in reported cases.

Results: Correlation analysis showed that all four
surveillance systems were related to influenza, with 27
variables correlated with daily reported cases. The Long
Short-Term Memory model, established based on
variables with the highest lagged correlations (5-day to
7-day lag) through combined surveillance systems,
outperformed other models for 5-day forecasts
(R2=0.92; mean absolute error=156.92; mean absolute

search

percentage  error=79.95%; root Mean Squared
Error=292.33).
Conclusions: Data from various surveillance

systems effectively track influenza epidemics. The
model potential for infectious disease
surveillance and epidemic preparedness.

shows

Influenza, an acute respiratory infectious disease
caused by the influenza virus, threatens global public
health due to its high incidence, transmissibility, and
severe complications (7). Effective surveillance is
crucial for timely public health interventions.

Influenza spread is influenced by climatic, human
migration, social media, and socioeconomic status (2).
Integrating multisource data outbreak prediction
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remains challenging.

Artificial intelligence (AI) has introduced new scope
in disease prediction. Deep learning (DL), a machine
learning (ML) subset, enables model optimization
through self-supervised learning, showing superior
prediction performance (3). These technologies show
potential for disease prediction by capturing complex
patterns (4).

This study explored the relationship between
influenza cases and surveillance systems in a southern
Chinese city, using Al techniques to establish
prediction models for influenza epidemics, to refine
monitoring strategies and inform public health
responses.

METHODS

This study was conducted in a major southern
Chinese city with 13 million residents in late 2023.
Located at 114° 30" E and 30° 58’ N, it has a
subtropical monsoon humid climate with hot summers
and cold winters. Influenza occurs more in winter and
spring. Several hospitals serve as influenza surveillance
sentinel to collect representative data systematically. To
build the prediction model, data were collected from
multichannel surveillance systems, including influenza
cases, hospitals, meteorological and air pollutant
surveillance  systems,
(Supplementary Table S1, available at https://weekly.

chinacdc.cn/).

and search engine data

Multi-Surveillance systems

Daily influenza reported cases were obtained from
China Information System for Disease Control and
Prevention (5). All case details were identified. After
tallying daily case counts, missing data for 70 days
(70/731, 9%) was identified. Linear interpolation was
chosen for its ability to preserve temporal structure and
provide reliable estimates for short-term missing values,
making it preferable to mean imputation or deletion.
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Daily fever clinic attendance and nine related
symptoms, including runny nose, cough, sore throat,
dyspnea, fever, headache, joint pain, myalgia, and
fatigue, were collected from Electronic Medical
Records (EMRs) of outpatient visits.

Baidu, a Chinese search engine, provides a search
index for tracking keyword trends and user behavior.
Baidu Search Index (BSI) data covering desktop and
mobile queries were collected using influenza
symptoms keywords (https://index.baidu.com/
[accessed 2025-01-05]).

Air  pollutant
concentrations of particulate matter with aerodynamic
diameter <2.5 pm (PM;s), particulate matter with
aerodynamic diameter <10.0 pm (PMj(), nitrogen
dioxides (NO,), sulfur dioxide (SO,), carbon
monoxide (CO), and ozone (O3), were obtained from
the city’s Department of Ecology and Environment
website.

Meteorological surveillance data were obtained from
China Meteorological Data Sharing Service Center
(http://data.cma.cn/en [accessed 2025-01-05]),
including daily mean temperature (Tmean), mean
relative humidity (RHmean), mean air pressure, mean
wind speed, mean precipitation, and mean visibility
range. The mean absolute humidity (AHmean) was
calculated based on Tmean and RHmean as following

formula (6):
AHmean ={6.112 X exp[(17.67 X Tmean) |
(Tmean + 243.5)] X RHmean X 2.1674}/
(273.15 + Tmean)

surveillance  data,  including

Model Construction

Spearman’s correlation coefficients were calculated
for all variables for daily reported cases, as data showed
strong non-parametric distributions. Each variable was
normalized to 0-1 to facilitate model compatibility.

This study used ML methods to build prediction
models: ensemble models (Random Forest and
eXtreme Gradient Boosting), linear regression, and
instance-based models (K-Nearest Neighbor). Two DL
models, the Gated Recurrent Unit and Long Short-
Term Memory (LSTM), were used.

In the model construction process, variables with
P<0.05 in correlation analysis were selected as model
inputs. Lagged correlations evaluated relationships
between each variable and reported cases from —7 to 0
days. For prediction on day t, variables with highest
correlation coefficients from t—7 to t were selected.

For the DL models, grid search determined optimal
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hyperparameter combinations. The selected hidden
sizes were 32, 64, 128, and 256. The number of layers
ranged from one to three in steps by one. Dropout
values ranged from 0.3 to 0.5 step by 0.05. The
learning rate values selected were 0.01, 0.05, 0.001,
and 0.0005. Adam was selected as the optimizer.

The data from January 2023 to January 2025
showed two peaks in influenza cases and an upward
trend in late 2024 (Supplementary Figure S1, available
at hteps://weekly.chinacdc.cn/). The dataset was split
in an 8:2 ratio into a training set (January 2023 to
August 2024) and testing set (August 2024 to January
2025) for model training and validation. This ensured
adequate training data while maintaining a predictive
baseline for validation. The model performance was
evaluated by comparing predicted and actual data
using the coefficient of determination (R?) (values
close to 1 indicate better prediction), mean absolute
error (MAE), mean absolute percentage error (MAPE),
and root mean square error (RMSE) (values close to 0
indicate better prediction).

Model Comparison

To evaluate model validity and robustness of the
selected dataset and constructed model, comparative
analysis of the performances of the various models was
conducted. Prediction models were developed using
four surveillance systems: hospital (H), search engine
(B), meteorological (M), and air pollutant (P). These
models involved individual systems and their
combinations: Model H, Model B, Model M, Model P,
Model H+B, Model H+M, Model H+P, Model B+M,
Model B+P, Model M+P, Model H+B+M, Model
H+B+P, Model H+M+P, Model B+M+P, Model All
totaling 15 models.

Statistical Analysis
All the time-series data were smoothed. All statistical
analyses in this study were performed using Python
(version  3.12.0; Python Software Foundation,
Wilmington, Delaware, USA) and TensorFlow
(version  2.0.0; Google LLC, Mountain View,
California, USA).

RESULTS

Description of Data from

Surveillance Systems
From January 2023 to January 2025, the reported
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influenza cases showed three distinct peaks
(Supplementary Figure S1): the first in early 2023,
second from December 2023 to January 2024, and
third in late 2024. These peaks highlight the seasonal
and fluctuating nature of influenza infections.

During monitoring, the number of fever clinic visits
and nine symptoms showed trends similar to those of
influenza cases but with discrepancies. Fever clinic
visits increased in early 2023 and from October 2023
to January 2024, matching the first two peaks, but not
the third in late 2024 (Supplementary Figure S2,
available at https://weekly.chinacdc.cn/). The daily
frequencies of nine influenza-related symptoms showed
similar patterns (Supplementary Figure S3, available
athteps://weekly.chinacdc.cn/).  Daily BSI  trends,
climatic factors, and air pollutants are detailed
inSupplementary Figures S4-S6 (available at https://
weekly.chinacde.cn/).

Correlation of Surveillance Systems

Figure 1 shows the lag correlations between all
surveillance data and the reported cases over the
monitoring period. Most correlations were statistically
significant  (P<0.001). Symptoms like sore throat,
cough, and myalgia showed strong positive correlations
at shorter lags (0-3 days). Myalgia reached a
correlation of 0.694 [95% confidence interval (CI):
0.654, 0.730] at Coef-0, sore throat was 0.634 (95%
CI: 0.588, 0.675) at Coef-0, and cough was 0.566
(95% CI: 0.514, 0.613) at Coef-1. The meteorological
factors and air pollutants were weakly correlated.
Tmean had a correlation of -0.456 at Coef-7 and
-0.425 at Coef-3, while O3 had -0.337 at Coef-7 and
-0.321 at Coef-5.

Prediction Model of the Influenza Cases
Prediction models for reported influenza cases were
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FIGURE 1. Spearman correlation analysis between different surveillance systems and reported cases with a 7-day lag

before.

Abbreviation: Tmean=daily mean temperature; Pmean=daily mean air pressure; RHmean=daily mean relative humidity;

AHmean=daily mean absolute humidity;
PRCPmean=daily mean precipitation.
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WSmean=daily mean wind speed;

VISmean=daily mean visibility;
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developed using variables from four surveillance
systems. For DL models, a temporal window was
incorporated, and the LSTM model performed best
with a 14-day window (R2=0.81, MAE=170.59,
MAPE=60.26%, and RMSE=453.23) (Supplementary
Table S2, available at https://weekly.chinacdc.cn/).
Prediction models were then built using various ML
algorithms for predictions from 0 to 7 days ahead. The
LSTM model, using variables with highest lagged
correlations (5- to 7-day lag), showed strong prediction
(R%=0.92;
RMSE=292.33)

performance for 5 days forecasts

MAE=156.92;  MAPE=79.95%;

(Table 1).

The  prediction different

surveillance systems combinations were compared. The

performances  of

model using all variables performed the best (R2=O.92,
MAE=156.92, MAPE=79.95%, and RMSE=292.33)
(Figure 2). The models based on a single surveillance
system performed poorly, and the best-performing
model was Model H (R?-0.25, MAE=428.57,
MAPE=221.61%, and RMSE=896.41). Among the
two system combinations, Model H+M was best
(R%2-0.73, MAE=248.17, MAPE=125.64%, RMSE-=
533.21). For the three-system combinations, Model

TABLE 1. Comparison of different lag days of data between different models.

Model performance - 6 5 2 Lag (day) i ) > 0
MAE
RF 337.87 338.28 341.30 334.08 312.13 300.46 288.00 242.29
XGBoost 287.21 278.68 306.39 296.40 256.80 270.32 262.13 194.60
LR 331.20 345.66 363.05 459.53 463.15 453.79 518.47 520.87
KNN 318.65 322.00 335.00 315.57 310.96 292.79 272.76 249.22
GRU 213.40 201.27 245.67 248.84 222.84 209.87 245.61 235.47
LSTM 200.40 229.21 156.92 238.00 24477 258.08 214.40 170.59
MAPE (%)
RF 123.67 126.36 133.84 134.04 129.53 127.40 124.04 118.06
XGBoost 123.83 113.94 126.43 129.99 106.45 117.50 100.04 91.91
LR 290.16 299.56 290.85 405.42 409.27 396.86 466.83 553.25
KNN 101.26 110.71 112.25 101.42 104.63 95.35 85.36 89.93
GRU 92.66 80.78 99.19 70.50 74.83 73.84 104.70 87.31
LSTM 82.45 11417 79.95 124.37 132.32 110.60 61.55 60.26
RMSE
RF 850.54 847.87 839.32 801.37 734.83 702.84 662.17 522.37
XGBoost 676.90 666.64 740.27 670.44 622.87 619.18 627.01 436.74
LR 563.26 575.52 607.19 665.98 659.59 653.02 699.16 601.48
KNN 835.86 824.83 840.50 789.46 792.10 753.85 721.15 572.74
GRU 416.80 505.86 611.00 646.34 553.33 509.26 574.51 581.57
LSTM 467.92 407.89 292.33 405.50 490.79 574.22 570.83 453.23
R2
RF 0.25 0.26 0.27 0.34 0.44 0.49 0.55 0.72
XGBoost 0.53 0.54 0.44 0.54 0.60 0.61 0.60 0.80
LR 0.67 0.66 0.62 0.54 0.55 0.56 0.50 0.63
KNN 0.28 0.30 0.27 0.36 0.35 0.41 0.46 0.66
GRU 0.84 0.76 0.65 0.61 0.71 0.76 0.69 0.68
LSTM 0.79 0.83 0.92 0.84 0.77 0.69 0.69 0.81

Abbreviation: MAE=mean absolute error; RF=Random Forest; XGBoost=eXtreme Gradient Boosting; SVM=Support Vector Machine;
LR=Linear Regression; KNN=K-Nearest Neighbors; GRU=Gated Recurrent Unit; LSTM=Long Short-Term Memory; MAPE=mean absolute
percentage error; RMSE=root mean square error; R?>=coefficient of determination.
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FIGURE 2. Prediction diagram for the LSTM model. (A) All monitoring period; (B) Test set period.
Abbreviation: LSTM=Long Short-Term Memory; Cl=confidence interval.

H+M+P (R?=0.84, MAE=201.06, MAPE=63.64%,  292.33, outperforming other models.

RMSE=418.51) showed the highest prediction Compared to existing models, our approach shows
efficiency (Table 2). improved prediction accuracy by integrating multiple
data sources. Previous studies relied mainly on single-
DISCUSSION source data, such as clinical report (7) or Google
Trends (8), limited by reporting delays, definition
changes, and data errors (9-70). Our models used
EMRs, social media, meteorological, and air pollutant
data were designed to mitigate forecasting errors. The
combined model performed best, highlighting the
value of diverse data in assessing influenza trends. The

Prediction models were developed to track the
influenza epidemic in a southern Chinese city by
integrating data from multichannel surveillance
systems. The LSTM model combining all surveillance
data demonstrated high prediction accuracy, with

R?=0.92, MAE=156.92, MAPE=79.95%, and RMSE= early phase of the influenza outbreak highlighted the
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TABLE 2. Comparison of different combinations of data.

Model performance of different combinations MAE MAPE (%) RMSE R?
Model H 428.57 221.61 896.41 0.25
Model B 414.27 141.49 971.23 0.11
Model M 456.34 159.50 946.81 0.16
Model P 435.46 131.86 1000.15 0.06

Model H+B 370.35 168.43 793.79 0.41
Model H+M 248.17 125.64 533.21 0.73
Model H+P 286.82 105.25 670.63 0.58
Model B+M 275.89 102.85 651.88 0.60
Model B+P 317.25 109.17 703.38 0.54
Model M+P 254.46 102.41 548.00 0.72
Model H+B+M 215.49 108.40 480.24 0.78
Model H+B+P 197.02 52.24 522.32 0.74
Model H+M+P 201.06 63.64 418.51 0.84
Model B+M+P 267.35 118.07 550.24 0.72
Model All 156.92 79.95 292.33 0.92

Abbreviation: MAE=mean absolute error; MAPE=mean absolute percentage error; RMSE=root mean square error; R®=coefficient of

determination.

inadequacy of confirmed case data for traditional
surveillance (/7). A multifaceted monitoring approach
is essential to improve epidemic predictions.

Data quality and diversity significantly affect model
EMRs provide detailed

information. Fever clinic visits exhibited a weaker

performance. clinical
correlation (r=0.257), as fever clinic patients may have
other diseases and some patient with influenza may not
visit fever clinics. Symptoms like myalgia, cough, and
sore throat showed stronger positive correlations with
influenza cases at shorter lags, which underscore the
importance of symptom-based surveillance (72). Social
media data provide real-time insights into potential
outbreaks, with search volumes for symptom keywords
correlating with influenza cases (13). Studies indicate
that combining Internet-based queries and climate data
improves the accuracy and timeliness of infectious
disease warning systems (/4). Our findings show
positive correlations between air pollutants (SO,,
NO,, PM;, PM; 5, and CO) and negative correlation
between Oj and influenza cases, consistent with
previous (15-16). This highlights the

importance of integrating air pollutant data for

studies

accurate influenza forecasting.

The LSTM model demonstrated improved accuracy
Hospital
enhanced prediction performance, consistent with
results.  This  approach  provides
understanding of environmental factors, public health

through multisource data. surveillance

correlation

Chinese Center for Disease Control and Prevention

interventions, and disease dynamics. Although a 5-7-
day lag generally performed well, some combinations
weakened due to flu’s complex spread mechanisms
involving virus survival and human behavior.
Environmental variables can extend virus survival time,
potentially causing delays between changes and
observable influenza case increases. Our multisource
surveillance data integrated clinical, laboratory, and
syndromic monitoring systems, with reporting delays
contributing to extended lag period. Despite
similarities in respiratory disease spread factors,
significant heterogeneity existed. Early prediction
improves response strategies, resource allocation, and
outbreak management.

This study has certain limitations. The absence of
population mobility and vaccination rates may restrict
the capacity of the model to capture influenza
transmission dynamics. Data quality from less reliable
sources may affect performance, and the lack of
external validation limits generalizability. Seasonal
variations may lead to dispersed data patterns and
higher noise levels during non-epidemic seasons.
Future research should incorporate vaccination data
and explore additional data sources like behavioral
patterns and environmental factors. External validation
and detailed data preprocessing, such as smoothing or
cross-validation, could enhance generalization.

This study demonstrates that multichannel data
integration improves respiratory infectious disease

CCDC Weekly /Vol.7 / No. 44 1401
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prediction accuracy and timeliness, with implications
for public health responses. Ongoing research will
refine these models for other health threats.
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SUPPLEMENTARY MATERIAL

Model Introduction

This study constructed a prediction model for daily incidence of reported influenza cases using four channels
surveillance data sources: hospital surveillance (H), Baidu Search Index (B), meteorological surveillance (M), and air
pollutant surveillance (P). Six machine learning (ML) models were applied, covering common single and ensemble
learning methods. The single models included linear regression (LR) and K-nearest neighbors (KNN). The
ensemble learning models comprised random forest (RF) and extreme gradient boosting (XGBoost). Deep learning
models included gated recurrent unit (GRU) and long short-term memory (LSTM). Model inputs (x) were different
data combinations from the four sources, with outputs (y) as daily reported case numbers. Data from January 2023
to January 2025, were used, with 80% for training and 20% for testing. The study aimed to identify the optimal
model for predicting influenza reported cases by comparing the predictive performance of different models.

Linear regression (LR) is a supervised ML algorithm that learns from labeled datasets to map data points to an
optimal linear function. LR performs well in capturing linear relationships in time series and can handle small-scale
data effectively. For formulas, see Equation [1], where § represents the partial regression coefficients and represents
the residuals.

y=Po+ b+ Paxat 0t Puxy + €]

K-Nearest Neighbors (KNN) is a versatile ML algorithm used for both classification and regression tasks. For
regression, it predicts a value based on the average of the values of its k-nearest neighbors. The choice of k is critical
as it balances the bias-variance trade-off. KNN is non-parametric, making no assumptions about the underlying data
distribution, and is straightforward to implement.

Random Forest (RF) is an ensemble of tree-structured classifiers. Each tree predicts based on an independent and
identically distributed random vector. In regression, it outputs numbers, trained on datasets from random vector
distributions. By integrating multiple decision trees, RF reduces overfitting risk, handles nonlinear data and complex
feature relationships, and is somewhat robust to missing data. For formulas, see Equation [2]. B " denote the RF’s
prediction for a new sample, which is the aggregated output from all decision trees in the model. 7 represent the

. . o . . . tree
number of decision trees in the RF. The prediction from the j-th decision tree for the new sample is denoted as j;

NS S @)

7=l
XGBoost is an optimized distributed gradient-boosting library that implements ML algorithms in the Gradient
Boosting framework. It’s designed for efficiency, flexibility, and portability. XGBoost excels in performance,

especially in nonlinear time-series problems. It can handle heterogeneous features and their complex interactions.
The formula is shown in Equation [3]. Et) represents the model’s prediction for the #-th sample, reflecting the latest
prediction after cumulative optimization up to iteration #. Y 5, fi (x;) is the cumulative prediction from previous
iterations up to #—1. f;(x;) denotes the prediction from the newly added tree at the z-th iteration, which aims to

correct the model’s prediction errors and bring the results closer to the true targets.
=1
t
W=y filw) +filx) 3)
=1

LSTM networks were developed to capture long-term dependencies in time-series data. An LSTM unit comprises
three gated units and two states. The three gates are the forget gate (f), input gate (i), and output gate (o,), which
regulate the information flow from the previous timestep. The two states are the hidden state (4,) and cell state (c,).
The hidden state ht acts as the short-term memory, passing information to the next timestep and the output layer.
The cell state ct serves as the long-term memory, updated by the forget and input gates. Here’s the structure in
detail:

- Forget Gate Layer: Determines what information to discard from the cell state using a sigmoid function.

- Input Gate Layer: Updates the cell state with new information through a sigmoid function and a tanh function.

- Output Gate Layer: Decides the next hidden state using a sigmoid function and a tanh function.

For the mathematical representation, the LSTM equations are as follows:
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ft =0 (Wf[cz—la et xt] + bf) “)
iy =0 ("Vz [Ct—h /]t—lvxt] + bi) Q)
0y = U(M[Cz—bht—hx}f] + bo) (6)

GRU is an LSTM variant. It combines the LSTM’s forget and input gates into a single update gate and merges
the cell state (c,) with the hidden state (4,), resulting in a simpler structure compared to the standard LSTM. This
design reduces the number of parameters, enabling faster training or requiring less data for effective generalization.

Dataset Splitting
As shown in Supplementary Figure S1, the total cases of daily incidence of reported influenza cases in the city
from January 2023, to January 2025, had two full peaks in 2023-2025 and an upward trend at the end of 2024.
For each model, the dataset was sequentially split into training and testing sets at an 8:2 ratio. This gave the training
set enough data for model fitting and the testing set a starting trend for prediction.

Model Evaluation

Model assessment used regression metrics: R2, MAPE, MAE, and RMSE. R? indicates the percentage of variation
in the target variable explained by the features. R2 ranges from 0 to 1, with higher values indicating a better fit.
MAPE measures the average percentage difference between predicted and actual values, reflecting the average
deviation of predictions from true values. MAE is the average of absolute errors, providing a clear measure of
prediction accuracy. RMSE, the square root of mean squared error, is widely used as it penalizes larger errors more
than MAE. For MAPE, MAE, and RMSE, values closer to 0 indicate better model performance. The calculation
equations for these metrics are presented below:

n ~\2
R=1- M 7)
Z;l=l()’i_yi)
MAPE = %Z ”:” % 100% ®)
=1
1« .
MAE= 3 [ - | ©)

=1

RMSE = %Z(yi—y,.)z (10)
=1
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SUPPLEMENTARY TABLE S1. Different surveillance systems and dataset descriptions.

Multichannel surveillance data Description Timeline Date range

Cases Report data

Influenza_cases Daily Reported Influenza Cases 1 day Jan 5, 2023-Jan 1, 2025
Hospital Surveillance data

visits Fever Clinic Visits 1 day Jan 5, 2023-Jan 1, 2025

Outpatients with respiratory symptoms Daily Outpatients with respiratory symptoms Jan 5, 2023-Jan 1, 2025

Fever Outpatient chief complaint of fever 1 day

Sore_throat Outpatient chief complaint of sore throat 1 day

Cough Outpatient chief complaint of cough 1 day

Runny_nose Outpatient chief complaint of runny nose 1 day

Myalgia Outpatient chief complaint of myalgia 1 day

Joint_pain Outpatient chief complaint of joint pain 1 day

Headache Outpatient chief complaint of headache 1 day

Dyspnea Outpatient chief complaint of dyspnea 1 day

Fatigue Outpatient chief complaint of fatigue 1 day
Search Engine Surveillance data Jan 1, 2023-Jan 1, 2025

BSI1 Baidu search rank related with fever 1 day

BSI2 Baidu search rank related with sore throat 1 day

BSI3 Baidu search rank related with cough 1 day

BSI4 Baidu search rank related with runny nose 1 day

BSI5 Baidu search rank related with myalgia 1 day

BSI6 Baidu search rank related with joint pain 1 day

BSI7 Baidu search rank related with headache 1 day

BSI8 Baidu search rank related with dyspnea 1 day

BSI9 Baidu search rank related with fatigue 1 day

Meteorological Surveillance data

Tmean

Pmean

RHmean

AHmean

WSmean

VISmean

PRCPmean
Air pollutant Surveillance data

S0O2

NO2

PM10

PM2.5

CcO

03

Daily average temperature
Daily average air pressure
Daily average relative humidity
Daily average absolute humidity
Daily average wind speed
Daily average visibility

Daily average precipitation

Daily average concentration of SO,
Daily average concentration of NO,
Daily average concentration of PM,,
Daily average concentration of PM, g
Daily average concentration of CO

Daily average concentration of O,

Every 3h per day
Every 3h per day
Every 3h per day
Every 3h per day
Every 3h per day
Every 3h per day
Every 3h per day

1 day
1 day
1 day
1 day
1 day
1 day

Jan 1, 2023-Jan 1, 2025

Jan 1, 2023-Jan 1, 2025
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SUPPLEMENTARY TABLE S2. Comparison of different window sizes of data between deep learning models.

Model performance

Window size

1 day 3 days 5 days 7 days 14 days

MAE

GRU 277.10 274.69 283.20 238.26 235.47

LSTM 227.66 248.37 240.24 230.47 170.59
MAPE (%)

GRU 49.73 92.24 95.22 102.65 87.31

LSTM 84.55 67.29 59.42 60.49 60.26
RMSE

GRU 767.65 688.28 707.67 561.88 581.57

LSTM 651.43 653.26 638.03 607.43 453.23
RZ

GRU 0.40 0.52 0.50 0.68 0.68

LSTM 0.57 0.67 0.59 0.64 0.81

Abbreviation: MAE=mean absolute error; GRU=Gated Recurrent Unit; LSTM=Long Short-Term Memory; MAPE=mean absolute percentage
error; RMSE=root mean square error; R?>=coefficient of determination.
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SUPPLEMENTARY FIGURE S1. The Reported Cases of Influenza every day between January 2023 and January 2025.
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SUPPLEMENTARY FIGURE S2. The Fever Clinic Visits every day between January 2023 and January 2025.
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SUPPLEMENTARY FIGURE S3. The frequency of nine related symptoms every day between January 2023 and January
2025. (A) Daily frequency of fever; (B) Daily frequency of sore throat; (C) Daily frequency of cough; (D) Daily frequency of
runny nose; (E) Daily frequency of myalgia; (F) Daily frequency of joint pain; (G) Daily frequency of headache; (H) Daily
frequency of dyspnea; () Daily frequency of fatigue.
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SUPPLEMENTARY FIGURE S4. The counts of nine related BSls between January 2023 and January 2025. (A) Daily
counts of BSI1; (B) Daily counts of BSI2; (C) Daily counts of BSI3; (D) Daily counts of BSI4; (E) Daily counts of BSI5; (F)
Daily counts of BSI6; (G) Daily counts of BSI7; (H) Daily counts of BSI8; (I) Daily counts of BSI9.
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SUPPLEMENTARY FIGURE S5. The description of daily climate factors between January 2023 and January 2025. (A) Daily
mean temperature; (B) Daily mean air pressure; (C) Daily mean relative humidity; (D) Daily mean absolute humidity; (E)
Daily mean wind speed; (F) Daily mean visibility; (G) Daily mean precipitation.
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SUPPLEMENTARY FIGURE S6. The description of daily air pollutants between January 2023 and January 2025. (A) Daily
concentration of SO2; (B) Daily concentration of NO2; (C) Daily concentration of PM10; (D) Daily concentration of PM2.5;
(E) Daily concentration of CO; (F) Daily concentration of O3.
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