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ABSTRACT

Introduction: Severe fever with thrombocytopenia
syndrome (SFTS) is an emerging infectious disease
caused by the SFTS virus, which has a high mortality
rate. Predicting the number of SFTS cases is essential
for early outbreak warning and can offer valuable
insights for establishing prevention and control
measures.

Methods: In this study, data on monthly SFTS
cases in Hubei Province, China, from 2013 to 2020
were collected. Various time series models based on
seasonal auto-regressive integrated moving average
(SARIMA), Prophet, eXtreme Gradient Boosting
(XGBoost), and long short-term memory (LSTM)
were developed using these historical data to predict
SFTS cases. The established models were evaluated and
compared using mean absolute error (MAE) and root
mean squared error (RMSE).

Results: Four models were developed and
performed well in predicting the trend of SFTS cases.
The XGBoost model outperformed the others, yielding
the closest fit to the actual case numbers and exhibiting
the smallest MAE (2.54) and RMSE (2.89) in
capturing the seasonal trend and predicting the
monthly number of SFTS cases in Hubei Province.

Conclusion: The developed XGBoost model
represents a promising and valuable tool for SFTS
prediction and early warning in Hubei Province,

China.

Severe fever with thrombocytopenia syndrome
(SFTYS) is an emerging infectious disease caused by the
SFTS virus. Since the first confirmed case was reported
in 2009 (), most cases have been reported in northern

and central China (2-3). The number of reported
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SFTS cases continues to rise, and the areas affected by
the disease are expanding (4-5). Due to its high case-
fatality rate and the possibility of pandemic spread, the
World Health Organization included SFTS on its list
of the top 10 infectious diseases needing immediate
research attention (6). Although China has established
a valuable infectious disease surveillance system to
monitor and assess disease burden, the system cannot
predict future trends or provide early warnings of
outbreaks. Furthermore, the monitoring data obtained
are often delayed. Consequently, there is an urgent
need for a model to predict the number of SFTS cases
in endemic regions.

As a tick-borne disease, the incidence of SFTS
exhibits distinct time-series characteristics, referring to
data points collected and recorded chronologically,
typically at regular intervals. Specialized time-series
analysis techniques are likely suitable for effectively
modeling and forecasting SFTS incidence.

In this study, we utilized various time series
algorithms based on historical data to predict the
occurrence of SFT'S in Hubei Province, one of the first
provinces to report SFTS cases and a province with a
high incidence of the disease in China (7). Predicting
the number of SFTS cases in this region will provide
important insights for developing prevention and
control interventions.

METHODS

Data Collection

The monthly number of SFTS cases in Hubei
Province was obtained from the Public Health Science
Data Center (https://www.phsciencedata.cn/Share/).
Data reported between January 2013 and December
2019 (84 data points total) were used for model
training and development, while the remaining data
from January to December 2020 (12 data points total)

Chinese Center for Disease Control and Prevention


https://www.phsciencedata.cn/Share/

China CDC Weekly

were used for external validity assessment.

Model Constructions

SARIMA model: Seasonal autoregressive integrated
moving average (SARIMA) is an extension of
autoregressive integrated moving average (ARIMA)
that requires selecting hyperparameters for both the
trend and seasonal elements of the time series. The
formula for SARIMA is as follows:

d D 0(B)0, (B)

(1-B) (1-B) Y, =6, + e M
where Y, refers to the value of the time series at time t,
0, is constant, &, is the white noise value at period 7
and the parameters d and D represent the difference
number and seasonal difference number, respectively.
B is the backshift operator, ¢(B) is the autoregressive
operator, and 6 (B) is the moving average operator.
#,(B) and 0,(B)are the seasonal operators.

Prophet model: The Prophet model provides a
versatile treatment of trends, seasonality, and holiday
effects. The trend component, g(t), is engineered to
capture non-periodic changes in the time series. The
foundational equation of the Prophet model is
expressed as:

7: = gle) + s(2) + h(z) + €, 2
Where y, denotes the predicted value at time 2, 5(2) is
the seasonality component, /4(z) represents the impact
of holidays or specific events on the time series, and &,
is the error term accounting for aspects of the data not
explained by the model.

XGBoost: eXtreme Gradient Boosting (XGBoost)
iteratively constructs a series of short, basic decision
trees. For a dataset with 7 examples and 7 features, a
tree ensemble model in XGBoost predicts the output
using K additive functions:

K
ji=) filv) fie F (3)
k=1

Here, 7 represents the predicted value for the ith
sample, fi is a function corresponding to the kth tree,
and F denotes the space of regression tree functions,
with x; being the feature vector for the 7th sample.

To learn the set of functions used in the model,
XGBoost following  regularized

objective:

minimizes the

L) =" 1)+ Y Q(f) (4)

In this equation, /(yl», j/}) is the loss function that
quantifies the error between the observed and
predicted data, and Q(ff) is the regularization term
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that helps smooth the learned weights. This smoothing
prevents overfitting and encourages the model to select
simpler, more predictive functions. The regularization
term is defined as:

T
1
Q) =T+ Exzwj )
A

Where y and A are regularization parameters, 7 is
the number of leaves in the tree, and w; represents the
score on each leaf.

Bayesian optimization was used to select the optimal
hyperparameters, with the objective function defined
to maximize R2.

LSTM Networks: Long short-term memory
(LSTM) networks incorporate a cell state that acts as a
form of memory. The key feature of LSTM networks
lies in their gating mechanism, which comprises three
types of gates.

The input gate regulates the flow of new
information into the cell state through a two-step
process. First, a sigmoid function determines the
necessary update values, represented by the equation:

=0 (‘Vx,xt + Wb + bz’) (6)

The second step employs a tanh function to generate
a vector of new candidate values that may be added to
the state, given by:

C, = tanh(Wy.x, + W), by + bc) (7)

Here, it is the activation of the input gate, and C, is
the candidate vector for the cell state update.

The forget gate determines which information from
the cell state to retain or discard. It uses a sigmoid
function to evaluate the importance of existing
information in the cell state, defined by:

£=0 (W + Wby + &) ®

The activation vector f; indicates the extent to which
past information should be forgotten or retained.

The output gate regulates the information sent to

the subsequent layer. This gate functions in two stages.

First, a sigmoid function determines which parts of the
cell state are outputted, as shown by:

0, =0 ("onxt + %g}’t—l + bo) ©)

Then, the final output is calculated by multiplying
this activation o, with the tanh of the cell state,
resulting in:

b, = 0, X tanh (C) (10)

The output vector A4, represents the information
transmitted to subsequent layers or units in the
network.
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In the models described above, clipping, a data post-
processing technique, was used to address unrealistic
negative values in the results. A detailed explanation of
each model is provided in Supplementary Material
(available at https://weekly.chinacdc.cn/).

Performance Evaluations
The predictive performance of the models was
assessed using two indices: mean absolute error (MAE)
and root mean squared error (RMSE), defined as
follows:

1< .
ME=ZZ|}/i—}/j| (11)

=1

n

> bi-5f

=1

RMSE =

N

(12)

Software
Descriptive statistics and time series modeling were
conducted using Python (version 3.7; Python Software
Foundation, Beaverton, OR, USA). The SARIMA,
Prophet, XGBoost, and LSTM models
implemented using the statsmodels, fbprophet, scikit-
learn, and Keras packages, respectively. A P<0.05 was

considered statistically significant.

were

RESULTS

General Analysis
A total of 1,695 SFTS cases were reported in Hubei
Province from January 2013 to December 2020,
exhibiting clear seasonal characteristics. More cases

were reported from April to August each year and
fewer from December to February of the following
year. Interestingly, a prominent peak occurred in June
and a smaller peak in October (Figure 1).

Models

In the SARIMA model construction, the augmented
Dickey-Fuller (ADF) test indicated that the time series
data were unstable with a P7>0.05 (Dickey-
Fuller=-1.339, P=0.611). After the first difference, the
original sequence tended to become stationary. The
parameters p and ¢ were determined from the
autocorrelation  function  (ACF) and  partial
autocorrelation function (PACF) plots (Figure 2), and
the final model parameters were determined as
SARIMA (1,1,1), (0,1,1)12 based on the minimum
Akaike information criterion (AIC) (AIC=543.302).
All  parameters significant  with ~ P<0.01
(Supplementary Table S1, available at https://weekly.
chinacdc.cn/). The residual autocorrelation test
(Ljung-box test) indicated that the residual was not
significantly different from a white noise series (Q-
statistic=0.32, P=0.57), suggesting that the model was
acceptable.

The optimized parameters of the other three models
are summarized in Table 1.

were

Model Evaluation and Comparison
The trained SARIMA, Prophet, XGBoost, and
LSTM models were used to predict the number of
reported SFTS cases in 2020 and were compared with
real external validation data (Figure 3). All four models
performed well in predicting the trends of SFTS cases;
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FIGURE 1. Trends of the actual number of SFTS cases from January 2013 to December 2020 in Hubei Province, China.
Abbreviation: SFTS=Severe Fever with Thrombocytopenia Syndrome.
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FIGURE 2. ACF and PACF charts after the first-order difference. (A) ACF; (B) PACF.
Abbreviation: ACF=autocorrelation function; PACF=partial autocorrelation function

however, the XGBoost model yielded the closest fit to
the actual case numbers (Figure 3). The prediction
performances of the models were then compared using
error indices, including MAE and RMSE. As shown in
Supplementary Table S2 (available at https://weekly.
chinacdc.cn/), the MAE and RMSE of XGBoost were
lower than those of the other three models, indicating
that XGBoost performed best in predicting SFTS
cases, followed by Prophet, LSTM, and SARIMA,

respectively.

DISCUSSION

Previous studies have conducted multivariate
modeling analyses to examine the risk factors
associated with SFTS incidence in Hubei Province (7).
However, to our knowledge, this study is the first to
construct predictive models for the number of SFTS
cases in Hubei Province.

In this study, we developed four models based on
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different algorithms to predict SFTS cases in Hubei
Province. Each algorithm has advantages and
disadvantages. SARIMA models are relatively simple,
linear models capable of uncovering dynamic
relationships between historical and predicted data.
However, they require the original sequence to be
stable before modeling and struggle to capture
nonlinear relationships in the data. This limitation
becomes evident when abrupt changes or nonlinear
trends are present in the data, as SARIMA is less
flexible in adapting to these complexities.

In contrast, the Prophet model does not require
consideration of time series data stationarity and offers
greater  parameter  adjustability, enhancing its
flexibility. This model can automatically detect and
handle outliers in the data, making it suitable for noisy
datasets. It
computation, making it appropriate for large datasets

or irregular demonstrates  rapid

and real-time forecasting applications. Prophet has
shown excellent performance in predicting various
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TABLE 1. Parameters of the optimized Prophet, XGBoost,
and LSTM models.

infectious diseases, including coronavirus disease 2019

(COVID-19) and hand, foot, and mouth disease

Models Parameters Values (8—10).
Growth linear XGBoost displays robustness in handling nonlinear
Seasonality mode additive time series data, excelling at forecasting extreme values.
Prophet Interval width 0.8 Thls. is likely due to its ability to model complex
_ relationships through boosting. LSTM features a
Changepoints 24 . . . . .
memory unit for storing information across time steps,
Changepoint prior scale 03 which is advantageous for modeling long-term
Min_child_weight 9 dependencies. It accommodates varying input and
Estimators 54 output dimensions for both univariate and multivariate
XGBoost et e 0407 data. However, LSTM may struggle with predicting
Max depth 5 sudden changes due to its reliance on past data
patterns, as seen in our study with the surge in cases
No. of neurons 201 from April to May 2020.
Layers 1 All four models performed well in predicting SFTS
Learning rate 0.003 cases and exhibited similar trends to the actual case
Activation tanh counts. XGBoost demonstrated the closest predictions
L o to the actual values, with the lowest MAE and RMSE
Recurrent activation sigmoid .
LSTM values. Notably, SARIMA, Prophet, and LSTM did
Dropout 0 . .
not accurately predict the May case counts (Figure 3).
Loss mse Additionally, SARIMA and Prophet failed to predict
Optimizer Adam the peak month, possibly due to the sharp increase in
Batch size 1 actual cases from April to May 2020, which may have
Epochs 100 introduced challenges in predicting such volatile data.
XGBoost  displayed  excellent  performance in
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FIGURE 3. Comparison of the actual SFTS cases with the predicted cases from January to December 2020 by the four

models.

Abbreviation: LSTM=long short-term memory; SFTS=severe fever with thrombocytopenia syndrome; SARIMA=seasonal
auto-regressive integrated moving average; XGBoost=eXtreme Gradient Boosting.
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forecasting extreme values (such as the prominent June
peak and the smaller October peak) and capturing the
overall trend.

Considering that meteorological, geographical, and
human activity factors are considered risk factors for

SFTS (11-13), additional related

external variables could enhance the predictive model’s

incorporating

performance. Furthermore, studies have indicated that
combining linear and nonlinear models may yield
superior predictive performance compared to single
models, such as SARIMA-Prophet (74) and SARIMA-
LSTM (I5), representing a potential avenue for
improvement.

In addition, the best model in the present study was
developed based on data from Hubei Province, so it
may not be suitable for other regions. This limits the
model’s general applicability. However, the study
provides a feasible scheme for other regions to predict
the disease.

In conclusion, we established and evaluated various
time series models. The XGBoost model demonstrated
the best
monthly confirmed SFTS cases in Hubei Province.
This model holds promise for providing valuable

predictive performance for forecasting

information and data for the early assessment of
potential SFTS risks, which is crucial for developing
early warning systems and formulating effective
prevention and control measures.
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SUPPLEMENTARY MATERIAL

Data Preprocessing
Ensuring that all timestamps in the dataset have a consistent format is crucial for accurate data processing and
time series analysis. All timestamps were converted to the YYYY-MM format. This uniformity lays the foundation
for applying various time series models effectively. The data were divided into training data and prediction data.
Data starting from January 2020 to December 2020 were used as prediction data, while the rest as training data.

SARIMA Model

The autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are the most
general class of models for forecasting a time series in theory (/—2). The ARIMA model aims to describe the
autocorrelations in the data by outlining its components, including Autoregression (AR), Integrated (I), and Moving
Average (MA). SARIMA is an extension of ARIMA that explicitly supports univariate time series data with a
seasonal component, adding three new hyperparameters to specify the seasonal component. The SARIMA model
requires selecting hyperparameters for both the trend elements (trend autoregression order p, trend difference order
d, and trend moving average order q) and seasonal elements (seasonal autoregressive order P, seasonal difference
order D, and seasonal moving average order Q) of the series. The formula for SARIMA is as follows:

d D 0(B)o. (B)

(1-B)'(1-B) Y,=6,+ B, (5] (1)
where Y, refers to the value of the time series at time #, 6, is constant, ¢, is the white noise value at period #, and
the parameters d and D represent the difference number and seasonal difference number, respectively. B is the
backshift operator, ¢(B) is the autoregressive operator and 6(B) is the moving average operator. ¢,(B’) and 6,(B) are
the seasonal operators.

The construction process of the SARIMA model is as follows.

Grid Search: The model starts by defining possible combinations of parameters for the seasonal aspects of the
time series. It uses a grid search approach where p, d, and q values (representing autoregressive, differencing, and
moving average terms, respectively) are tested along with seasonal counterparts.

AIC Evaluation: For each combination, a SARIMA model is fitted, and the Akaike Information Criterion (AIC)
is calculated to assess model fit. The combination with the lowest AIC is considered optimal as it suggests a model
that best explains the data with minimal complexity.

Best parameters selection: Use the best parameters determined through grid search, and then fit the SARIMA
model to data before the specified date (in this case, January 2020).

Diagnostic check: Perform the Ljung Box test on the residuals to check for white noise, which indicates that the
model’s residuals have no autocorrelation and the model has fully captured the information in the data.

Prediction: The model performs a step-by-step (single-step-ahead) forecast using the trained model, constantly
updating with actual data as it becomes available. This simulates a real-world scenario where predictions are made as
new data comes in.

Evaluation: As indicated in part “Performance Evaluations” below.

Prophet Model
The Prophet model is a sophisticated method for forecasting time series, particularly tailored for business data and
adept at navigating through complex trends and habitual seasonal variations. It provides a versatile treatment of
trends, seasonality, and holiday influences. The trend component g(%) is engineered to capture non-periodic changes
in the time series. It can employ either a logistic growth model for data with saturation limits or a piecewise linear
model for data without clear saturation points.
The foundational equation of the Prophet model is expressed as:

= gle) +5(e) + hlr) + &, )
Where yt denotes the predicted value at time ¢, s(t) is the seasonality component, h(t) represents the impact of
holidays or specific events on the time series, and &t is the error term accounting for aspects of the data not

Chinese Center for Disease Control and Prevention CCDC Weekly / Vol. 6/ No. 37 S1



China CDC Weekly

explained by the model. The model also incorporates an advanced feature for automatically detecting change points
in trends.

The construction process for the Prophet model is as follows:

Initiation: Prophet model is initialized with a specific configuration, including Growth Trend, Seasonality
Components, Seasonality Mode, and Regularization Parameters.

Model Training: The Prophet model is fitted on the training data.

Prediction: Future dates are generated (future) for 12 months (periods=12) with monthly frequency (freq="M").
Forecasting is performed [forecast=m.predict(future)], and predictions for the year 2020 are extracted (forc).

Evaluation: As indicated in part “Performance Evaluations” below.

XGBoost

eXtreme Gradient Boosting (XGBoost) is an advanced optimization technique based on Gradient-boosting
decision trees (GBDT). It operates by iteratively constructing a series of short, basic decision trees, each termed as a
“weak learner”. The process begins with the construction of an initial tree that exhibits subpar performance.
Subsequent trees are then trained to correct the errors of their predecessors. This sequence of producing weaker
learners continues until a stopping condition is met, such as reaching a predetermined number of trees. This method
has been demonstrated to be effective in predicting human brucellosis (3) and renal hemorrhagic fever syndrome
(4).

For a dataset with n examples and m features, a tree ensemble model in XGBoost predicts the output using K
additive functions:

K
=) fil) ficF (3)
k=1

Here, jrepresents the predicted value for the i-th sample, fk is a function corresponding to the k-th tree, and F
denotes the space of regression tree functions, with xi being the feature vector for the i-th sample.
To learn the set of functions used in the model, XGBoost minimizes the following regularized objective:

Lig) =Y " lbndi)+ Y, Q(f) @

In this equation, /(yi, yi) is the loss function quantifying the error between the observed and predicted data, and
Q(fk) is the regularization term that aids in smoothing the learned weights to prevent overfitting and encourage the
model to select simpler yet predictive functions. The regularization term is defined as:

T
1
QN =~T+35A) w (5)
A

Where vy and N are regularization parameters, T is the number of leaves in the tree, and wj represents the score
on each leaf.

SUPPLEMENTARY TABLE S1. Parameters of the optimized SARIMA model.

Parameters Coefficient Standard Errors V4 P
ar.L1 0.424 0.133 3.190 0.001
ma.L1 -0.923 0.101 -9.136 <0.001

ma.S.L12 -0.878 0.242 -3.621 <0.001
sigma2 118.976 25.138 4.733 <0.001

SUPPLEMENTARY TABLE S2. Comparison of four models using MAE and RMSE.

Error metrics SARIMA Prophet XGBoost LSTM
MAE 5.47 6.64 2.54 475
RMSE 7.21 8.50 2.89 6.77

Abbreviation: MAE=mean absolute error; RMSE=root mean square error.
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The construction process of the XGBoost model is as follows:

Parameter optimization: Use methods like Bayesian optimization to optimize the parameters.

Model Training: The XGBoost model is fitted on the training data.

Prediction: The model performs a step-by-step (single-step ahead) forecast using the trained model, constantly
updating with actual data as it becomes available. This simulates a real-world scenario where predictions are made as
new data comes in.

Evaluation: As indicated in part “Performance Evaluations” below.

LSTM Networks

Long Short-Term Memory (LSTM) networks, a specialized type of Recurrent Neural Networks (RNNG), excel at
capturing both short-term and long-term dependencies in sequential data. This is primarily due to the unique
architecture of the LSTM, which incorporates a cell state acting as a form of memory. This cell state is crucial for
retaining information across various time steps, addressing the limitations of traditional RNNs. Additionally,
LSTMs effectively alleviate the vanishing and exploding gradient issues commonly encountered in standard RNNG,
particularly in lengthy sequences. The key feature of LSTM networks lies in their gating mechanism, comprising
three types of gates, each with specific roles and formulas.

The input gate in an LSTM is pivotal in regulating the influx of new information into the cell state. This gate
operates in two steps. The first step entails a sigmoid function that determines the essential update values,
represented by the equation:

iy =0 (Wix, + Wihyy + b,) (6)
The second step employs a tanh function to generate a vector of new candidate values that may be added to the
state, given by:
C, = tanh(W.x, + W) by + bc) (7)
Here, it is the activation of the input gate, and C; is the candidate vector for the cell state update.

The forget gate in an LSTM decides which information from the cell state should be retained or discarded. It
operates using a sigmoid function that evaluates the importance of the existing information in the cell state, defined

by:
fi= 0 (Wix + Wy bt + by) ®)
The activation vector ft indicates the extent to which past information is to be forgotten or retained.

The output gate in an LSTM manages the output sent to the next layer. This gate operates in two stages. Initially,
a sigmoid function determines which parts of the cell state will be outputted, as shown by:

0,= 0 (W x, + Wy by + by) )
Then, the final output is calculated by multiplying this activation o, with the tanh of the cell state, resulting in:
h, = 0, X tanh (C) (10)

The output vector ht represents the information transmitted to subsequent layers or units in the network.

The construction process of the LSTM model is as follows:

Network architecture: Build a neural network containing an LSTM layer, which extracts features from the input
sequence, followed by a fully connected layer that outputs prediction results.

Loss function and model training: Use mean squared error as the loss function and use Adam optimizer for model
training.

Early Stopping: To avoid overfitting, the training is stopped when the loss on the validation set no longer
improves.

Parameter optimization: Use methods like Bayesian optimization to optimize the parameters.

Model Training: The LSTM model is fitted on the training data.

Prediction: Rolling prediction of future time points involves using a model to gradually predict future values, and
after each prediction step, the results are fed back into the input data for the next prediction step.

Evaluation: As indicated in part “Performance Evaluations” below.
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In the models mentioned above, a data post-processing technique known as clipping is utilized to handle
unrealistic negative values in the results. This involves adjusting all negative forecast values to zero, ensuring data
consistency and interpretability, and preventing potential analytical errors stemming from impractical negative
predictions.

Performance Evaluations

The predictive performance of the models was assessed using two indexes: mean absolute error (MAE) and root
mean squared error (RMSE).

MAE is a metric used to measure the average absolute errors between actual and predicted values in a dataset. It is
calculated by taking the average of the absolute differences between the actual values and the predicted values. MAE
is often used in regression analysis to evaluate the accuracy of a regression model. A lower MAE indicates better
accuracy of the model, as it means that the model’s predictions are closer to the actual values.

RMSE is another metric used to measure the accuracy of a regression model by calculating the square root of the
average of the squared differences between actual and predicted values in a dataset. RMSE penalizes larger errors
more heavily compared to MAE because it squares the errors before taking the square root. This means that outliers
or large errors have a bigger impact on the RMSE compared to the MAE. Similar to MAE, a lower RMSE indicates
better accuracy of the model. RMSE is often preferred when a small number of large errors are more significant than
a large number of small errors.

The formulas are defined as follows:

MAE= 33 b=,

=1

(11)

(12)

Software
The descriptive statistics and time series modeling were conducted using Python 3.7. The SARIMA model,
Prophet model, XGBoost model, and LSTM model were implemented using the statsmodels package, fbprophet
package, scikit-learn package, and Keras package, respectively. In the analysis, a P<0.05 was considered significant.
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