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ABSTRACT

Introduction: Human influenza A/H3N2 imposes
a substantial global disease burden. Beyond
hemagglutinin (HA), neuraminidase (NA) also plays a
critical role in the antigenic evolution of influenza
viruses. However, a comprehensive understanding of
NA antigenic evolution remains lacking.

Methods: NA inhibition (NAI) data were
collected and structural epitopes for A/H3N2 NA were
identified. A machine learning model was developed to
accurately predict antigenic relationships by integrating
four feature groups: epitopes, physicochemical
properties, N-glycosylation, and catalytic sites. An
antigenic  correlation  network  (ACNet)  was
constructed and antigenic clusters were identified using
the Markov clustering algorithm.

Results: The best random  forest  model
(PREDEC-N2) achieved an accuracy of 0.904 in cross-
validation and 0.867 in independent testing. Eight
main antigenic clusters were identified on the ACNet.
Spatiotemporal revealed the

analysis continuous

replacement and rapid global spread of new antigenic
clusters for human influenza A/H3N2 NA.

Conclusions: This study developed a timely and
accurate computational model to map the antigenic
landscape of A/H3N2 NA, revealing both its relative
antigenic conservation and continuous evolution.
These insights provide valuable guidance for improved
antigenic surveillance, vaccine recommendations, and
prevention and control strategies for human influenza
viruses.

Human influenza A/H3N2 has been a predominant
seasonal influenza strain globally since its emergence in
1968. The main surface proteins of the influenza virus,
hemagglutinin (HA) and neuraminidase (NA), evolve
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antigenically to escape immune recognition by the
human host (7). Vaccination is the most effective
intervention against influenza, but the vaccine
effectiveness (VE) against H3N2 remains low (2). This
low VE is mainly attributable to the rapid antigenic
drift of HA and the insufficient induction of a robust
NA-mediated immune response by current vaccines
(2). Several studies have highlighted the critical role of
NA-induced protection (3). Compared to human
influenza A/HINI1, the antigenic divergence of NA in
A/H3N2 is minimal but antigenic changes still occur
(4). However, the antigenic evolution and landscape of
NA in human influenza A/H3N2 remain poorly
understood. To address this gap, we developed an
antigenic classification model for human influenza
A/H3N2 NA and identified distinct antigenic clusters
to provide a more systematic understanding of the
antigenic evolution of NA.

METHODS

Sequence Data

NA sequences of human influenza A/H3N2 viruses,
available up to October 2024, were downloaded from
global initiative on sharing all influenza data (GISAID)
(5). To mitigate sampling bias, we implemented an
even sampling strategy. Seven representative sequences
were randomly selected for each month and each
continent; if fewer than seven sequences were available,
all sequences were included. Sequences containing
more than three ambiguous amino acids or fewer than
400 residues in length were excluded. Subsequently,
multiple sequence alignment was conducted, and three
sequences with insertion mutations present in fewer
than 1% of the sampled sequences were removed. The
alignment was then repeated, resulting in a final
sequence length of 469 amino acid residues. Sequence
alignment and phylogenetic tree construction were
performed using methods described in previous studies
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(6). Finally, 9,054 sequences were analyzed.

A proportional sampling strategy was also
implemented to avoid sampling error, selecting 5% of
the sequences per month from each continent, or one
sequence if the calculated sample size was less than one.
After quality control, 7,847 sequences were retained
for analysis.

NAI Data
A total of 376 pairs of NA inhibition (NAI) data
were collected from various sources (4,7-10). For
strain pairs tested in multiple experiments, the median
result was used as the final value. The antigenic
distance between two strains was calculated using the
following formula (71):

H, = Tﬂﬂ Tbb (1)
“ Tzzla szz

where H,, represents the NA antigenic distance
between strain a and strain b, 7, and 7}, are the NAI
titers of serum b against virulent strains a and b, and

T, and T;, are the NAI titers of serum a against
virulent strains a and b. A pair of strains was classified
as antigenically similar if the absolute value of their
antigenic distance was between 0.25 and 4 (not equal);
otherwise, the pair was considered antigenically
dissimilar.

Feature Selection

Twelve features were used to construct machine
learning (ML) models based on NA sequences, which
were categorized into four groups: epitopes,
physicochemical properties, N-glycosylation, and
catalytic sites.
Epitopes We used 7U4E as a template to identify
potential structural epitopes. Sites with a binding
probability above 0.1, as determined by ScanNet (12),
were identified as potential epitope sites. K-means
clustering was performed using spatial coordinates to
determine the number of epitopes and composition of
each epitope based on the Silhouette score
(Supplementary Figure S1, available at https://weekly.
chinacdc.cn/). Outliers that were excessively distant
from other clusters were excluded, resulting in the
identification of five epitopes (N2_A, N2_B, N2_C,
N2_D, and N2_E, Supplementary Figure S2 and
Supplementary Table S1, available at https://weekly.
chinacdc.cn/).  For each epitope, features were
quantified by calculating the number of amino acid
changes.
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Physicochemical ~ Properties Five classes  of
physicochemical ~ properties ~ were  considered:
hydrophobicity, charge, polarity, volume, and

accessible surface area (ASA). A random forest (RF)
model was trained on the training dataset to identify
the best representative feature for each class. The
selected indices were CHAMS830107, RADA880108,
CIDH920101, CHOC760102, and COHE430101.
Features were computed by averaging the absolute
differences between sequence pairs based on up to the
three most prominent changes.

N-Glycosylation ~ sitess  (N-Glycosylation) N-
Glycosylation sites were identified using NetNGlyc
(13), and the numbers of different glycosylation sites
were calculated.

Catalytic sites (Catalyze) Eight previously reported
NA catalytic sites were included, and the average
Euclidean distances to the catalytic sites were
calculated for each amino acid position, from which
the three shortest distances were selected (/4).

Model Construction

The antigenically similar or dissimilar label were
used to train the model based on the 12-bit features
calculated above. Five ML models capable of handling
non-linear data were constructed using the Python
package scikit-learn and evaluated: logistic regression
(LR), support vector machine (SVM), K-nearest
neighbors (KNN), RF, and extreme gradient boosting
(XGBoost). We randomly split 70% of the NAI pairs
for the training set and reserved the remaining 30% for
the testing set. Model parameters were optimized using
5-fold cross-validation combined with random search
conducted 500 times on the training set. The models
were evaluated using five metrics: accuracy, precision,
Fl-score, recall, and receiver operating characteristic

area under the curve (ROC-AUCQ).

Construction of Antigenic Network

The antigenic correlation network (ACNet) was
constructed and visualized using Cytoscape (version
3.10.2, developed by Cytoscape Consortium, San
Diego, United States). In this network, nodes represent
NA strains and edges indicate antigenic similarity
relationships as predicted by the model. The Markov
cluster algorithm was used to identify clusters of strains
based on the logarithmic ratio of the probabilities of
similarity to  dissimilarity. ~ Clustering
parameters were selected by optimizing mean cluster
sizes and modularity (Supplementary Figure S3,
available at https://weekly.chinacdc.cn/).

antigenic
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RESULTS

Antigenic Prediction Model for NA of
Human Influenza A/H3N2

Five. ML models were constructed using cross-
validation (Supplementary Figure S4, available at
https://weekly.chinacdc.cn/) and evaluated using the
testing set (Figure 1A). The RF model outperformed
all other models across all metrics, achieving the
highest ROC-AUC value of 0.849 and the highest
accuracy of 0.867 on the test set. Therefore, the RF

model was selected for subsequent analyses. Analysis of
feature contributions revealed varying importance
among different features (Figure 1B and C).
Physicochemical properties contributed the most
(39.1%), followed by epitopes (32.7%), catalytic sites
(21.7%), and N-glycosylation sites (6.5%). The
catalytic sites feature had the greatest individual
impact, contributing approximately 21.7%. Among
epitope-related features, Epitopes N2_D, N2_B, and
N2_C, which located near catalytic
(Supplementary Figure S2), were identified as the most
significant, indicating their critical role in both viral
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FIGURE 1. Model performance and feature contributions. (A) Model performance on the independent testing set; (B)
Feature contributions at the sample level, where color indicates the magnitude and position reflects the absolute contribution
of each feature; (C) Feature contributions at the population level.
Note: Different groups were color-coded, and size represents the magnitude of individual features. Abbreviation:
RF=random forest; XGBoost=extreme gradient boosting; KNN=K-nearest neighbors; LR=logistic regression; SVM=support
vector machine; AUC=receiver operating characteristic area under the curve; ASA=access surface area; SHAP=SHapley
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function and prediction (Figure 1C). The epitope
located at the junction of different chains (N2_A) was
less important, contributing only 1% to the overall
feature importance.

The Antigenic Landscape for NA of
Human Influenza A/H3N2

Based on the RF model, we predicted antigenic
relationships between all representative strains for NA
of human influenza A/H3N2 and constructed an
ACNet for evenly sampled sequences. We identified
eight major antigenic clusters that aligned with the
traditional phylogenetic tree (Figure 2A). These
clusters, which included vaccine strains, were named
after the earliest vaccine strain within each cluster:
PC73, TE77, BJ89, WH95, MS99, CA04, PE09, and
SI16 (Supplementary Table S2, available at https://
weekly.chinacdc.cn/). We validated the clustering by
demonstrating that strains within the same cluster were
more antigenically similar than those from different
clusters (Supplementary Figure S5, available at
https://weekly.chinacdc.cn/). A clear spatiotemporal
pattern emerged: new clusters appeared and gradually
replaced older ones, a trend observed consistently
across  different  continents  (Figure 2B  and
Supplementary Figure S6, available at https://weekly.
chinacdc.cn/). Furthermore, NA antigenic clusters
exhibited greater persistence over time (approximately
8 years) compared with HA (approximately 2 or 3
years) (Figure 2C) (75). The clustering and prevalence
analyses from proportional sampling were largely
consistent with these findings (Supplementary
Figure S§7, available at https://weekly.chinacdc.cn/).

DISCUSSION

In the present study, we developed a novel machine
learning model for timely and effective prediction of
antigenic relationships in the neuraminidase of human
influenza A/H3N2. We identified eight main antigenic
clusters between 1968 and 2024. Spatiotemporal
analysis revealed continuous global replacement and
rapid spread of new antigenic clusters. Our findings
were robust across different sampling approaches.
Among forty-eight vaccine strains, only one
(A/Wellington/01/2004) during the cluster transition
period was classified differently, likely due to
significant differences in sequence distribution.

The antigenic prediction model for NA was
developed using an approach similar to that for HA. A
key adjustment was replacing the receptor-binding
features of HA with catalytic sites, which are more
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pertinent to NA function. Additionally, we identified
NA epitopes de novo for feature calculation. While
these adjustments did not represent significant
innovations, the framework has proven effective with
only minor modifications across different contexts
(16). This suggests that with appropriate adjustments,
our model can provide accurate predictions for NA
antigenic correlations.

Both antigenic clusters and phylogenetic clades
reflect evolutionary relationships between viral strains,
representing phenotype and genotype, respectively.
Unlike the continuous branching of phylogeny,
antigenic  clusters represent important  discrete
phenotypes for HA and NA, with nonlinear
relationships to genetic changes (4). Variations at
different sites have inconsistent effects on antigenicity.
The phylogenetic tree for NA displayed a single-trunk
structure, indicating minimal selection pressure.
Furthermore, spatiotemporal analysis confirmed the
continuous global replacement of older antigenic
clusters by newer ones. Only eight major antigenic
clusters were identified for NA over the past 60 years
(approximately one cluster every 8 years), significantly
fewer than for HA (approximately every 2 or 3 years).
This phenomenon might be explained by the relatively
lower mean rate of nucleotide substitution in NA,
which could be partly attributed to stronger structural
constraints on this enzyme compared to the receptor-
binding protein, as well as the stronger selection
pressure and greater immune pressure on HA, likely
due to its role as the primary vaccine target and its
higher distribution on the virus surface (/7-18).

This study has several limitations that warrant
consideration. First, while our dataset was sufficient for
model development, a larger dataset would enable the
construction of more sophisticated models with
improved prediction performance. Second, although
we developed the first ML antigenic classification
model for NA, integration with HA and other
important viral components is necessary for a
comprehensive understanding of antigenic evolution
and its implications for seasonal influenza. Third, due
to variations in sequencing coverage, some regions had
insufficient sequence data, leading to incomplete
characterization of their antigenic landscapes.
Similarly, the analysis of early antigenic clusters may be
subject to sequencing bias. Finally, while our model
demonstrated high predictive accuracy, validation with
experimental data or real-world outcomes would
further strengthen its applicability.

The findings of this study highlight the crucial role
of NA in the antigenic evolution of human influenza
A/H3N2 and its contribution to viral circulation and
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FIGURE 2. Antigenic landscape of A/H3N2 NA. (A) The ACNet and phylogenetic tree for representative sequences from
eight major antigenic clusters; (B) Yearly spatiotemporal distribution of eight antigenic clusters; (C) Replacement patterns of
dominant antigenic clusters.

Note: The legend displays colors for HA while the color of NA antigenic clusters correspond to those used in the ACNet. For
(C), color changes indicating that a new antigenic cluster is dominant or becoming dominant.

Abbreviation: NA=neuraminidase; HA=hemagglutinin; ACNet=antigenic correlation network.

Chinese Center for Disease Control and Prevention CCDC Weekly /Vol. 7/ No. 29 977



China CDC Weekly

spread. Although NA  currently receives less
consideration in vaccine strain recommendation and
antigenic surveillance, the tools developed in this study
can facilitate improved antigenic monitoring, inform
vaccine selection, and ultimately aid in the prevention
and control of influenza epidemics as knowledge
deepens and relevant technologies advance.
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SUPPLEMENTARY MATERIAL

SUPPLEMENTARY TABLE 1. NA inhibition experimental data (7-5).

The complete table is available at: https://zenodo.org/records/15653659 (uploaded on June 13, 2025).

SUPPLEMENTARY TABLE 2. Identified epitopes for human influenza A/H3N2 NA.

Epitopes Sites Outliers

N2 A 82, 83, 84, 86, 88, 89, 90, 187, 207, 208, 234, 236, 258, 259, 283, 284, 285, 286, 306, 307, 308, B

- 309, 311, 357, 415, 416
N2_B 118, 143, 146, 147, 150, 151, 152, 153, 154, 156, 178, 406, 430, 431, 432, 433, 434, 437, 469 -
N2 C 195, 196, 197, 198, 199, 200, 218, 219, 220, 221, 222, 224, 244, 245, 246, 247, 248, 249, 250, _

- 251, 253, 268, 273, 274, 276, 277

292, 294, 295, 296, 326, 327, 328, 329, 331, 332, 333, 334, 339, 342, 343, 344, 345, 346, 347,

N2_D 348, 358, 369, 370, 371, 384, 385, 390 358,384,385,390
N2_E 392, 394, 399, 400, 401, 402, 453, 454, 455, 456, 457, 458 -

Note: “=” means no outlier sites were identified for the corresponding epitope.

Abbreviation: NA=neuraminidase.

SUPPLEMENTARY TABLE 3. Vaccine strains included in each antigenic cluster.

Vac_strains Accession number Cluster
A/Port_chalmers/1/1973 EPI_ISL_20940 PC73
AlVictoria/3/1975 EPI_ISL_113968 PC73
AlTexas/1/1977 EPI_ISL_122019 TE77
A/Bangkok/1/1979 EPI_ISL_122020 TE77
A/Philippines/2/1982 EPI_ISL_76487 TE77
A/Leningrad/360/1986 EPI_ISL_124928 TE77
A/Shanghai/11/1987 EPI_ISL_114294 TE77
A/Sichuan/2/1987 EPI_ISL_125877 TE77
A/Beijing/353/1989 EPI_ISL_115769 BJ89
A/Guizhou/54/1989 EPI_ISL_124894 BJ89
A/Beijing/32/1992 EPI_ISL_22624 BJ89
A/Shangdong/9/1993 EPI_ISL_115410 BJ89
Al/Johannesurg/33/1994 EPI_ISL_14284833 BJ89
A/Wuhan/359/1995 EPI_ISL_111269 WH95
A/Nanchang/933/1995 EPI_ISL_14284834 WH95
A/Sydney/5/1997 EPI_ISL_14284880 WH95
A/Moscow/10/1999 EPI_ISL_127595 MS99
A/Panama/2007/1999 EPI_ISL_174195 WH95
A/Fujian/411/2002 EPI_ISL_107711 MS99
A/Wyoming/03/2003 EPI_ISL_153570 MS99
A/Fujian/445/2003 EPI_ISL_127602 MS99
AlCalifornia/7/2004 EPI_ISL_21094 CA04
A/Wellington/01/2004 EPI_ISL_127603 CA04*
A/Newyork/55/2004 EPI_ISL_2402569 CA04
A/Hiroshima/52/2005 EPI_ISL_13228 CA04
A/Wisconsin/67/2005 EPI_ISL_10430 CA04
A/Jiangxi/donghu312/2006 EPI_ISL_20194 CA04
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Continued
Vac_strains Accession number Cluster
A/Brisbane/10/2007 EPI_ISL_110723 PEO9
A/Perth/16/2009 EPI_ISL_31913 PE09
A/Fujian-tongan/196/2009 EPI_ISL_99110 PEO9
AlVictoria/361/2011 EPI_ISL_109762 PE09
A/Texas/50/2012 EPI_ISL_122006 PEO9
A/Switzerland/9715293/2013 EPI_ISL_166859 PEO9
A/Hong_kong/4801/2014 EPI_ISL_176512 PEO9
A/Singapore/infimh-16-0019/2016 EPI_ISL_330262 SI16
A/Kansas/14/2017 EPI_ISL_312833 Sl16
A/Switzerland/8060/2017 EPI_ISL_303951 Sl16
A/Southaustralia/34/2019 EPI_ISL_17668123 Sl16
A/Hong_kong/2671/2019 EPI_ISL_391201 SI16
A/Hongkong/45/2019 EPI_ISL_410589 Sl16
A/Cambodia/e0826360/2020 EPI_ISL_1367566 SI16
A/Darwin/6/2021 EPI_ISL_18879343 Sl16
A/Darwin/9/2021 EPI_ISL_16998754 SI16
A/Thailand/8/2022 EPI_ISL_18485009 Sl16
A/Massachusetts/18/2022 EPI_ISL_16968012 SI16
A/Croatia/10136rv/2023 EPI_ISL_19085873 Sl16
A/District_of _ columbia/27/2023 EPI_ISL_19175844 SI16

* Derived from even sampling.
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SUPPLEMENTARY FIGURE S1. Silhouette score curve

for different values of k (number of epitopes).
Note: A higher score represents better clustering results.
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Catalytic sites

SUPPLEMENTARY FIGURE S2. Identified epitopes.
Different colors indicate distinct epitopes.
Note: The red circle indicates catalytic sites. Epitopes are
shown on only one chain of the tetramer.
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SUPPLEMENTARY FIGURE S3. Average cluster size and modularity curve.

Note: The blue line represents the mean cluster size (left y-axis). The green line represents modularity (right y-axis). The
parameter corresponding to the first point in the first plateau period was selected, with higher modularity representing better
clustering results. An inflation value of 1.5 for MCL was selected.
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SUPPLEMENTARY FIGURE S4. Performance of different models on the training dataset based on 5-fold cross-validation.
Abbreviation: RF=random forest; XGBoost=extreme gradient boosting; KNN=K-nearest neighbors; LR=logistic regression;
SVM=support vector machine; AUC=receiver operating characteristic area under the curve.
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SUPPLEMENTARY FIGURE S5. Antigenic similarity proportion for eight antigenic clusters.
Note: The proportions were calculated based on all possible pairs within a cluster and between two clusters.
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SUPPLEMENTARY FIGURE S6. Spatiotemporal distribution of even sampling for eight antigenic clusters in (A) Africa, and
(B) South America.
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SUPPLEMENTARY FIGURE S7. Antigenic landscape of A/H3N2 NA from proportional sampling. (A) The ACNet and
phylogenetic tree of representative sequences from eight major antigenic clusters; (B) Yearly spatiotemporal distribution of
eight antigenic clusters.

Abbreviation: NA=neuraminidase; ACNet=antigenic correlation network.
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