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ABSTRACT

Introduction: The prevalence of unstable and
incomplete monitoring data significantly complicates
syndromic analysis. Many data interpolation methods
currently  available  demonstrate  inadequate
effectiveness in overcoming this issue.

Methods: To  improve the accuracy of
interpolation, we propose the integration of the
SHapley Additive exPlanation model (SHAP) with the
structural equation model (SEM), forming a combined
SHAP-SEM approach. A case study is then performed
to assess the enhanced performance of this novel model
compared to traditional methods.

Results: The SHAP-SEM model was utilized to
develop an interpolation model employing data from
the Chinese respiratory syndrome surveillance
database. We executed three distinct experiments to
establish the model datasets, comprising a total of 100
replicates. The performance of the model was evaluated
using the root mean square error (RMSE), correlation
coefficient (r), and F-score. The findings demonstrate
that the SHAP-SEM model consistently achieves
superior accuracy in data interpolation, which is
evident across different seasons and in overall
performance.

Discussion: We conclude that the SHAP-SEM
model demonstrates an exceptional capacity for
accurately interpolating volatile and incomplete data.
This  capability is crucial for developing a
comprehensive database that is essential for conducting
risk assessments related to syndromes.

Syndrome surveillance is crucial for the rapid
detection and alerting of infectious disease outbreaks.
Nonetheless, it often encounters challenges including
uneven distribution of monitoring sites, irregular
reporting schedules, and incomplete data (7). These
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factors hinder the ability to accurately delineate disease
distribution temporally and spatially, and to discern
patterns and anomalies. Traditional spatio-temporal
interpolation methods (2) are ill-suited for addressing
the volatility and gaps in disease data, particularly
when integrating significant influencing factors.
Conversely, the structural equation model (SEM)
facilitates analysis of complex data interactions to
unearth underlying relationships among variables (3),
thus enabling more precise interpolation. We suggest
employing a SHapley Additive explanation (SHAP)-
based SEM for the spatiotemporal interpolation of
unstable and incomplete data.

METHODS

Shapley Additive ExPlanation Model with
The Structural Equation Model

(SHAP-SEM)

The SHAP model is utilized to evaluate multiple
variables and their correlations with observed variables
(4). It quantifies the marginal contribution of each
variable to the model output, thereby demonstrating its
influence on the overall model. This study aims to
explore the relationship between meteorological
variables and the virus positivity rate to identify the
most impactful combination of these factors.
Subsequently, the SEM is applied to discern the
connections between the factors and observed variables
(3), facilitating spatio-temporal interpolation. The
SEM illustrates the network of relationships between
meteorological variables and the virus, satisfying
interpolation requirements based on the model fit. For
further information on the SHAP-SEM model and
additional classical interpolation methods, readers are
referred to the Supplementary Material (available at

https://weekly.chinacdc.cn/).
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Model Assessment

In this study, the root mean square error (RMSE),
correlation coefficient (r), and F-score were utilized to
assess the accuracy of the SAHP-SEM and other
comparative models.

RMSE measures the average difference between
values predicted by a model and the actual values. It
provides an estimation of how well the model can
predict the target value (5).

The r quantifies the extent and direction of a linear
relationship between two variables. Our research
explores various methodologies, identifying that while
Kriging interpolation displays a high determination
coefficient, it unfortunately correlates poorly with the
original dataset. This misalignment highlights its
inability to accurately represent the underlying data
trends. Consequently, due to the need for a precise
reflection of these trends, we have chosen the r as our
preferred metric.

The F-score is a composite metric that favors
algorithms with higher sensitivity while penalizing
those with higher specificity. It is derived from the
precision and recall of the test. Here, precision refers to
the number of true positive results divided by the total
count of samples predicted as positive, inclusive of false
positives. Recall, alternatively, is the number of true
positives divided by the total number of samples that
are correctly identified as positive (6). The F-score is
formulated as follows (Equations 1-3):

..._1r
Precision = TP+ FP (1)
TP
Recall = TP+ FN 2)
Fe score:z X Precision X Recall 3)

Precision + Recall
TP, FP, and FN denote true positives, false positives,
and false negatives, respectively, across different classes.
Precision quantifies the accuracy across various classes,
recall indicates the detection rate, and the F-score
provides a balanced measure of precision and recall.

Empirical Study

This study utilizes two primary data types: symptom
data and meteorological data. Symptom data was
derived from the China CDC’s febrile respiratory
syndrome  surveillance, = encompassing  patient
demographic profiles, clinical characteristics, and
laboratory  results obtained from 330 hospitals
nationwide (Supplementary Figure S1, available at
https://weekly.chinacdc.cn/). Meteorological data were
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sourced from the Meteorological Station Sharing
Service  System  (https://data.cma.cn/).  Selected
meteorological ~parameters included atmospheric
pressure, average relative humidity, mean temperature,
maximum and minimum temperatures, and the range
between the highest and lowest temperatures. Details
on the variable utilization within the model are
described in the Supplementary Material. For analysis,
the SHAP-SEM model was applied to the China
respiratory syndrome monitoring database to assess its
effectiveness in disease interpolation. The period of
study spanned from January 1, 2009 to January 4,
2020, with quarters serving as the smallest time unit.
The study’s scope of respiratory syndrome detection
included various viruses: influenza virus (IFV), human
respiratory  syncytial  virus  (HRSV),  human
parainfluenza virus (HPIV), human adenovirus
(HADV), human metapneumovirus (HMPV), and
human coronavirus (HCOV).

All analyses were conducted using R software
(version 4.1.2; R Foundation for Statistical
Computing, Vienna, Austria). The “shapr” package
facilitated the implementation of the SHAP process,
and the “lavvn” package was utilized to construct the

SEM model.

RESULTS

Supplementary ~ Figure =~ S2A  (available  at
https://weekly.chinacdc.cn/) illustrates the seasonal
distribution of six viruses across various regions. In
major Chinese urban areas, the average absence rate of
respiratory syndrome is 32.49%. Notably, the Central
and Southern Liaoning and the Beibu Gulf urban
agglomerations exhibit the highest absence rates,
reaching 69.22%. In contrast, the Beijing-Tianjin-
Hebei, Yangtze River Delta, and Pear] River Delta
urban agglomerations show the lowest rates, all below
30%. To develop training and validation sets for our
model, we randomly sampled various proportions of
complete data. The model’s accuracy is assessed using
RMSE, 1, and F-score metrics. Each virus demonstrates
a distinct peak during the spring and winter festivals.
IFV, HRSV, and HPIV are the predominant viruses
among the general population. Geographically, IFV
and HPIV are more prevalent in the north, whereas
IFV and HRSV are more common in the south, as
depicted in Supplementary Figure S2B. This regional
variation persists, with HADV being more prevalent in
the north. After data interpolation, the results shown
in Figure 1 confirm consistent proportions of the three
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The interpolation analysis delineates two distinct
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Time
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Note: The letters “A” and “C” in the abscissa represent springand autumn quarters, respectively.

FIGURE 1. The virus structure spectrum of different urban agglomerations after interpolation.

primary virus, whereas the south displays a higher

primary viruses within the population. The north
exhibits a higher prevalence of adenovirus as the

parainfluenza virus; HRSV

Abbreviation: HADV
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TABLE 1. The average values of the three evaluation indicators under 100 repeated experiments for 5 models in each

setting.
Methods RMSE r F-score
Setting 1: Training=60%
SHAP-SEM 5.813 0.710*** 0.752
SEM 9.424 0.614** 0.651
Cokriging 8.273 0.429 0.634
Bayesian 10.174 0.494** 0.693
Sandwich 7.235 0.539*** 0.621
Setting 2: Training=70%
SHAP-SEM 5.157 0.734*** 0.781
SEM 9.364 0.633** 0.684
Cokriging 8.047 0.457 0.634
Bayesian 9.154 0.518** 0.691
Sandwich 7.176 0.584*** 0.633
Setting 3: Training=80%
SHAP-SEM 5.081 0.767*** 0.792
SEM 9.331 0.657* 0.708
Cokriging 7.524 0.461** 0.642
Bayesian 8.699 0.523** 0.701
Sandwich 6.926 0.601*** 0.651

Abbreviation: RMSE=root-mean-square error; SHAP-SEM=SHapley Additive exPlanation model with the structural equation model;

SEM=structural equation model.
* P<0.05;

** P<0.01;

*** P<0.001.

patterns in the dissemination of respiratory syndrome
cases across China from 2009 to 2020. Supplementary
Figure S2 categorizes Chinese urban agglomerations
into three regions: the northern area, which includes
the Central Plains; the central region, extending up to
the middle reaches of the Yangtze River; and the
combined southern and western areas, located beyond
the middle reaches of the Yangtze River. In the first
grouping, IFV predominated, followed by the
parainfluenza virus, with adenoviruses appearing
intermittently. The second group also had a
predominance of IFV, with the syncytial virus as the
second most prevalent, and adenoviruses appearing
later in the sequence. In the third group, the syncytial
virus was the most dominant, followed by the
parainfluenza virus, with adenoviruses emerging in the
first six months of the year. These findings have been
validated in previous studies (7-9).

Table 1 presents the mean values of three evaluation
metrics across 100 experimental replicates. The data

Chinese Center for Disease Control and Prevention

demonstrates superior performance of the SEM
integrated with the SHAP algorithm over traditional
methods, notably in comparison to the conventional
SEM, across all assessed metrics. This indicates
enhanced and more consistent interpolation accuracy
with  the SHAP-SEM

enlarging the training set size contributes to improved

approach.  Additionally,

interpolation precision. Compared to the conventional
SEM, the SHAP-SEM model excels in spatial
distribution accuracy and primary virus classification
accuracy. Overall, the SHAP-SEM model achieves
robust performance across all indices. Kriging shows
the lowest RMSE, but exhibits a decreased r value,
whereas the Bayesian approach maintains a relatively
high F-score.

Table 2 presents the mean values of evaluation
metrics across various simulation settings for different
quarters. The findings reveal that accuracy peaks
during the winter and dips to its lowest in the autumn.
The SHAP-SEM model exhibits superior performance

CCDC Weekly /Vol. 6/ No. 27 673
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TABLE 2. Average values of the three evaluation indicators in different seasons under 100 repeated experiments for 5

models in each setting.

Quarters Method RMSE r F-score
SHAP-SEM 4.214 0.781" 0.811
SEM 5.019 0.722" 0.736
Spring Cokriging 5.105 0.581" 0.662
Bayesian 6.428 0.614" 0.705
Sandwich 6.832 0.637" 0.651
SHAP-SEM 6.194 0.703" 0.710
SEM 10.521 0.641" 0.682
Summer Cokriging 7113 0.519 0.627
Bayesian 9.245 0.588" 0.690
Sandwich 8.194 0.572 0.638
SHAP-SEM 7.237 0.651" 0.631
SEM 9.144 0.601" 0.614
Autumn Cokriging 6.184 0.467 0.596
Bayesian 7.965 0.501 0.587
Sandwich 8.229 0.523 0.577
SHAP-SEM 4.057 0.722"" 0.753
SEM 6.124 0.671" 0.707
Winter Cokriging 5.016 0.514" 0.636
Bayesian 7.255 0.635" 0.641
Sandwich 5.417 0.642" 0.639

Abbreviation: MSE=mean-square error; RMSE=root-mean-square error; SHAP-SEM=SHapley Additive exPlanation model with the

structural equation model; SEM=Structural equation model.
* P<0.05;

** P<0.01;

*** P<0.001.

in the winter, markedly enhancing accuracy relative to
competing models. Conversely, in the autumn, the
sandwich interpolation method surpasses the SHAP-
SEM model in terms of accuracy enhancement.

DISCUSSION

Missing data frequently complicates syndromic
surveillance, obstructing the analysis of disease patterns
and trends, thereby impeding efforts in disease
prevention and control. Developing methods for data
interpolation in environments characterized by
unstable monitoring and significant data gaps presents
a formidable research challenge. Conventional
interpolation techniques are often inadequate in
contexts involving complex interactions between

These methods

generally underperform in addressing missing values

diseases and their determinants.

674 CCDC Weekly / Vol. 6 / No. 27

within sparse datasets.

This study employed interpolation techniques to
estimate the prevalence of primary viruses associated
with seasonal respiratory syndrome across 13 major
urban areas in China between 2010 and 2018,
accounting for sparse data and missing values. The
accuracy of these estimates was assessed using RMSE, r,
and F-score. The results indicate that this method
surpasses other approaches in enhancing the accuracy
of data on primary respiratory syndrome viruses,
achieving significant improvements in overall and
seasonal accuracy.

Most  spatiotemporal interpolation models for

both

autocorrelation and differentiation. The Co-kriging

diseases incorporate spatiotemporal
method (/0) is a geostatistical technique leveraging
correlations between various variables across different

sites for spatial interpolation and prediction. However,

Chinese Center for Disease Control and Prevention
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employing Co-kriging to estimate missing data

introduces increased uncertainty because these
estimations depend heavily on the availability of
complete datasets and on the spatial correlation among
variables. A lack of data in a dataset can undermine
spatial  autocorrelation,  rendering  predictions
unreliable. Bayesian hierarchical models (/7) attempt
to manage missing data under the assumption of
random data loss. If the missing data mechanism is
misrepresented within the model, however, parameter
estimations might be biased. Conventionally, it is
assumed that data loss is random; however,
overlooking the specific missing data mechanism can
lead to biases in the estimated parameters due to
improper data handling. The sandwich approach (12)
further complicates the issue by treating missing and
observed data as independent, disregarding any
patterns or correlations in the data removal process.
This can result in incorrect standard errors and
inferences, particularly when the data deletion
mechanisms are informative or directly linked to the
variables of interest. Additionally, the complex

dynamics of disease occurrence, infection, and
transmission intersect variably with different factors.
To enhance spatiotemporal interpolation accuracy,
advanced techniques like deep learning, including
random forest models (/3) and regressive neural
networks (74), have been utilized. Despite their
effectiveness, these models are often complex and do
not sufficiently address the multifaceted nature of
disease prevention. This study proposes the integration
of SEM with SHAP to discern crucial features and
their interrelationships, thus tackling issues related to
unstable and fragmented data in health monitoring. By
resolving these issues and synthesizing them within our
research, we can derive precise insights about
syndromes, affected regions, and causal factors. This
approach promises to yield scientifically based
recommendations for efficacious local prevention and
control strategies.

However, this study is subject to some limitations.
The SHAP-SEM model necessitates a large sample size,
which may not always be feasible with incomplete
syndrome surveillance data. Additionally, it is crucial
to recognize that viral activity is influenced by a range
of risk factors. Future endeavors to integrate
incomplete syndrome monitoring data with the SHAP-
SEM model should include more factors. It is also

important to note that the scalability of SHAP-SEM
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models may be compromised when handling large
datasets. As the size of the dataset expands, the
computational and memory demands escalate,
potentially leading to extended processing times and
heightened complexity.

In further studies, comprehensive descriptions and
analyses of the syndrome’s spatial and temporal
distribution can be achieved through interpolation
methods. Additionally, examining variations in viral
activity and seasonal trends across different regions is
possible. Building on this knowledge, identifying
specific risk groups and areas becomes feasible,
providing essential data to support targeted, time-
sensitive, and location-specific prevention and control
strategies.

Conflicts of interest: No conflicts of interest.

Funding: Supported by the Foundation of China
(grant number 42171419) and National Science and
Technology Major Project of China (grant number
201872X10713001).

doi: 10.46234/ccdcw2024.124

* Corresponding author: Yilan Liao, liaoyl@lreis.ac.cn.

' The State Key Laboratory of Resources and Environmental

Information System, Institute of Geographic Sciences and Natural
Resources Research, Chinese Academy of Sciences, Beijing, China;
? University of Chinese Academy of Science, Beijing, China.

Submitted: May 06, 2024; Accepted: July 01, 2024

REFERENCES

1. Jia P, Yang SJ. China needs a national intelligent syndromic surveillance
system. Nat Med 2020;26(7):990. https://doi.org/10.1038/s41591-
020-0921-5.

2. Koch T. Disease mapping and innovation: a history from wood-block
prints to Web 3. 0. Patterns 2022;3(6):100507. https://doi.org/10.
1016/j.patter.2022.100507.

3. Lee KY, Li LX. Functional structural equation model. ] Roy Stat Soc
Ser B Stat Methodol 2022;84(2):600 - 29. https://doi.org/10.1111/
rssb.12471.

4. Liu YC, Liu ZH, Luo X, Zhao HJT. Diagnosis of Parkinson's disease
based on SHAP value feature selection. Biocybern Biomed Eng 2022;42
(3):856 - 69. https://doi.org/10.1016/j.bbe.2022.06.007.

5. Willmott CJ, Matsuura K. Advantages of the mean absolute error
(MAE) over the root mean square error (RMSE) in assessing average
model performance. Climate Res 2005;30(1):79 - 82. https://doi.org/
10.3354/cr030079.

6. Zhang WG, He YW, Wang LQ, Liu SL, Meng XY. Landslide
susceptibility mapping using random forest and extreme gradient
boosting: a case study of Fengjie, Chongqing. Geol ] 2023;58(6):2372 -
87. https://doi.org/10.1002/gj.4683.

7. Li Z], Zhang HY, Ren LL, Lu QB, Ren X, Zhang CH, et al. Etiological
and epidemiological features of acute respiratory infections in China.
Nat Commun 2021;12(1):5026. https://doi.org/10.1038/s41467-021-
25120-6.

8. Wang JL, Chen T, Deng LL, Han YJ, Wang DY, Wang LP, et al.
Epidemiological characteristics of imported respiratory infectious
diseases in China, 2014-2018. Infect Dis Poverty 2022;11(1):22. https:

CCDC Weekly /Vol. 6/ No. 27 675


mailto:liaoyl@lreis.ac.cn
https://doi.org/10.46234/ccdcw2024.124
mailto:liaoyl@lreis.ac.cn

10.

11.

676

China CDC Weekly

//doi.org/10.1186/540249-022-00944-6.

. Zhao Y], Lu RJ, Shen ], Xie ZD, Liu GS, Tan WJ. Comparison of viral

and epidemiological profiles of hospitalized children with severe acute
respiratory infection in Beijing and Shanghai, China. BMC Infect Dis
2019;19(1):729. https://doi.org/10.1186/5s12879-019-4385-5.

Xiao MY, Zhang GH, Breitkopf P, Villon P, Zhang WH. Extended
Co-Kriging interpolation method based on multi-fidelity data. Appl
Math Comput 2018;323:120 - 31. heeps://doi.org/10.1016/j.amc.
2017.10.055.

Miller PC, Ren MD, Schlame M, Toth M]J, Phoon CKL. A bayesian
analysis to determine the prevalence of barth syndrome in the pediatric
population. ] Pediatr 2020;217:139 - 44. https://doi.org/10.1016/j.
jpeds.2019.09.074.

CCDC Weekly / Vol. 6 / No. 27

12.

13.

14.

Wang JF, Haining R, Cao ZD. Sample surveying to estimate the mean
of a heterogeneous surface: reducing the error variance through zoning.
Int J Geogr Inf Sci 2010;24(4):523 - 43. hteps://doi.org/10.1080/
13658810902873512.

Mariano C, Ménica B. A random forest-based algorithm for data-
intensive spatial interpolation in crop yield mapping. Comput Electron
Agric  2021;184:106094.  https://doi.org/10.1016/j.compag.2021.
106094.

Abdelaziz M, Wang TF, Elazab A. Alzheimer's disease diagnosis
framework from incomplete multimodal data using convolutional
neural networks. ] Biomed Inform 2021;121:103863. https://doi.org/
10.1016/}.jbi.2021.103863.

Chinese Center for Disease Control and Prevention



China CDC Weekly

SUPPLEMENTARY MATERIAL

SHAP-SEM Model
The fundamental concept of SHapley Additive exPlanation model (SHAP) is to facilitate both global and local
interpretations through the evaluation of the marginal contributions of variable features. This approach assists users
in comprehending the relative importance of each feature, thereby enabling effective variable filtering.
The SHAP model utilizes pre-processed data for each variable alongside the target variable. The Shapley values of
individual variables are then calculated to assess their relationships with the target variable (Equation 4).

By o (P = ) )

Where $; represents the Shapley value of the feature of the variable, j, M represents the total number of instances,

f represents the kernel function, x:"] represents the entire instance containing the feature of the variable, and j, and
xZ; represents the entire instance without the feature of the variable ;.

In this study, we utilized quarterly non-normalized positivity rates along with meteorological variables from

various urban agglomerations to construct SHAP models. Employing the edge effect approach, we calculated the

significance of various variables on respiratory viruses and their inter-variable interactions. The impact of different
combinations of influencing variables on respiratory viruses is presented in Equation 5.

5(5) = 29 o (A U - () 5)

v represents changes in the respiratory virus in the § variable combination; S is a combination of different
variables; x5 and xc represent all instances that contain § combinations and instances that do not contain §
combinations.

Structural equation models (SEMs) elucidate variations within variables and the covariation among them while
investigating the relationships between observed and latent variables. SEMs typically comprise two components: the
measurement model, which analyzes the relationships between latent variables and their indicators, and the path
model, which explores the relationships among the variables themselves.

In this study, the meteorological variables from the SHAP model were used as input variables in the SEM model,
with the non-normalized positivity rate of respiratory viruses serving as the observed variables. The framework of the
bipartite SEM model was structured accordingly (Equations 6-7).

Yi=Am+9; (6)
-/
77i=2]'=1171']'77j+6i (7)
JEL

Where Y, is the value of the ith observed variable; A; represents the factor load between the observed variable and
the variable under the value of the iz observed variable; 7 represents the variable that passes the significance test of
Shapley value; ¢ and e represent the error of the measurement model and the path model respectively, and &
represents the path coefficient between the variable 7 and variable j, which means the interaction between the two
variables.

Cokriging Method
Cokriging, a geostatistical method initially developed for mining applications, is extensively used in soil science.
The primary instrument in geostatistics is the semivariogram, which quantifies the spatial dependence among
adjacent observations. The semivariogram, 7 (4), can be defined as half the variance of the difference in attribute
values at all pairs of points separated by /4 as Equation 8 (7).
1 N(h)

100 = Sy & 12 0e) = A+ 2] ®)

where Z(x) indicates the magnitude of variables, and N(/) is the total number of pairs of attributes that are
separated by a distance 4.
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SUPPLEMENTARY TABLE S1. Geographical distribution of 12 urban agglomerations in China.

UAs Cities/Municipalities
Handan, Xintai, Changzhi, Jincheng, Yuncheng, Bengbu, Fuyang, Suzhou, Bozhou, Liaocheng, Heze,
Central Plain UA Zhengzhou, Kaifeng, Luoyang, Pingdingshan, Anyang, Hebi, Xinxiang, Jiaozuo, Puyang, Xuchang, Leihe,

Sanmenxia, Nanyang, Shanggqiu, Xinyang, Zhoukou, Zhumadian

Beljing-Tianjin-Hebei UA Beijing, Tianjin, Shijiazhuang, Tangshan, Qinhuangdao, Baoding, Zhangjiakou, Chengde, Langfang,

Cangzhou
Guanzhong Plain UA Xi'an, Tongchuan, Baoji, Xianyang, Weinan, Shangluo, Tianshui
Beibu Gulf UA Zhanjiang, Maoming, Yangjiang, Nanning, Beihai, Fangchenggang, Qinzhou, Yulin, Chongzuo, Haikou
Harbin-Changchun UA Changchun, Jilin, Siping, Liaoyuan, Songyuan, Yanbian, Harbin, Qigihaer, Daqin, Mudanjiang, Suihua
Shandong Peninsula UA Jinan, Qindao, Zibo, Dongying, Yantai, Weifang, Weihai, Rizhao

Chongging, Chendu, Zigong, Luzhou, Deyang, Mianyang, Suining, Neijiang, Leshan, Nanchong, Meishan,
Yibing, Guangan, Dazhou, Yaan, Ziyang
Wenzhou, Quzhou, Lishui, Fuzhou, Xiamen, Putian, Sanming, Quanzhou, Zhangzhou, Nanping, Longyan,
Ningde, Ganzhou, Shantou, Meizhou, Chaozhou, Jieyang
Guangzhou, Shenzhen, Zhuhai, Foshan, Jiangmen, Zhaogin, Huizhou, Shanwei, Heyuan, Qinyuan, Dongwan,
Zhongshan, Yunfu

Chendu-Chongging UA
West Side of Straits UA

Pearl River Delta UA

Mid-southern Liaoning UA ShenYang, Dalian, Anshan, Fushun, BenXi, Dandong, Yinkou, Liaoyang, Panjin
Shanghai, Nanjing, Wuxi, Changzhou, Suzhou, Nantong, Yancheng, Yangzhou, Zhenjiang, Taizhou, Ningbo,
Yangtze River Delta UA Jiaxin, Huzhou, Shaoxin, Jinhua, Zhoushan, Taizhou, Hefei, Wuhu, Maanshan, Tonglin, Angin, Chuzhou,

Chizhou, Xuancheng
Nanchang, Jingdezhen, Pingxiang, Jiujiang, Xinyu, Yintan, Jian, Yichun, Fuzhou, Shangrao, Wuhan,
The Middle Yangtze UA  Huangshi, Yichang, Ezhou, Jinmen, Xiaogan, Jinzhou, HUanggang, Xianning, Changsha, Zhuzhou, Xiangtan,
Hengyang, Yueyang, Chnagde, Yiyang, Loudi

Abbreviation: UA=urban agglomeration.

Bayesian Hierarchical Model
The framework of Bayesian hierarchical modeling consists of a structured approach to model building where
unobserved quantities are categorized into distinct levels with clear, scientifically interpretable functions and
probabilistic connections that reflect the intrinsic characteristics of the data. This methodology has been successfully
applied in the analysis of complex epidemiological, biomedical, environmental, and various other types of data (2).

Spatial Sandwich Model

The concept of sandwich space interpolation is based on dual-layer stratified statistics. This process constructs an
information transfer function across three hierarchical levels: the object layer, the zoning layer, and the reporting
layer. Initially, attributes at the object layer are categorized or divided into different zones (zoning layer), followed
by stratified sampling within these zones. Specifically, at least two sample points per category are chosen to calculate
the mean and variance for each group. Subsequently, these statistical measures are transferred to the reporting layer
through overlaying it with the zoning layer. This allows for the compilation of mean and variance for each reporting
unit, thereby facilitating the generation of a spatial interpolation map and its corresponding error distribution map

3.

Data and Descriptive Analysis

Meteorological data were gathered from 756 ground-based weather stations across China, accessed via the
meteorological station sharing service system (https://data.cma.cn/). The selected meteorological variables for this
study include atmospheric pressure, average relative humidity, average temperature, average maximum temperature,
average minimum temperature, and the range between the highest and lowest temperatures. Daily meteorological
data were consolidated into monthly averages. For other study areas, data were estimated using Kriging
interpolation, and averages of urban meteorological parameters within urban conglomerates were calculated to
derive the aggregate meteorological data for urban agglomerations.

The initial surveillance data indicated a total of 39,760 pneumonia cases, representing 19.63% of the 202,539
samples analyzed. Among the total study population, 76,450 were children under five years of age, constituting
37.75% of the total. Of these, 16,867 cases of pneumonia were children, making up 42.42% of all pneumonia cases.
According to Supplementary Table S2, IFV and HRSV were the largest viruses detected in each season, accounting
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SUPPLEMENTARY TABLE S2. Number of detections for each virus by season.

Virus Spring Summer Autumn Winter Sum
IFV 3,372 3,141 3,397 9,399 19,309
HRSV 1,927 1,020 2,230 4,094 9,271
HPIV 2,002 1,997 1,647 1,301 6,947
HADV 1,509 1,462 1,238 1,589 5,798
HMPV 869 257 269 748 2,143
HCOoV 760 850 636 668 2,914
Sum 10,439 8,727 9,417 17,799 46,382

Abbreviation: HADV=human adenovirus; HCOV=human coronavirus; HMPV=human metapneumovirus; HPIV=human parainfluenza virus;
HRSV=human syncytial virus; IFV=influenza virus.
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SUPPLEMENTARY FIGURE S1. Distribution of raw data and quarterly distribution by UAs.
Abbreviation: UA=urban agglomeration; HADV=human adenovirus; HCOV=human coronavirus; HMPV=human
metapneumovirus; HPIV=human parainfluenza virus; HRSV=human syncytial virus; IFV=influenza virus.

for 41.63% and 19.99% of the total samples. IFV in winter accounted for the largest proportion of all viruses
detected in all seasons with a percentage of 52.81% and 20.26% of the total annual samples.

Supplementary Figure S1 presents the original monitoring data for each urban agglomeration, segmented by
quarter. The Beijing-Tianjin-Hebei, Pearl River Delta, and Yangtze River Delta urban agglomerations lead in
monitoring volume. In contrast, the Mid-southern Liaoning and Guanzhong Plain urban agglomerations recorded
the lowest sample numbers. Notably, the proportion of HMPV in the Shandong Peninsula, Central Plains, and
Chengdu-Chongqing urban agglomerations is significantly higher than in others, while the prevalence of HADV
and IFV is notably lower.

Model Setting
Our simulation study investigates six principal configurations by segmenting the quarter and urban
agglomerations with monitoring data into separate training and validation sets. These configurations are
subsequently applied to SHAP-SEM and other conventional interpolation models.
Setting 1: Training=60%, Valid=40%;
Setting 2: Training=70%, Valid=30%;
Setting 3: Training=80%, Valid=20%;

Chinese Center for Disease Control and Prevention CCDC Weekly /Vol. 6/ No. 27 S3


Supplementary Figure S1

China CDC Weekly

Utilization of Variables
The Kriging interpolation method employs the covariance function of the virus under the assumption of second-
order stationarity. Bayesian interpolation is based on Bayesian probability theory. Sandwich interpolation utilizes
stratified sampling and considers spatial variations for interpolation. SEM is used to model and interpolate the
network diagram of structural relationships, where meteorological elements and the virus are depicted as nodes, and
their interconnections as edges. The SHAP-SEM approach quantifies the marginal effects of meteorological variables

on the virus and identifies significant contributors for inclusion in further SEM analysis.
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B2 Mid-southern Liaoning Shandong Peninsula Yangtze River Delta the Middle Yangtze Central Plain Pearl River Delta
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SUPPLEMENTARY FIGURE S2. Virus positive rates in different urban agglomerations. (A) Before interpolation; (B) After
interpolation.

Note: A1 and B1 include six UAs: Beibu Gulf, Chengdu-Chonging, Guanzhong Plain, Harbin-Changchun, West side of the
Straits, and Beijing-Tianjing-Hebei. A2 and B2 include other six UAs: Mid-southern Liaoning, Shandong Peninsula, Yangtze
River Delta, the Middle Yangtze, Central Plain, and Pear River Delta. The letters “A” and “C” in the ordinate represent spring
and autumn quarters, respectively.

Abbreviation: HADV=human adenovirus; HCOV=human coronavirus;
parainfluenza virus; HRSV=human syncytial virus; IFV=influenza virus.

HMPV=human metapneumovirus; HPIV=human
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