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Summary
What is already known about this topic?
Remote sensing information provides indirect insights
into infectious disease dynamics. Public health practice
has significantly benefited from the increasing
availability and accessibility of remote sensing data.
What is added by this report?

This  study

meteorological and environmental factors and malaria

explores the relationship between
vector abundance using remote sensing technology,
establishing predictive models for Anopheles sinensis
population dynamics.

What are the implications for public health
practice?

Identifying reliable predictors of malaria vector
abundance enables policymakers to allocate resources
more efficiently to regions at high risk of malaria
transmission. In areas where an abnormal increase in
malaria vector populations is predicted, proactive
measures can  be  implemented, including
environmental management, enhancement of local
malaria diagnostic capabilities, and strengthening of

targeted public health education campaigns.

ABSTRACT

Introduction: Malaria is a mosquito-borne infectious
disease that poses a serious threat to human health.
Although Anhui Province achieved malaria elimination
in 2019, the risk of retransmission from imported cases
persists due to cross-border human mobility. Given the
strong  correlation  between meteorological and
environmental factors and malaria transmission, this
study selected four distinct geographic regions in
Anhui Province to investigate the relationship between
these factors and malaria vector abundance using

remote sensing technology.

Methods: We collected density data of Anopheles
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sinensis  (An.  sinensis), meteorological parameters
(temperature, humidity, rainfall), and normalized
difference  vegetation index (NDVI) from 18
surveillance sites in Anhui Province from 2019 to
2023. The data underwent preprocessing through
multi-band composition, image mosaicking, and
surface reflectance calibration to construct a
spatiotemporal database. A generalized additive model
(GAM) was developed using data from 2019 to 2022
and subsequently validated by predicting mosquito
vector density in 2023.

Results: Univariate GAM analysis revealed that
nonlinear models provided a better fit than linear
models based on Akaike Information Criterion (AIC)
values. Temperature, lagged temperature
(temperature_1), humidity, lagged humidity
(humidity_1), rainfall, lagged rainfall (rainfall 1),
NDVI, and lagged NDVI (NDVI_1) all demonstrated
significant nonlinear relationships with An. sinensis
density (P<0.05). Specifically, NDVI (0.34-0.81),
temperature (10.55 C€-30.68 °C), humidity
(46.82%-97.61%), and rainfall (9.67 mm-440.52
mm) showed significant positive correlations with An.
sinensis density. The optimal multivariate GAM
incorporated lagged variables: humidity_1, NDVI_1,
rainfall_1, and temperature_1. This model achieved an
R? value of 0.76 on the test set, with a mean squared
error (MSE) of 0.19 and a mean absolute error (MAE)
of 0.28.

Conclusions: NDVI, temperature, humidity, and
rainfall constitute the key environmental drivers
influencing temporal patterns of An. sinensis density in
Anhui Province. The GAM-based prediction model
provides quantitative decision support for dynamic
mosquito vector monitoring and resource allocation for
malaria control.
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Malaria is a significant global health challenge,
currently endemic in 83 countries that collectively
represent 40% of the world's population (7). In recent
years, the gradual resumption of cross-border human
mobility has led to continued occurrences of imported
malaria cases in Anhui Province. Despite the
achievement of local elimination, environmental
conditions conducive to malaria transmission remain
unchanged, creating a persistent risk of re-
establishment (2-3). Malaria is fundamentally an
environment-related  disease, with  transmission
dynamics directly influenced by environmental factors
rainfall, temperature, and humidity.
Advancements in remote sensing technology now
enable these environmental parameters to be derived
from satellite data, providing valuable support for
malaria epidemiological studies and control efforts
(4-5). This study aims to explore the relationship
between meteorological and environmental factors and
malaria vector abundance using remote sensing
technology. By leveraging these capabilities, we seck to
enhance spatial risk modeling and identify reliable
predictors of malaria receptivity, ultimately assisting
policymakers in more effective allocation of limited
resources.

Anhui Province is located in the transitional zone
between warm temperate and subtropical climates,
characterized by a typical monsoon climate. The
annual average temperature ranges from 14 °C to
17 °C, with average annual precipitation between
800 mm and 1,800 mm. The Yangtze and Huai Rivers
flow from west to east across the province, dividing
Anhui into four distinct natural geographic regions: the
area north of the Huai River, the Jianghuai Hills, the
southern Anhui mountainous area, and the Yangtze
River Plain. Based on historical malaria prevalence,
Anopheles  mosquito  distribution, imported case
incidence, and re-transmission risk, 18 counties and
districts from 16 cities were selected as surveillance
sites. At each site, a representative natural village was
chosen as the survey point, considering factors such as
natural geographic environment, crop distribution, and
livestock farming (Supplementary Table S1, available
at hteps://weekly.chinacdc.cn/). Mosquito surveillance
was conducted biweekly from May to October during
2019-2023, with each session lasting overnight (from
18:00 to 07:00 the following day). The outdoor
human-baited double net trap was used for mosquito
collection. An unsealed single-layer mosquito net was
suspended in a residential area near an Anopheles
mosquito breeding site, with its base touching the

such as
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ground. One individual sat inside the inner net to
attract mosquitoes. A larger open mosquito net was
placed outside the inner net, and another individual
entered the outer net for 15 minutes per hour to
capture Anopheles mosquitoes resting on or around the
inner and outer nets using a mosquito aspirator.
Surveillance conducted  under
standardized conditions, including fixed personnel,
time, and locations. Data on the normalized difference
vegetation index (NDVI) and humidity were obtained
from the Sentinel-2A remote sensing dataset. The raw
satellite data were processed through multi-band
composition, image mosaicking, and

activities  were

surface
reflectance calibration, and all bands were resampled to
a uniform spatial resolution of 10 meters. A 2-km
radius buffer zone was created around each surveillance
site, within which environmental variables were
extracted. Temperature and precipitation data were
obtained from the National
Information Center of the China Meteorological
Administration (http://data.cma.cn) and the Anhui
Meteorological ~ Bureau  (http://ah.
cma.gov.cn). To study the lag effect of environmental
variables, data from the preceding surveillance cycle
(approximately two weeks prior) were also collected.

A generalized additive model (GAM) was used to
model the data, with a negative binomial regression
link function selected to address the issue of

Meteorological

Provincial

overdispersion in the data. The model was trained
using data from 2019 to 2022 and then used to predict
data for 2023. First, univariate analyses were
conducted for each explanatory variable to identify
those with a significant impact on mosquito density.
Explanatory  variables that showed statistical
significance in univariate analyses and had relatively
lower Akaike Information Criterion (AIC) values were
included in the multivariate model. Stratified analyses
were performed based on different geographic types.
The full multivariate regression model is expressed as
follows:

Y=f (Raz'nfoz//_l) + 5 (Tempemmre_l) + /5 (Humidily_l)
+ £ (NDVL) + By

Where the function Y is the negative binomial link
function, f is the constant intercept term, and f’is the
spline  smoothing function that
explanatory variables. All analyses were conducted in R
software (version 4.4.3; R Core Team, Vienna,
Austria).

From May 2019 to October 2023, a total of 12,094
female An. sinensis mosquitoes were captured. The

connects the
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highest number was recorded in early July, with 2,674
specimens accounting for 22.11% of the total catch. In
GAM models
demonstrated a better fit than linear models based on
the AIC. Results showed that temperature, lagged
temperature  (temperature_1), humidity, lagged
humidity (humidity_1), rainfall, lagged rainfall
(rainfall_1), NDVI, and lagged NDVI (NDVI_1) were
all significant nonlinear explanatory variables for An.
sinensis density  (P<0.05). Among these, NDVI
(0.34-0.81), temperature  (10.55 C-30.68 C),
humidity (46.82%-97.61%), and rainfall (9.67 mm-
440.52 mm) showed significant positive correlations
with An. sinensis density (Supplementary Figure S1 and
Supplementary Table S2, available at https://weekly.

the univariate analysis, nonlinear

TABLE 1. Outputs of multivariate regression from the GAM.

chinacdc.cn/). The
multivariatt GAM  model were lagged humidity
(humidity_1), lagged NDVI (NDVI_1), lagged rainfall
(rainfall_1), and lagged temperature (temperature_1).
The model’s AIC value was 7764.05, explaining 56%
of the deviance. When tested, the model achieved an
R? value of 0.76, with a mean squared error (MSE) of
0.19 and a mean absolute error (MAE) of 0.28
(Table 1 and Figure 1). The changes in An. sinensis

optimal parameters for the

density across different geographical regions of Anhui
Province in relation to environmental factors are
shown in Figure 2 and Supplementary Figure S2
(available at https://weekly.chinacdc.cn/).

Variable Estimate edf X P
Intercept -4.43 <0.001
s (NDVI_1) Smooth 3 5.43 <0.01
s (Rainfall_1) Smooth 3 4.50 <0.001
s (Temperture_1) Smooth 3 7.69 <0.001
s (Humidity_1) Smooth 3 5.25 <0.5

Abbreviation: s( )J=Smooth( ); edf=effective degrees of freedom; GAM=generalized additive model.
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FIGURE 1. Multifactor analysis of environmental factors' impact on Anopheles density. (A) impact of lagged NDVI (ndvi_1);
(B) impact of lagged rainfall (rainfall_1); (C) impact of lagged humidity (humidity_1); (D) impact of lagged temperature

(temperature_1).

Note: The vertical axis represents the smoothed effect value, indicating the magnitude of impact on Anopheles density.
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FIGURE 2. Comparison of observed Anopheles density values from 2019 to 2022 with fitted and predicted values for 2023.
(A) Jianghuai hill area; (B) North of the Huai River; (C) Plain along the Yangtze River; (D) South Anhui mountainous area.

Abbreviation: C/=confidence interval.

DISCUSSION

In this study, we identified NDVI, temperature,
humidity, and rainfall as the key factors influencing the
temporal patterns of An. sinensis density in Anhui
Province. The seasonal pattern of mosquito infestation
closely correlates with seasonal variations in these
environmental parameters. Low temperatures adversely
affect An. sinensis survival, significantly reducing adult
mosquito infestation rates and egg hatching rates,
which leads to substantial population decline (6).
Nevertheless, mosquito populations rebound during
summer months.

David Roiz etal. (7) suggested that environmental
data from weeks preceding the emergence of high-risk
populations should be prioritized to facilitate effective
vector control strategies and malaria prevention
planning. Accordingly, we incorporated the nonlinear
effects of NDVI, temperature, humidity, and rainfall
with a two-week lag into our multivariable GAM. The
model demonstrated that Anopheles mosquito density
exhibits an overall increasing trend with NDVI.
Additionally, mosquito density increases with rainfall,
but this effect gradually diminishes after rainfall
exceeds 190 mm. Previous studies have indicated that
NDVI can serve as an indicator of suitable mosquito
habitat conditions. Increased rainfall and NDVI may
create more favorable breeding sites and reduce human
activity, thereby contributing to higher mosquito
densities (8).
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When temperature falls below 20 °C, even slight
variations have a markedly pronounced effect on
Anopheles  density. As temperature increases, the
number of Anopheles rises sharply. Above 20 °C, the
relationship  between
density is approximately linear and positive. However,
when maximum temperature reaches around 28 °C,

temperature and mosquito

the influence of temperature fluctuations on Anopheles
density becomes less apparent. This phenomenon may
be attributed to the mosquito population already
achieving a relatively high density in the environment.
Under optimal thermal conditions, Anopheles density
tends to stabilize, thereby diminishing the impact of
temperature variations on population dynamics. When
humidity ranges between 70% and 80%, it exhibits a
roughly linear negative effect on mosquito populations.
Both temperature and humidity are known to
influence mosquito biting rates (9) and survival rates
(10). The observed negative impact of humidity in this
range may result from complex interactions among
multiple climatic factors (/7). Our multivariable model
explained 56% of the deviance, indicating that it
captured over half of the variability in the target
variable. The predictive performance, assessed using
the coefficient of determination (R?), yielded an R?
value of 0.76, demonstrating a strong correlation
between predicted and observed values. Furthermore,
through regional faceted visualizations, the model
effectively captured the spatial heterogeneity and
temporal dynamics of Anopheles density. The banded
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regions of the confidence intervals further validated
that the model’s uncertainty was within a reasonable
range, providing reliable predictions of mosquito
density dynamics. These results offer valuable insights
for informing malaria control strategies. The strength
of this study lies in our use of high-resolution remote
sensing imagery to extract environmental factors,
ensuring the reliability and accuracy of the
independent Additionally, we have
accounted for lag effects. However, this study did not
account for other factors that influence malaria
transmission, such as  agricultural  irrigation,
urbanization, and human mobility.

This study highlights the importance and usefulness
of remote sensing technology in vector population
monitoring, which will benefit efforts to prevent the
re-establishment of malaria transmission. It investigates
trends in vector population dynamics and the
combined  effects of  environmental factors,
emphasizing their significance in predicting and
assessing the risk of local malaria re-introduction. The
application of multivariate models and an
understanding of climate impacts on the mosquito life
cycle provide valuable insights for malaria control
managers, aiding in the spatial and temporal allocation
of resources to formulate cost-effective decisions and
policies. In areas where an abnormal surge in malaria
vector populations is forecasted, it is imperative to
increase investment in managing mosquito breeding
sites. This encompasses removing stagnant water and
enhancing environmental sanitation. Furthermore,
efforts should be intensified to improve the diagnostic
capabilities of local primary healthcare institutions.
Concurrently, targeted awareness-raising campaigns
should be launched to heighten preventive awareness
among residents.
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SUPPLEMENTARY MATERIALS

SUPPLEMENTARY TABLE S1. Details for 18 surveillance sites in the study areas.

Regions Cities Counties Geographical coordinates

North of the Huai River Bengbu Huaiyuan 33.06°N, 117.24°E
North of the Huai River Bengbu Guzhen 33.18°N, 117.25°E
North of the Huai River Bozhou Guoyang 33.60°N, 116.15°E
North of the Huai River Bozhou Mengcheng 33.38°N, 116.67°E
North of the Huai River Fuyang Yingshang 32.43°N, 116.18°E
North of the Huai River Huaibei Suixi 33.94°N, 116.71°E
North of the Huai River Huainan Tianjiaan 32.50°N, 117.01°E
North of the Huai River Suzhou Yonggiao 33.89°N, 117.15°E
Jianghuai hill area Chuzhou Dingyuan 32.47°N, 117.64°E
Jianghuai hill area Lu'an Shucheng 31.14°N, 116.77°E
South Anhui mountainous area Huangshan Huangshan 30.26°N, 118.21°E
Plain along the Yangtze River Anging Tongcheng 30.91°N, 116.99°E
Plain along the Yangtze River Anging Wangjiang 30.19°N, 116.66°E
Plain along the Yangtze River Chuzhou Quanjiao 32.07°N, 118.27°E
Plain along the Yangtze River Hefei Feidong 32.21°N, 117.39°E
Plain along the Yangtze River Maanshan Hexian 31.73°N, 118.34°E
Plain along the Yangtze River Tongling Tongguan 30.91°N, 117.86°E
Plain along the Yangtze River Xuancheng Guangde 31.03°N, 119.26°E

SUPPLEMENTARY TABLE S2. Comparison of AICs for univariate models with variables and time lags.

Model Variable Estimate Standard error edf XIF P AlIC
Intercept -4.19 6.40 1 <0.001 6873
NDVI
s (NDVI) Smooth 3 6.19 <0.001
Intercept -2.42 3.79 1 <0.01 6704
NDVI_,
s (NDVI_,) Smooth 3 6.76 <0.001
Model with variable explanatory Humidity
Humidity Intercept =3.77 0.04 1 <0.001 6729
s (Humidity) Smooth 3 1.02 <0.001
o Intercept -3.00 0.04 1 <0.001 6650
Humidity_,
s (Humidity_,) Smooth 3 2.78 <0.05
Model with variable explanatory Temperature
Temperature Intercept -6.06 0.24 1 <0.001 7342
s (Temperature) Smooth 3 11.36 <0.001
Intercept -3.27 0.13 1 <0.001 6930
Temperature_,
s (Temperature_,) Smooth 3 10.66 <0.001
Model with variable explanatory Rainfall
Rainfall Intercept -1.38 0.01 1 <0.001 7150
S (Rainfall) Smooth & 6.40 <0.001
. Intercept -1.26 0.01 1 <0.001 7047
Rainfall_,
s (Rainfall-,) Smooth 3 6.61 <0.001

Abbreviation: s( )=Smooth; edf=Effective Degrees of Freedom; AlC=Akaike Information Criterion; NDVI=normalized difference vegetation
index.
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SUPPLEMENTARY FIGURE S1. Univariate analysis of the impact of environmental factors on Anopheles density. (A)
impact of NDVI; (B) impact of Humidity; (C) impact of Temperature; (D) impact of Rainfall.
Abbreviation: NDVI=normalized difference vegetation index.
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SUPPLEMENTARY FIGURE S2. A comparison chart of the observed Anopheles density values in the whole province from
2019 to 2022, along with the fitted and predicted values in 2023.
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