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ABSTRACT

Introduction: Seasonal  influenza  poses  a
significant public health burden, causing substantial
morbidity and mortality worldwide each year. In this
context, timely and accurate vaccine strain selection is
critical to mitigating the impact of influenza outbreaks.
This article aims to develop an adaptive, universal, and
convenient method for predicting antigenic variation
in influenza A(HIN1), thereby providing a scientific
basis to enhance the biannual influenza vaccine
selection process.

Methods: The study integrates adaptive Fourier
decomposition (AFD) theory with multiple techniques
— including matching pursuit, the maximum selection
principle, and bootstrapping — to investigate the
complex nonlinear interactions between amino acid
substitutions in hemagglutinin (HA) proteins (the
primary antigenic protein of influenza virus) and their
impact on antigenic changes.

Results: Through
classical methods such as Lasso, Ridge, and random
forest, we demonstrate that the AFD-type method
offers superior accuracy and computational efficiency

comparative  analysis  with

in identifying antigenic change-associated amino acid
substitutions, thus eliminating the need for time-
consuming and expensive experimental procedures.
Conclusion: In summary, AFD-based methods
represent effective mathematical models for predicting
antigenic variations based on HA sequences and
serological data, functioning as ensemble algorithms
with guaranteed convergence.Following the sequence
of indicators specified in /, we perform a series of
operations on Aj, including feature extension,
extraction, and rearrangement, to generate a new input
dataset 4; for the prediction step. With this newly
prepared input, we can compute the predicted results

as A, w.
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Seasonal influenza remains a significant global
public health threat, with the World Health
Organization (WHO) estimating 3 to 5 million severe
cases and 290,000 to 650,000 deaths annually (7). The

predominant circulating strains — influenza A virus
subtype  HIN1  [A(HIN1)], A(H3N2), and
B(Victoria) — undergo antigenic drift due to amino

acid substitutions in the hemagglutinin (HA) protein.
These molecular changes enable the virus to evade host
immunity, resulting in seasonal outbreaks (2-3).
Traditional serologic assays, such as hemagglutination
inhibition (HI), are employed to monitor antigenic
changes but are labor-intensive, costly, and require live
virus isolation (4). Consequently, a sequence-based
strategy to predict antigenic variants would represent a
more efficient alternative (5).

Several machine learning models have been
developed for HA sequence-based antigenicity
prediction, including support vector machines (SVM),
multi-task learning sparse group lasso (MTL-SGL),
iterative filtering models, and ridge regression. These
approaches demonstrate robust performance in high-
dimensional data classification, integrating multiple
features with numerical weighting (6-8). However,
these models exhibit limitations in handling dynamic
data and nonlinear relationships, rendering predictions
susceptible to noise, missing values, and feature
correlation.

In this article, we introduce a matching pursuit
model based on adaptive Fourier decomposition
(AFD) theory for predicting influenza antigenic
variation, using HIN1 as an exemplar. Inspired by (9)
and (70), our model offers three distinct advantages:
Adaptivity and efficiency via an AFD maximum
selection that mitigates overfitting on small datasets;
Nonlinearity and interpretability through capturing
epistatic effects between amino acid changes and spatial

positions;  Robustness  via  feature  screening,
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bootstrapping, and orthogonal projection for dual-site
interactions.

METHODS

Matching Pursuit Model Based on

Adaptive Fourier Decomposition Theory

This section develops a quantitative model to predict
antigenic distances from HA protein sequences. We
denote A as the independent features and Y as the
target variable. Details on the matching pursuit model
and prediction procedure are provided in the
Supplementary Material (available at https://weekly.
chinacdc.cn/).

In this section, we outline the specific steps of the
model algorithm, which are divided into two main
phases: training and predicting, which are shown in
Table 1 and Table 2, respectively.

TABLE 1. Matching pursuit algorithm — training model.

Assuming the execution of the above algorithm stops
at step j=p.(<p), and we obtain the parameter set
X=(x,+, 4 ) for the training model and the index set
I=(h,1,). Let B=(b."b,)

orthonormal matrix, and A= (4;,**,4;_) represent the

represent  the

rearranged matrix of A according to I. We can
compute W, », using B=A W, which gives us the
parameter set W= WX for prediction model. The
subsequent algorithm will help us derive the parameter
set for the prediction model and present the prediction
results.

Both algorithms generate sequence data through
feature expansion, which can lead to a high-
dimensional space and increased overfitting risk —
especially when higher-order terms are included.
However, our model mitigates this via a maximum
selection principle and by applying expansion to both
training and testing sets. To balance enhanced

Step Process

Input sequence data Ag.,=(a;,...,a,) and antigenic data Y.,

Output the parameter set X, the index set | and the result qu1
0 Initialize €>0, j=1

b —adlladl, k=1,--,p

I, — argmax, |<Y,b>[?

by« ay /|lan|
Xy —<Y,b,>
Y —<Y,b,>b,

energy «— |x?

RN

J<—j+1

b — by
X — <Y,b>

Y — Y +<V,6>4
energy « |x?
End while

© 0 N O a b~ w N

While energy>¢ && j<p do

by — Qi (BN Q- (Il kK =1,--,p
I < argmax; [<Y,b,>?

TABLE 2. Matching pursuit algorithm — predicting model.

Step Process

Input X, I, W, and new sequence data, denoted by Ay,

Output prediction result, denoted by Y g«
0 extract and rearrange a subset of Ay, according to I; then obtain A, with size q;x p,
1 compute W =W At
2 compute Y,1.= AW
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prediction accuracy with the increased computational
cost of higher dimensions, we randomly select a small
subset of features, choose an appropriate expansion
degree (e.g., 2nd or 3rd), and then perform random
feature sampling with replacement. The final
prediction is obtained by averaging across all iterations,
leveraging ensemble methods similar to those used in
random forests.

Validation Examples

The dataset description is provided in the
Supplementary Materials. In this section, we first
present the model’s training and prediction results,
followed by an evaluation using multiple performance
metrics. We then discuss the reliability of key sites
identified by the model, particularly in the context of
antigenic variation. We employ two primary evaluation

metrics to assess model effectiveness: root mean square
error (RMSE) and Fl-score, defined as follows.

where Y represents the true value and § represents the
predicted result

For each analytical task, we employ Algorithm 1 for
training and Algorithm 2 for prediction. We
benchmark our approach against five classical methods:
Random Forest (RF), Support Vector Regression
(SVR), Lasso, Gradient Boosting (GB), and Elastic Net
(EN). Our proposed model is Matching Pursuit
Method (MP).

RESULTS

Model Evaluation
We established epsilon values of 0.1, 0.01, 0.01,

0.001, and 0.01, with bootstrap samples of 30, 5, 5, 2,
and 15 across the five tasks, respectively. Each task
incorporated 70, 80, 70, 80, and 80 observations
drawn with replacement from the original dataset.
Subsequently, we calculated the mean for each of these
samples. From a theoretical perspective, as the number
of selected observations decreases, the number of
bootstrap samples should increase proportionally. The
evaluation metrics for the training model are presented
in Table 3.

The five tasks above demonstrate that our method
performs robustly across these datasets. The approach
proves effective both in capturing positive events, such
as site variations, and in optimizing the balance
between accuracy and recall rate.

Figure 1 displays the MP model’s training results for
antigenic distance prediction, where blue dots closer to
the red line indicate superior performance. We
subsequently applied Kernel Density Estimation
(KDE) with a bandwidth of 0.5 to generate smooth
density curves for both predicted and actual data. The
substantial overlap between these curves reveals similar
distributions and minimal bias. As illustrated in
Figure 2, this alignment across datasets confirms the
model’s strong generalization capabilities, consistency,
and robustness.

The evaluation metrics for the prediction model are
presented in Table 4.

The prediction results across the five tasks above
reveal that, while our model demonstrates strong
performance during training, the prediction outcomes
still present opportunities for improvement. Despite
systematic efforts to optimize parameters and refine the
input dataset during model development, certain
aspects remain suboptimal. Nevertheless, these
numerical results provide valuable reference points for
subsequent research endeavors.

TABLE 3. Comparison of training performance between classical models and AFD-based predictive methods on five H1N1

prediction tasks.

Task 1 Task 2 Task 3 Task 4 Task 5
Methods RMSE F1-score RMSE F1-score RMSE F1-score RMSE F1-score RMSE F1-score
RF 0.624 0.730 0.380 0.899 0.453 0.909 0.326 0.984 0.366 0.816
SVR 0.203 0.955 0.343 0.956 0.506 0.890 0.323 0.968 0.335 0.883
Lasso 1.317 0.543 1.322 0.867 1.635 0.113 0.905 0.878 1.340 0.520
GBR 0.763 0.730 0.708 0.867 0.790 0.808 0.561 0.878 0.433 0.768
ENG 0.519 0.909 0.597 0.932 0.627 0.863 0.371 0.984 0.341 0.816
MP 0.149 0.978 0.296 0.963 0.312 0.939 0.195 1.000 0.261 0.930

Note: The bolded values highlight the best performance scores across different models for each H1N1 prediction task.
Abbreviation: RF=random forest; SVR=support vector regression; GBR=gradient boosting regression; ENG=elastic net; MP=matching
pursuit method; RMSE=root mean square error.
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FIGURE 1. Training results of the MP model for antigenic distance prediction across (A—E) Tasks 1-5.

Note: The X-axis represents the ground truth antigenic distance, and the Y-axis shows the predicted values. The red
diagonal line is the correlation line.

Abbreviation: MP=matching pursuit method.
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FIGURE 2. Training results of the classical and MP model represented through Kernel Density Estimation (KDE)
distributions of predicted and actual antigenic distance values across (A—E) Task 1-5.

Note: The X-axis denotes the antigenic distance, and the Y-axis indicates the density. Each line corresponds to a different model.
Abbreviation: MP=matching pursuit method.

Figure 3 illustrates the prediction results for accuracy. Figure 4 displays the KDE results for all six
antigenic distance using the MP model. The proximity methods, demonstrating that our approach yields
of blue dots to the red line indicates prediction superior testing outcomes. The degree of overlap with
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the target curve directly corresponds to prediction
performance quality.

Analysis on Amino Acid Site

In this section, we conducted a systematic screening
and evaluation of critical amino acid sites within the
model. The top 50 amino acid sites with the highest
contribution were selected for model fitting in each
task. Task 1 comprised 8 single sites and 34 coupled
sites, task 2 included 13 single sites and 37 coupled
sites, task 3 contained 12 single sites and 38 coupled
sites, task 4 had 8 single sites and 32 coupled sites, and

task 5 consisted of 7 single sites and 43 coupled sites.
Notably, coupled sites consistently represented a higher
proportion in feature selection across all tasks, ranging
from 74-86 percent (Table 5 and Table 6).

We identified 21, 29, 39, 37, and 53 amino acid
mutations in tasks 1-5, with 16, 20, 29, 22, and 28
sites respectively associated with antigenic epitopes
(Table 7 and Figure 5). These findings suggest that
mutations at these positions may significantly alter
antigenicity and contribute to antigenic drift. Notably,
certain amino acid positions appeared repeatedly in
coupled-site mutations, such as positions 216 and 186

TABLE 4. Comparison of predicting performance between classical models and AFD-based predictive methods on five

H1N1 prediction tasks.

Task 1 Task 2 Task 3 Task 4 Task 5
Methods RMSE F1-score RMSE F1-score RMSE F1-score RMSE F1-score RMSE F1-score
RF 0.678 0.942 0.573 0.891 0.523 0.905 0.405 0.941 0.556 0.817
SVR 1.065 0.821 0.757 0.913 0.570 0.889 0.799 0.898 0.526 0.871
Lasso 1.315 0.517 1.301 0.891 1.617 0.111 1.334 0.806 1.414 0.164
GBR 0.942 0.826 0.747 0.891 0.786 0.827 1.582 0.570 0.661 0.796
ENG 0.653 0.921 0.780 0.927 0.610 0.877 0.456 0.962 0.546 0.844
MP 0.582 0.942 0.478 0.944 0.513 0.914 0.403 0.941 0.416 0.915

Note: The bolded values highlight the best performance scores across different models for each H1N1 prediction task.
Abbreviation: RF=random forest; SVR=support vector regression; GBR=gradient boosting regression; ENG=elastic net; MP=matching

pursuit method; RMSE=root mean square error.
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FIGURE 3. Predicting results of the MP model for antigenic distance prediction across (A—E) Task 1-5.
Note: The X-axis represents the ground truth antigenic distance, and the Y-axis shows the predicted values. The red

diagonal line is the correlation line.
Abbreviation: MP=matching pursuit method.
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FIGURE 4. Predicting results of the classical and MP model represented through KDE distributions of predicted and actual

antigenic distance values across (A—E) Task 1-5.

Note: The X-axis denotes the antigenic distance, and the Y-axis indicates the density. Each line corresponds to a different

model.

Abbreviation: KDE=kernel density estimation; MP=matching pursuit method.

TABLE 5. Top single amino acid sites identified for their
high contribution to antigenic changes within each task
based on the MP model (Single Site).

Task 1(8) Task2(13) Task 3 (12) Task 4 (8) Task 5 (7)

54 43 43 51 9
56 66 57 120 34
71 74 82 155 49
121 84 132 186 77
128 89 141 211 81
135 125 186 216 93
186 141 187 260 95
187 153 189 272

163 190

187 222

215 252

222 315

253

478

Note: The number after Task No. is the important feature number.
Abbreviation: MP=matching pursuit method.

in task 1, 253 in task 2, 187 and 141 in task 3, 211 in
task 4, and 209 and 35 in task 5. The recurrence of

these mutations in both single-site and coupled-site
analyses indicates their substantial impact on antigenic
properties (Table 6 and Figure 6).

Based on the results shown in Table 6 and Figure 5,

CCDC Weekly / Vol. 7/ No. 14

we have identified both commonalities and differences

across individual tasks. Certain amino acid sites
consistently appear in multiple tasks, such as the 153
site in the Sa region, which is identified as critical in
almost all tasks, suggesting its central role in antigenic
variation. Conversely, some loci appear exclusively in
specific tasks, reflecting the diversity of antigenic
variations that may be influenced by different datasets
or model conditions.

Finally, we summarized and deduplicated the amino
acids in six antigenic epitopes (Ca, Cb, Pa, Pb, Sa, and
Sb) selected from the five tasks. A total of 12 residues
are present in the Ca antigenic epitope, 13 in the Cb
antigenic epitope, 8 in the Pa antigenic epitope, 4 in
the Pb antigenic epitope, 11 in the Sa antigenic
epitope, and 12 in the Sb antigenic epitope. All
residues were visualized on both trimeric and
monomeric structures of the influenza HA protein
(PDB: 3UBE) using PyMOL (Figure 7).

The identification of these key sites provides
valuable insights for elucidating antigenic variation
mechanisms and serves as a critical reference for
vaccine vaccine

design.  Specifically,

formulations to target these frequently occurring

optimizing

critical sites could substantially enhance vaccine
efficacy against emerging viral strains.
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TABLE 6. Top coupled amino acid sites identified for their high contribution to antigenic changes within each task based on

the MP model.
Task No. Two Site
12;:ﬁ§f 122:;26 1;;;;1? gg:fgg 186-216 ~ 71-130  71-186  193-216  54-272  121-187
Task 1(34) 153-160  128-186 128-193 193-253  74-141  36-193
MI-157 1357141 180-253  128-253 74 435 74-135  160-324  36-157  36-216  56-130
135-160 160-216 157272 135-222
69-125 187-253 153-187  43-125 ~ 153-253  187-215 222-273
Task2(37) 27315  84-187  252-253  74-222 43-183 69-175  153-209 ;g:;:; 122:123 2353223
89-153  273-324  2-163 2-72 2-84 84-253  166=258 o' n 7eoes  ppois
125-253  3-82  43-187  43-73 69-190 2-43  43-253
187-189  183-253  69-269  186-189  73-128  189-271 267-290 132-141 _, ..., oo
Task3(3s) (86-187  82-187 267273 194200 141194  183-186  82-190 187190 o) 00 gy 444
170-194  141-193  160-193  120-141 141 132-153 68141  73-189 .o o o oo
35-194  35-73  146-187 267-315  187-252  166-209 187-215 187-315
:;:;gg ;ngzgg 120-272  56-112 38-47 47-71  38-211  47-250 211-298  32-43
Task4(32) ., 424 gaoq5 847228 155-228  271-283  168-170 211-250 1747  94-129  38-250
199999 041 3-228 3247 43-72 211-260  72-250  32-276  161-271 61-168
ey, 89120 207-260 109209 129166 36-129 35178 3845
Task5(43) 127-239 19-187 61178 83109 43-129 71-129  179-239  71-179  183-187  84-262
83260  197-207 3197 85161 19-69 35-205  179-209  51-179  128-197 191-274
96127 209-298 183190 367209 161-19 89-239  73-178  166-179 128-186  35-170

Note: The number after Task No. is the important feature number.
Abbreviation: MP=matching pursuit method.

TABLE 7. Antigenic sites and corresponding amino acid positions within the HA1 epitope identified as critical for antigenic

changes across tasks based on the MP model.

Antigenic

sites Task 1-aa Task 2-aa Task 3-aa Task 4-aa Task 5-aa
121, 163,
sa A 125, 153, 163 120, 153, 160 120, 155, 161, 162 120, 156, 161
’ 186, 187, 189, 190, 193, 194, 186, 187, 190, 191, 197

Sb 186,187,193 187,190, 208, 209 208, 203 186, 211 R

Ca 141,216,222 141,166,215,222 141,146, 166, 170,215,222 > 10> 179215210 435 166,170, 205, 239
Cb  54,71,74,253 /2 7372 528889 6g 73 74 82 84,253 71,72,84,260 73745 85,89,260
Pa 272 43,273 43,269, 271, 273 43,271,276, 283 43,274

Pb 36 35, 290 38 35,36, 38

Abbreviation: MP=matching pursuit method; HA=hemagglutinin.
DISCUSSION

This article introduces a novel approach for
predicting antigenic variations of HIN1 influenza
A — the MP model. Traditionally, antigenic variation
prediction relies on extracting protein sequences and
serological data, followed by applying regression-based
models to infer the antigenic characteristics of novel
viral protein sequences. In contrast, this study
incorporates AFD theory as a key component, offering
an alternative analytical perspective that aims to
enhance predictive performance and interpretability.

The proposed method demonstrates several
significant advantages. First, the algorithm leverages
AFD to dynamically select optimal basis functions,
which enhances its capacity to capture nonlinear
relationships in antigenic data. This flexibility

Chinese Center for Disease Control and Prevention

effectively mitigates issues such as overfitting, a
common challenge in high-dimensional datasets with
sparse labels. Second, compared with traditional
regression techniques, the model offers improved
interpretability, superior computational efficiency, and
reduced complexity, making it particularly suitable for
large datasets and real-time applications. Furthermore,
the model’s applicability extends beyond HINI1
influenza A, with preliminary results suggesting its
utility for other influenza subtypes such as H3N2 and
Influenza B, and its potential adaptability to other viral
families. Notably, this study also incorporates dual-site
synergy considerations, identifying key site interactions
from five publicly available datasets.

Empirical evaluations on these datasets indicate that
the model performs well across various metrics, often
outperforming baseline methods. However, deeper

CCDC Weekly /Vol. 7/ No. 14 479
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FIGURE 5. Bar charts illustrating the distribution of identified amino acid mutations across antigenic sites (Sa, Sb, Ca, Cb,

Pa, and Pb) for (A-E) Tasks 1-5.
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FIGURE 6. Network diagram of two-site interactions for (A—E

analysis has revealed certain areas requiring
improvement. For example, while the algorithm
exhibits strengths in computational efficiency and
generalization, its sensitivity to capturing subtle
antigenic shifts could be further refined.

Future efforts will focus on integrating advanced
feature engineering to capture domain-specific viral
protein properties and exploring ensemble learning to
enhance predictive robustness. We also plan to

cell-based

collaborate with virology experts on
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130

166

109

85 om

Task 5

) Task 1-5.

experiments to validate our predictions and support
applications in vaccine design and epidemiological
forecasting. This comprehensive approach aims to
refine our methodology and contribute to addressing
complex challenges in influenza and broader virology
research.
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Epitope | Number | Site

Ca 12 138, 141, 142, 146, 166, 168, 170,
205, 215, 216, 222,239
54,68,71,72,73,74, 82, 84, 85, 89,

b 13 253,260, 262
43,269, 271,272,273, 274, 276,

Pa 8
283

Pb 4 35, 36, 38, 290

S 1 120, 121, 125, 153, 155, 156, 157,

a 160, 161, 162, 163
Sb 12 186, 187

FIGURE 7. The selected amino acids of six antigenic sites (i.e., Ca, Cb, Pa, Pb, Sa, and Sb) of H1 (A/California/04/2009;

PDB 3UBE).
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SUPPLEMENTARY MATERIAL

Data Description

This study utilized serologic data for HIN1 viruses, comprising 2,030 HI titers generated from 153 viruses and
97 serum samples, along with 13,591 non-identical amino acid sequences of HA proteins, accessible at
hteps://github.com/InfluenzaSystemsBiology/MTL-SGL. Analysis of swine-origin influenza viruses (SOIVs)
collected from humans between 1990 and 2010 revealed that their HA and neuraminidase (NA) genes belong to the
triple-reassortant swine-origin influenza virus (tr-SOIV) lineage, which evolved from classical swine-origin influenza
virus (cSOIV) A(HIN1). The tr-SOIV HA genes form two distinct clusters: Hlgamma (predominantly east of the
Mississippi River) and Hlbeta (west of the Mississippi River). Seasonal human HINT1 viruses (1977-2009) were
characterized using HI assays, involving 115 virus isolates, 77 serum isolates, and 1,882 measurements to correlate
antigenic dynamics with molecular evolution. Additionally, swine HIN1 viruses from 2008 were characterized
through genome sequencing and serological cross-reactivity analysis to elucidate genetic diversity and antigenic

properties.
Our analysis incorporated five datasets, denoted as (A;, Y7 ), (A, Y5), (A3, Y3), (Ap Yy), (As, Ys5). Matrices 4,),
represent HA protein sequences, while vectors V), represent antigenic distances, where 7 = 1, - - - 5. The dimensions

of A,, are 78 x 167, 861 x 167, 4,950 x 167, 91 x 167, and 276 x 167, respectively. The dimensions of vectors Y,
correspond to the number of rows in matrix A,,. For each dataset, amino acid substitutions and antigenic distances
for virus pairs were determined using established protocols. Specifically, amino acid substitutions were quantified
using a binary coding schema for all HA sequence pairs. Antigenic distances for corresponding virus pairs were
calculated based on their HI titers against different antisera using a low-rank matrix completion method. Each
dataset was randomly partitioned into two segments: 70 percent allocated for model training to establish underlying
patterns and relationships, and the remaining 30 percent reserved as a testing set to evaluate model performance on
unseen data.

Formulation of Matching Pursuit Model

Suppose A = (a1, ap ..., a,), whereaqj € R1,1=1,2, .- p, are the non-zero column vectors of A and R s the
Euclidean space with dimension q. Let Y € RY. Leveraging the idea of polynomial regression, we perform feature
expansion on A. Through feature expansion, the elements of A can be transformed into higher-order features such as
squared terms, cubic terms, or even higher-order terms. Additionally, this process includes interaction terms
between the elements of A, known as feature interactions. This enhancement significantly boosts the model’s
expressive power, enabling us to effectively capture complex nonlinear relationships when addressing real-world
problems. Without loss of generality, we still use the notation A = (a;, a5, . . ., a, ) to represent the result after
completing the feature extension.

The objective is to identify a re-ordered subset of A, denoted as A= (2, 4;.); » <p,and a row vector X = (x; , -

*» Xp1 ) such that

Y= AX"|
is minimized, where ||-|| is the Euclidean norm and X" is the transpose of X.
Let B= (6}, b5 . .., b,) be the normalization of vectors A, i.e., b= a;/ || 4{[y, /= 1,2, - - -, p. Denote by Qyy

the Gram-Schmidt orthogonalization with respect to any vector &/ That is

Qi) = 2= (ay, b)),
For a set of p orthogonal vectors B=by , - - -, b, the following relationship holds:

Qb[, (Q@H ( (le (d/)))) S pr o Qb,ﬂ 00 Q,(a)

Corresponding to the description in Section 2, we consider A as the kernel functions, B as the normalized kernel
functions, and B as the Takenaka-Malmquist system. Through this framework, we can apply the discrete form of
the maximal selection principle (MSP).

For the initial case where /= 1, we select /; and #;; according to:
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aj 2
argmax{|(Y, ——)| k=1, p}
Il a |l
We then set & = ﬁ and 4, = b} = Q, (ai_l) =Q, (42) ,k=1,--p,, where we adopt the notation 4, = 4. This
yields the first parameter x; = (Y, 4;) for our model, where (., .) represents the Euclidean inner product.
Next, we discuss /= 2. Select /, and 47, according to
2
b
N tk=1np)
Al

Naturally, I, # I;. If the maximum value is zero, the selection process terminates at this step. Otherwise, set

argmax{|(Y,

b
b= ”b—?”andbi = b, = Q,, (52) ,k=1,---,p. Furthermore, we derive the second parameter x;, = (¥, 4,) for our model.
)

Inductively, for any integer /> 2, we ultimately obtain an orthonormal system &1, , 4, and an integer p < p, where
2’ can be computed by

b
argmax{|[(Y, ——)| <e:k=1,-p}
4 |
for a predetermined & . Controlling the sample size (i.e., the size of ¢), along with feature expansion, ensures that

the integer p’(s p) is attained. Denote by X = (x, - - -, xpr), where x = (Y, 4)),/=1,,p’. Additionally, we have
1_
b Qlu—l 00 an (a?l) Qlall (bflz) /
= = =
1Q oo @)l 11, (6721

Denote by A4 the g X p” matrix formed by the column vectors (ay, -, "1,') in the ordered sequence 7= (£, 1),

3’ ..,p,.

and B= (b1, b,). Let W, represent the transformation matrix between 4 and B, where B is orthonormal.
Therefore, the matching pursuit model is formulated as
Y=BX = (A W)X =AW

which provides a solution to ||V~ AX||, where W= wx represents the coefficient vector expressed in terms of the
basis A.

The formulation of this model is grounded in AFD theory and derives its strength from effectively modeling
nonlinear systems. Unlike conventional methods constrained by predetermined basis functions, our matching
pursuit model dynamically selects the most appropriate functions from a dictionary to efficiently capture the
complexities of nonlinear signals. Furthermore, as nonlinear systems typically contain substantial redundant
information, our approach employs the Matching Pursuit algorithm to iteratively approximate the signal. By
selectively incorporating only dictionary elements that significantly contribute to the signal’s energy, we achieve a
sparse approximation. Additionally, by leveraging high-order polynomials, we incorporate synergistic interactions
between features through the inclusion of feature products (higher-order features). With this extended dictionary
comprising higher-order features, the antigenic distance can be precisely determined and subsequently used for
prediction through the sequential maximal selection of columns in the consecutively obtained orthogonal
complements.

Prediction Procedure
Suppose we have two pairs of data, consisting of sequence data and antigenic data, denoted as (A, Y) and (A}, Y;),
respectively. We use (A, Y) as the training set and (Aq, Y;) as the testing set. Based on the matching pursuit model
[3] established in the previous section, once the training set has been processed, we can derive two key outputs: the
parameter set W= WX and the index set /= (4, 1,).
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