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Confronting the Antimicrobial Resistance Crisis in China:
Emerging Superbugs, Genomic Surveillance,
and Innovative Countermeasures
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ABSTRACT

The antimicrobial resistance (AMR) crisis in China
has escalated into a critical public health threat.
in both clinical and
agricultural = settings has created strong selective

Extensive antibiotic use
pressures, promoting the emergence of resistant strains
and accelerating their dissemination. This increasing
threat is exemplified by the rapid spread of multidrug-
resistant bacteria. Consequently, genomic surveillance
of these pathogens and the development of effective
countermeasures are urgently needed. In this paper, we
highlight three critical dimensions of the AMR
challenge in China, which include the recent
emergence of resistant bacteria, genomic surveillance
efforts, and progress in the development of novel
antimicrobial agents. By synthesizing recent research
on the evolutionary dynamics of drug-resistant

pathogens in China and outlining innovative
antimicrobial strategies, this study provides insights to
guide evidence-based antimicrobial  stewardship
programs.

Update of the World Health
Organization (WHO) Bacterial
Priority Pathogen List (BPPL)

Currently, antimicrobial resistance (AMR) is one of
the top ten public health threats that not only impacts
human public health but also substantially influences
animal and environmental health (7). According to a
systematic analysis of the past 3 decades (1990-2021)
of global bacterial AMR, it is estimated that 4.71
million deaths associated with bacterial AMR occurred
in 2021, including 1.14 million deaths attributable to
bacterial AMR (2). In response to this threat, the
WHO released the BPPL, which emphasized the
prioritization of AMR countermeasures by 2024,
highlighting the urgent need to develop novel
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therapeutics targeting increasingly resistant pathogens
(3). This updated list covers 24 antibiotic-resistant
pathogens spanning 15 bacterial families, categorizing
them into critical, high-, and medium-priority groups,
reflecting their global impact. These multidrug-
resistant (MDR) pathogens are associated with high
morbidity and mortality rates, and therefore, referred
to as “superbugs” and are considered a serious threat to
global health (4). Based on the bacterial resistance
profile and public health impact, the critical antibiotic-
resistant ESKAPE pathogens (Enterococcus faecium,
Staphylococcus aureus, Klebsiella  pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacter spp.) had predominantly high scores in
the 2024 WHO BPPL list, underscoring their
considerable threat to global health (5). Among Gram-
negative bacteria, carbapenem-resistant K. pneumoniae
(CRKP, top-ranked), third-generation cephalosporin-
resistant E.  coli, and carbapenem-resistant A
baumannii (CRAB) were among the top three.
Carbapenem-resistant  P.  aeruginosa  (CRPA) and
Enterobacter spp. were ranked above 60% of the total
score. Among the Gram-positive bacteria, vancomycin-
resistant E. faecium (VREfm) and methicillin-resistant

S. aureus (MRSA) were ranked the highest (5).

Critical Challenge of AMR in China

Given the global threat of AMR, China has
implemented a comprehensive range of strategies in
alignment with its National Plan on AMR, achieving
considerable progress in containment efforts. However,
the prevalence of antibiotic-resistant bacteria in clinical
settings remains a notable concern (6-7). Based on the
CHINET surveillance data of clinical ESKAPE
pathogens isolated from approximately 70 hospitals
across China over the past decade, although the
proportion of ESKAPE strains has remained stable
annually (Figure 1A), their absolute numbers showed
an increasing trend, in parallel with the overall increase
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FIGURE 1. Trends and antibiotic resistance profile of ESKAPE pathogen clinical isolates in China. (A) Distribution of
ESKAPE pathogens from 2015 to 2024; (B) Number of ESKAPE pathogens clinical isolates from 2015 to 2024; (C)
Resistance profile of CRKP clinical isolates from 2021 to 2024; (D) Resistance profile of CRAB clinical isolates from 2021 to
2024; (E) Resistance profile of CRPA clinical isolates from 2021 to 2024.

Note: The above data were obtained from CHINET. In panel A, the total number of clinical isolates per year is presented.
Abbreviation: CRAB=carbapenem-resistant Acinetobacter baumannii; CST=colistin; CZA=ceftazidime-avibactam;
IPM=imipenem; MEM=meropenem; TGC=tigecycline; SCF=cefoperazone-sulbactam; TZP=piperacillin-tazobactam;
ClIP=ciprofloxacin; LEV=levofloxacin; PMB=polymyxin B; ESKAPE=Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.

in clinical isolates (Figure 1B). According to the
resistance rate data in China, the prevalence of VREfm
showed an upward trend from 2019 to 2022 (8). The
higher prevalence of MRSA among children has
garnered considerable attention despite a decline from
2005 to 2022 (8). As shown in the CHINET data,
resistance rates of CRKP, CRAB, and CRPA to
carbapenems (imipenem and meropenem) were
markedly elevated, exceeding 80% and approaching
100% over the past 4 years (Figure 1C-E). Although
the resistance rate of CRKP slightly increased in
response  to  ceftazidime-avibactam, it  gained
momentum against both colistin and tigecycline, the
two main antibiotics used to treat carbapenem-resistant
bacteria (Figure 1C). The resistance rate of CRAB
remained relatively stable but exhibited a high level of
resistance  to

cefoperazone-sulbactam, a  widely

employed antimicrobial compound in salvage
combination regimens, with a rate exceeding 60%
(Figure 1D). The prevalence of CRPA was associated
with a notable increase in levofloxacin resistance (from

31.6% in 2021 to 47.9% in 2024) and a growing
resistance to piperacillin-tazobactam and ciprofloxacin
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(Figure 1E).

The shifting genomic landscape of ESKAPE
pathogens poses considerable challenges to public
health and clinical medicine owing to the continuous
evolution of antibiotic-resistant bacterial clones (9).
For example, the prevalence of the VREfm ST80 strain
carrying a new type vanA-bearing plasmid is steadily
increasing in Guangdong, China (/0). Moreover, the
genetic diversity of MRSA has been expanding, with
the ST59 strain having high potential virulence and
emerging as the predominant lineage at 35.6%,
surpassing the previously dominant ST239 strain
(11-12). The dominant clone of hypervirulent CRKP
(Hv-CRKP) ST11 reportedly displays the complexity
of MDR, along with genetic heterogeneity in virulence
factor profiles, and is considered a health concern
owing to its dual threat of high virulence and drug
resistance in China (/3-74). The widely drug-resistant
A. baumannii and P. aeruginosa pose a serious risk to
public health, especially in hospital settings, where they
can lead to various infections. The widespread clonal
ST208 strain, frequently associated with carbapenem
resistance genes, is the predominant strain of the
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extensively drug-resistant A. baumannii (XDRAB),
isolated from the intensive care unit (ICU) of a
hospital in Jinhua, Zhejiang Province (75). Song et 4.
reported T3SS-mediated simultaneous secretion of
ExoS and ExoU in high-risk P. aeruginosa, which has
emerged as a new subset of hypervirulent strains in
China (76). Therefore, the complex diversity of
emerging ESKAPE highlights the urgent need for
careful surveillance of these high-risk strains.

Genomic Surveillance of Drug-
Resistant Bacteria in China

To address this surveillance and

mechanistic investigations of bacterial resistance play a
crucial role in detecting and tracking the spread of

challenge,

resistant bacteria. Innovations in genome/metagenomic
sequencing and  analysis  technologies  could
revolutionize AMR surveillance (/7). The use of
whole-genome sequencing (WGS) of pathogens for
AMR surveillance has grown considerably compared
with phenotypic surveillance of AMR (18). The
construction and interpretation of phylogenetic trees
derived from WGS facilitate the identification of
transmission events and understanding the dynamics of
outbreaks. Using WGS and comparative genome
analysis, a multicenter molecular epidemiological
survey reported that the high-risk ST11 KL64 CRKP
serotype demonstrated substantial expansion potential
and survival advantages in China between 2011 and
2021 (19). WGS data can also be used to detect new
genomic features, such as AMR genes and virulence
genes involved in AMR. A recent multicenter genomics
study applied WGS to identify the genomic
characteristics and phylogenetic relatedness of CRKP
colonization and infection in ICU patients in Anhui
Province, China, highlighting the need for coordinated
efforts between healthcare facilities and networks to aid
CRKP management (20). Moreover, WGS has
empowered clinical researchers to identify and monitor
AMR while enabling the detection of virulence factors
and mobile genetic elements, such as plasmids, which
are crucial for understanding the adaprability,
pathogenicity, and dissemination of AMR bacteria
(18,21). For instance, an additional example of a small
blagpc.p-bearing plasmid essential for the emergence
and spread of KPC-2 CRKP from a hospital in
Zhejiang, China, was identified upon WGS analysis of
a rare CRKP ST437 isolate (22). Furthermore, Liu et
al. conducted genetic typing analysis of 90 non-
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redundant Hv-CRKP isolates from patients and
revealed that Hv-CRKP transferability relies on the
dominant ST11-K64 clone (23). By analyzing the
WGS results of plasmids from 12 representative CRKP
isolates, the authors uncovered the clonal spread and
clinical evolution of Hv-CRKP within Zhejiang
hospitals, involving binary vehicles and 2 fusion
plasmid types that facilitate the co-transfer of rmpA
hypervirulence and KPC-2 carbapenem resistance (23).
Likewise, Huang ez al. performed a clinical genomic
analysis and reported the diversity and dynamics of
blaxpc.p-producing CRPA, providing novel insights
into the heterogeneity among CRPA and plasmid-
mediated transmission of blagpc_, in clinical settings
in China (24). Collectively, these studies emphasize the
importance of WGS in providing additional insights,
thus enhancing epidemiological data and transmission
control of AMR pathogens (Figure 2).

Development of Multitarget
Antimicrobial Agents

An effective approach to circumvent existing
antibiotic resistance warrants the discovery of new
chemical classes, particularly in the fields of natural-
product-derived and synthetic small molecules, as well
as novel targets and modes of action (25). Compared
with single-target drugs, muldtarget drugs can
simultaneously regulate multiple targets to reduce
resistance caused by single-target mutations or
expression changes, and have become an effective
strategy to combat bacterial resistance (26). A growing
body of evidence has shown promise in this regard
(Figure 2). For example, Li et al. synthesized a series of
novel monobactam derivatives and demonstrated their
efficacy against f-lactamase-producing MDR E. coli
and K. pneumoniae, with the dual inhibition on PBP3
and class A and C p-lactamases (27). Jia er 4l
reevaluated chrysomycin A, a novel natural product,
which is highly active against MRSA persisters by
inhibiting multiple novel targets involved in the
biosynthetic pathways of cell wall peptidoglycan and
lysine  precursors  (28).  Similarly, multitarget
antimicrobial agents quaternized with antimicrobial
peptide mimics have been shown to kill MRSA by
interacting with lipoteichoic acid and peptidoglycan,
causing membrane damage through depolarization,
and disrupting cellular redox homeostasis by binding
to lactate dehydrogenase (29). Multitarget antibacterial
medications are a novel strategy to combat bacterial
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FIGURE 2. Structural schematic of the antimicrobial resistance crisis and countermeasures in China.

Abbreviation: AMPs=antimicrobial peptides;

CRPA=carbapenem-resistant Pseudomonas aeruginosa;

ESKAPE=

Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, Enterobacter spp; MGE=mobile genetic elements; WGS=whole-genome sequencing; CRKP=carbapenem-

resistant Klebsiella pneumoniae.

resistance, and the rational discovery of multitarget
drugs may usher in a new golden era for antibiotic
discovery.

Validation of Target-Based
Antibacterial Agents

To develop novel antibiotics, target-based strategies
must meet the criteria to combat MDR infections.
Numerous antibiotic discovery programs have switched
to target-based methods to identify substances capable
of blocking specific bacterial targets (i.e., essential
enzymes or proteins). For instance, the component
enzymes of fatty acid or biotin (fatty acid derivatives)
synthetic pathways are considered sources of novel
antibacterial targets and hold promise for tackling
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antibiotic-resistant bacteria, such as BioA (30) and
BioH (31). Shi et al. discovered that BioH is essential
for P. aeruginosa virulence and validated a therapeutic
target for reducing CRPA viability, highlighting the
potential of inhibiting biotin synthesis following anti-
CRPA therapy (32). Huang et al. elucidated the
inhibitory mechanism between the acyl adenylate
mimic C10-AMS and acyl-ACP synthetase (AasS),
which provided a molecular basis for targeting AasS by
the C10-AMS inhibitor, thus enabling the re-
I1-targeted
bacterial

biotin

sensitization of fatty acid synthesis
antimicrobials  (33). Intriguingly, the
methyltransferase  BioC, which

synthesis, has been identified as a virulence factor of K.

initiates

pneumoniae, representing an attractive anti-ESKAPE

druggable pathway (34).
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Exploration of Alternative Therapies
Against Drug-Resistant Bacteria

As bacteria become resistant to conventional
antibiotics, alternative therapies have been explored in
recent years, including antimicrobial peptides (AMPs),
anti-virulence strategies, CRISPR-based antimicrobials,
and other methods (35). The discovery of novel AMPs
is expanding the arsenal of antibacterial drugs. For
example, fluorescent 2-phenyl-1 H-phenanthro[9,10-
d] imidazole-antimicrobial peptide mimic conjugates
have been found to rapidly kill MRSA by disrupting
membrane integrity, triggering reactive oxygen species
accumulation, causing protein damage, and exhibiting
low susceptibility to bacterial resistance (36).
Antimicrobial biofilms are expected to efficiently
inhibit drug-resistant bacteria. Recently, phenazine-
inspired antibiotics were found to be highly active
against resistant bacteria, including MRSA, MRSE,
and VREfm, by inhibiting biofilm formation (37). A
novel gene editing-based antimicrobial strategy was
developed using the CRISPR-Cas system to specifically
target vital bacterial or resistance genes. The CRISPR-
Cas system reportedly targets and eliminates
carbapenem-resistant  plasmids, thereby restoring
antibiotic susceptibility (38). This approach, although
still in the experimental stages, offers a potential
solution to the challenge of antibiotic-resistant bacteria
without the need for novel therapies. Furthermore, the
combination of Al and deep learning techniques has
the potential to transform drug discovery by
accelerating the discovery of novel antibiotic candidates
and refining treatment plans based on predictive
models of resistance patterns (39).

Although a growing number of antibacterial drugs
are under investigation, challenges remain in the
development of antimicrobials against drug-resistant
pathogens.  Currently, approximately 32  new
antibacterial compounds are in the clinical trial phase
of development, and less than 25% of the drugs in the
clinical development pipeline represent a novel class or
act through a novel mechanism. Unfortunately, all lack
the potential to be effective against major WHO threat
pathogens or Gram-negative ESKAPE (40). Hence,
developing new antibiotics to combat drug-resistant
bacteria remains a challenge.

Future Efforts to Combat Drug-
Resistant Bacteria

The growing threat of antibiotic resistance warrants
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a strong and resourceful response based on
technological and scientific innovations. Therefore, to
preserve antimicrobial efficacy and control resistance
transmission, greater efforts should be invested in the
discovery and development of novel antimicrobial
strategies and in improving comprehensive surveillance
systems using next-generation sequencing for source-
tracking AMR pathogens. In particular, genomic
surveillance  involving comprehensive  resistance,
virulence, and plasmid gene content profiling will
enable real-time customization of AMR interventions
and  address impeding  widespread
implementation. More importantly, the One Health
approach emphasizes the intertwined health of
humans, animals, and the environment in disease
prevention and control; hence, the control and
surveillance of AMR pathogens needs to be considered
in all three sectors (). Coordinated actions across these
sectors, such as shared data platforms, joint surveillance
programs, and integrated intervention strategies, are
pivotal to effectively prevent cross-species transmission
and to safeguard public and environmental health in
the future (41).
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