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Summary

What is already known about this topic?
Brucella spp. are facultative intracellular bacteria that
can infect many species of animals and humans.

What is added by this report?

The global Brucella demonstrates distinct territorial
distribution patterns: B. abortus predominantly in
Africa and North America, B. melitensis dominates in
Asia and Europe, and B. suis is most prevalent in
Europe. B. melitensis exhibits the highest host and
genotype diversity, with most strains isolated from
human cases, indicating persistent animal reservoirs
and repeated human transmission. Brucella spp.
demonstrates region-specific lineage distributions:
African B. abortus strains cluster within abortus B
lineage, while Asian, American, and European strains
group within abortus C. Eastern Mediterranean B.
melitensis strains show predominant distribution across
Asia and Europe, while B. suis strains display genetic
heterogeneity across different geographical regions.
What are the implications for public health
practice?

While B. melitensis represents a global public health
challenge, B. abortus and B. suis pose more localized
concerns. Implementation of livestock brucellosis

control programs is essential for reducing human health

risks.

Brucellosis represents a globally prevalent zoonotic
disease that poses significant public health challenges
and causes substantial economic losses in livestock
populations (7). The past few decades has witnessed
continuous expansion in recognized diversity within
the Brucella genus, with novel strains isolated from
marine mammals to ocean fish revealing previously
unknown ecological niches (2). These developments
present new challenges for both regional and global
surveillance and control of brucellosis. However, global
species/biovars and genotype diversity atlas of Brucella
spp- remain unclear. Therefore, this study aims to
elucidate the global

distribution  patterns  of
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species/biovars and genetic diversity among Brucella
strains to enhance understanding of epidemiological
changes and facilitate tailored surveillance and control
strategies worldwide.

In this study, 7,212 Brucella strains collected from
multiple locus variable-number tandem repeat analysis
(MLVA) databases (https://microbesgenotyping.i2bc.
paris-saclay.fr/databases) through June 30, 2024,
representing isolates collected in 102 countries from
1923 to 2020. Data extraction included species/biovar,
isolation location, quantity, host spectrum, panel 1
profiles, MLVA-11 patterns, lineage information, and
isolation dates. Data analysis was performed using
Excel 2021 software (Microsoft, Redmond, WA,
USA). The minimum spanning tree (MST) was
constructed using PHYLOVIZ 2.0 (3) online software
(https://online2.phyloviz.net/index)  to
genetic relationships among strains.

Among the 7,212 Brucella strains analyzed, at least
12 species, 19 biovars, and several atypical Brucella
species were identified (Figure 1). B. abortus strains
distributed across 59 countries (regions) spanning six
continents, while B. melitensis exhibited widespread
presence in 64 countries throughout Asia, Europe, and
North Africa (Figure 1). Notably, the distribution
pattern of B. melitensis correlates strongly with regions
reporting high incidence rates of brucellosis in both
humans and animals. B. suis strains were documented
in 34 countries across Europe, North America, and
Latin America. B. canis demonstrated a more limited
geographic range, primarily concentrated in East Asia
and Latin America (Figure 1). Other species showed
distinct regional patterns: B. neotomae in North
America; B. ovis in Europe, North Africa, Oceania, and
Latin America; B. ceti predominantly in West Europe
and North America; B. microti concentrated in Middle
Europe; B. papionis restricted to Tanzania and USA; B.
vulpis exclusively in Austria; and B. pinnip primarily in
Europe (Figure 1). These distribution patterns indicate
the global predominance of B. abortus and B.
melitensis, while other species exhibit distinct
geographic specificities.

elucidate
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Continents Brucella Brlfcellq Bruc‘ella Bruc’glla Bruce]la
abortus  melitensis  suis canis ceti
Asia 619 3,051 156 12 0
Europe 458 1,775 510 5 61
Africa 1,265 247 14 3 0
Oceania 3 0 11 0 0
North America 156 19 8 11 49
Latin America 35 121 27 106 0

Brucella  Brucella Brucella Brucella Brucella Brucella Brucella
microti  neotomae  OVis papionis  vulpis pinnip ama
0 0 0 0 0 0 0
13 0 12 0 1 58 0
0 0 31 1 0 0 0
0 0 5 0 0 0 0
0 13 4 1 0 2 2
0 0 129 0 0 0 2

FIGURE 1. Territory distribution of Brucella spp. Strains.

Note: The number of strains marked with different color scales; green: refers to the continent with no strains found; red:

indicates the continent with the most strains.

The predominant species was B. melitensis (n=4,042,
56.05%), followed by B. abortus (n=2,600), B. suis
(n=695), and B. canis (n=52) (Supplementary Table
S1). The geographic distribution of B. abortus biovars
showed distinct patterns, for example: biovar 1 was
predominantly found in Portugal, South Korea, and
Brazil; and biovar 9 in Xinjiang, China. Within the B.
melitensis ~ population, biovar 3 (7=1,909)
dominated species. B. melitensis biovars 1 and 3
showed widespread distribution across Asia and
Europe, particularly in Asian countries with high

was

brucellosis prevalence.

The B. suis population exhibited distinct biovar
distributions, such as B. suis biovar 1 showed broad
geographic distribution across China, the USA,
Mexico, France, Zimbabwe, Egypt, and Australia. B.
ovis (n=53) was distributed across France, Spain, Brazil,
Greece, the USA, Australia, New Zealand, Croatia,
and Argentina. B. neotomae (n=13) was confined to
Costa Rica and the USA. Among non-classical species,
there were 173 B. ceti isolates, 61 B. pinnipedialis
isolates, 13 B. microti isolates, 2 B. papionis isolates,
and 1 B. vulpis isolate. B. ceti was predominantly found
in Scotland, Italy, Spain, Costa Rica, Germany,
France, and the UK. B. microti was isolated from the
Czech Republic and Austria, B. papionis from Tanzania
and the USA, and B. pinnipedialis from Scotland,
Norway, United Kingdom, and USA.

Asia exhibits the lowest species diversity, with B.
abortus and B. melitensis being the only classical species
distributed across all Asian countries (Figure 2).
Sporadic cases of B. suis have been documented in
China, India, Nepal, Palestine, and the United Arab
Emirates, while B. canis has been reported exclusively
in China, Republic of Korea, and Japan. This species
distribution profile aligns precisely with the regions
reporting the highest human brucellosis burden in
Asia. Notably, substantial isolations of B. melitensis
have been recorded in China, Kazakhstan, Kyrgyzstan,
Palestine, Qatar, and Turkey - countries that
consistently report among the highest global incidence
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rates of brucellosis.

Europe demonstrates higher species diversity than
other continents, with 9 of the 12 known species
documented (Figure 2). Three species (B. abortus, B.
melitensis, and B. suis) are widely distributed across the
continent, particularly in historically high-burden
B. suis exhibits a unique continental
distribution pattern, with significant presence in

regions.

Hungary, Germany, Belgium, France, Croatia, Spain,
and Portugal, predominantly isolated from swine and
wild boar populations. These findings suggest that
despite successful control of brucellosis in Europe’s
historically endemic areas, continued surveillance
remains essential.

Despite Africa being a historically endemic region
for brucellosis, comprehensive data on Brucella species
and genotypes remain limited due to insufficient
surveillance in recent decades. B. abortus strains are
particularly prevalent throughout South and West
Africa (Figure 2). In Africa presence of multiple
Brucella species, underscoring the need for expanded
bacteriological surveillance.

While Oceania maintains brucellosis-free status with
only sporadic isolations of B. abortus, B. suis, and B.
ovis (Figure 2), potential public health risks persist
through mammalian reservoirs. The Americas exhibit
the highest Brucella species diversity globally, with at
least 10 documented species, and B. abortus showing
the widest geographic distribution (Figure 2). B.
melitensis has been documented in regions with
substantial human brucellosis burden, including the
USA, Mexico, Peru, and Argentina. The continent
harbors the highest concentrations of both B. neotomae
(11 isolates in the USA) and B. ovis (115 isolates in
Argentina), while Costa Rica reports the majority of B.
ceti cases.

The B. abortus population demonstrates remarkable
host diversity, with isolates from at least 20 different
species. Cattle represent the primary host (7=1,567),
followed by bison (#=97) and humans (n=80). B.
melitensis exhibits even greater host diversity, with
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Species distribution profile of global Brucella spp.
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FIGURE 2. Distribution of areas and composition patterns of Brucella species populations.
Note: Brucella species are coded with color, and dots on the x-axis indicate the borders of different areas.

isolations from 24 distinct species, predominantly
humans (7=2,719), followed by ovines (#=617) and
cattle (7=280). The B. suis population spans 15 host
species, B. neotomae has been isolated from both
rodents and humans. Host specificity is observed in
several species, such as B. papionis in baboons. This
extensive host diversity plays a crucial role in
maintaining and facilitating the transmission of
Brucella strains.

Within the B. abortus population, 83 multiple locus
variable-number tandem repeat analysis-11 genotypes

(GTs) were identified, with three GT's (82, 72, and 79)

emerging as predominant, representing 28.4%
(494/1,735), 22.4% (390/1,735), and 10.7%
(187/1,735)  of the population, respectively

(Figure 3A). GT72 exhibited broad geographic
distribution across 17 countries, GT82 was detected in
10 countries across 3 continents, GT79 was identified
in 9 countries across 4 continents.

Minimum spanning tree (MST) analysis based on
MLVA-16 data revealed that the B. abortus population
segregated into two distinct groups (B and C)
(Figure 3B), with African strains clustering in abortus
B, while strains from Asia, the Americas, and Europe
were predominantly found in abortus C (Figure 3B).
Within C I, identical MLVA-16 genotypes were shared
among strains from the USA, Costa Rica, Kazakhstan,
Italy, and Portugal (Figure 3B). In C II, the majority
of shared MLVA-16 genotypes were observed between
strains from the USA and Portugal, USA and Brazil,
and Bangladesh and Brazil (Figure 3B).

Within the B. melitensis, 216 MLVA-11 genotypes
were identified, with five predominant genotypes
(GTs): 116, 96, 125, 111, and 87, accounting for
54.4% (2,733/5,019), 7.1% (360/5,019), 6.1%
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(307/5,019), 3.6%  (182/5,019), and 2.2%
(112/5,019), respectively (Figure 4A). GT116 was
distributed across at least 18 countries, GT96 was
identified in nine countries, GT125 was present in 20
countries.

Minimum spanning tree analysis revealed that the B.
melitensis clustered into three distinct lineages: Eastern
Mediterranean, Western Mediterranean, and Americas
(Figure 4B). The Eastern Mediterranean strains
predominated in Asia and Europe; the Western
Mediterranean lineage comprised strains from Italy,
France, Egypt, and Algeria; The American lineage
encompassed strains from the USA, Peru, Spain, and
Portugal (Figure 4B). Among the three lineages, the
Eastern Mediterranean exhibited the highest frequency
of shared MLVA-16 genotypes (Figure 4B).

In the B. suis population, analysis revealed 67
distinct MLVA-11 genotypes, with five dominant
circulating genotypes: GT33 (22.2%, 126/592),
GT58 (12.6%, 75/592), GT57 (9.2%, 55/592),
GT60 (7.9%, 47/592), and GT44 (7.7%, 46/592)
(Figure 5A).

Minimum spanning tree analysis demonstrated that
B. suis strains clustered into two major lineages (SI and
SII), with SI further subdividing into three distinct
sub-clades (a-c) (Figure 5B). Notably, shared MLVA-
16 genotypes were observed in SI sub-clade b
(Figure 5B), while in SII, a single shared MLVA-16
genotype was identified (Figure 5B).

DISCUSSION

Brucella  strains exhibit widespread distribution
across six continents, the extensive spread and dispersal
of these pathogens has been facilitated by frequent
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Global B. abortus MLVA-11
A genotypes diversity
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FIGURE 3. MLVA-11 genotype diversity (A) and MLVA-16 genetic relationship (B) of global B. abortus strains.

Note: (A) Color marks the MLVA-11 genotypes; numbers in the figure indicate the dominant genotypes; (B) Color-coded
countries in which strains isolated from all B. abortus strains were divided into two lineages (abortus A and abortus B), and
abortus B were further sorted into C | and C Il subgroups.
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A Global B. melitensis MLVA-11
genotypes diversity
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FIGURE 4. MLVA-11 genotypes diversity (A) and MLVA-16 genetic relationships (B) of global B. melitensis strains.

Note: (A) Color marks the MLVA-11 genotypes; numbers in the figure indicate the dominant genotypes. (B) Color-coded
countries in which strains were isolated; all B. melitensis strains were divided into three lineages: East Mediterranean, West
Mediterranean, and Americas.
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Global B. suis MLVA-11
genotypes diversity
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FIGURE 5. MLVA-11 genotype diversity (A) and MLVA-16 genetic relationships (B) of global B. suis strains.

Note: (A) Color marks the MLVA-11 genotypes; numbers in the figure indicate the dominant genotypes; (B) Color-coded
countries in which strains were isolated; all B. suis strains were divided into two lineages (S | and S II), and further S | was
further sorted into three subgroups (a-c).
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livestock exchange and trade (4). The paucity of
comprehensive surveys and research in Africa presents a
significant obstacle to understanding the disease.
Consequently, successful prevention, control, and
eradication of brucellosis in low-income countries
necessitates substantial financial support, unwavering
commitment, and sustained long-term programs. The
expanding host spectrum of the Brucella spp.
population is a critical factor in its ecological
persistence and maintenance. Active spillover between
domestic animals and wildlife is increasingly
recognized as a potential source of human infection.
While Brucella spp. occasionally colonize non-preferred
hosts, there remains high potential for discovering
additional ecologically significant natural hosts (5).

Global phylogenomic analysis reveals an African
origin for B. abortus, with subsequent spread to the
Middle East, Europe, and Asia, likely facilitated by
infected cattle movement (6). B. abortus strains from
Kazakhstan and Russia show genetic relationships with
Portuguese, Brazilian, and US isolates, suggesting
ancient lineage dispersal from Europe westward to
South America and eastward to Turkey, Russia, and
Asia (7).

The B. melitensis population exhibits the highest
genetic diversity, with particularly significant genetic
homogeneity observed within the E. Mediterranean
lineage, especially among Asian strains. All Asian
strains clustering into genotype II alongside SEA
strains (8). the spread of B. melitensis subgenotype 1li
from Central Asian countries to Russia likely occurred
via the northern route of the Great Silk Road, which
connected eastern countries with Northern Europe (9).
The global trade and movement of ruminants has
facilitated the spread and dispersal of B. melitensis,
necessitating stricter regulations on animal transfers
from high-epidemic areas and enhanced cross-border
inspection and quarantine protocols.

B suis strains  exhibit significant  genetic
heterogeneity across different global territories. The
maintenance and spread of B. suis biovar 2 in Europe
represents a dynamic process linked to natural wild
boar expansion as the primary wild reservoir, while
long-distance transmission largely depends on human
activities (10). Surveillance and control measures in
endemic European and Asian regions are essential to
accurately assess its public health risk.

This study provides novel insights into the global
species/biovars, host spectrum, and genetic diversity of
Brucella spp. However, several limitations warrant
consideration. First, our reliance on international
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MLVA database data may present an incomplete
distribution overview, necessitating further
investigation. Second, the complex transmission
dynamics of brucellosis demand more nuanced analysis
of the interplay between human behavior,
environmental factors, and microbial genetics in
disease transmission.

The global distribution of Brucella species exhibits
remarkable genetic and  phenotypic  diversity,
characterized by extensive host range adaptation and
broad territorial spread, presenting significant
challenges for worldwide surveillance and control
efforts. A critical impediment to effective brucellosis
management in low-income countries remains the
limited allocation of governmental and regional
resources. These findings emphasize the urgent need to
establish a comprehensive global pathogen surveillance
system and molecular tracking network platform to
elucidate the composition of circulating Brucella strains
and understand the global transmission patterns of
brucellosis.
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