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ABSTRACT

Introduction: Respiratory infectious diseases, such
as influenza and coronavirus disease 2019
(COVID-19), present significant global public health
challenges. The emergence of artificial intelligence (Al)
and big data offers opportunities to improve traditional
disease surveillance and early warning systems.

Methods: The study analyzed data from January
2020 to May 2023, comprising influenza-like illness
(ILI) statistics, Baidu index, and clinical data from
Weifang. Three methodologies were evaluated: the
adaptive dynamic threshold method (ADTM) for
dynamic threshold adjustments, the machine learning
supervised method (MLSM), and the machine learning
unsupervised method (MLUM) utilizing anomaly
detection. The comparison focused on sensitivity,
specificity, timeliness, and warning consistency.

Results: ADTM  issued 37 warnings with a
sensitivity of 71% and a specificity of 85%. MLSM
generated 35 warnings, with a sensitivity of 82% and a
specificity of 87%. MLUM produced 63 warnings
with a sensitivity of 100% and specificity of 80%. The
initial warnings from ADTM and MLUM preceded
those from MLSM by five days. The Kappa coefficient
indicated moderate agreement between the methods,
with values ranging from 0.52 to 0.62 (P<0.05).

Discussion: The study explores the comparison
between traditional methods and two machine learning
approaches for early warning systems. It emphasizes the
validation of machine learning’s reliabilicy and
underscores the unique advantages of each method.
Furthermore, it stresses the significance of integrating
machine learning models with various data sources to
enhance public health preparedness and response,
alongside acknowledging limitations and the need for
broader validation.
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Respiratory infectious diseases like seasonal influenza
and coronavirus disease 2019 (COVID-19) have the
potential to escalate into pandemics or epidemics,
rapidly spreading and endangering global public health
(7). The World Health Organization (WHO)
estimates that influenza results in around 1 billion
infections, 3—5 million instances of severe illness, and
290,000-650,000 deaths each year (2). Timely
detection and swift responses to these diseases are
crucial in averting outbreaks and controlling the public
health threats they bring (3).

Threshold-based approaches have traditionally been
utilized to promote vigilance regarding respiratory
diseases. Models such as the moving percentile
method,
exponentially weighted moving average control chart
(4-5) evaluate the dynamic nature of time-series data

cumulative sum control chart, and

in infectious disease early warning systems. These
models issue alerts when reported case numbers meet

thresholds (6). With

advancements in information technology, there has

or exceed predefined

been a significant shift from reliance on single-source
data to incorporating multiple sources. This shift
introduces complex analytical processes and the
challenge of mitigating noise from large datasets. In the
context of COVID-19 management, the application of
artificial ~ intelligence (AI) has proven to be
exceptionally promising in overcoming these obstacles
within surveillance and early warning frameworks (7).
As a result, the development of robust and dependable
Al-driven methods has become crucial in the realm of
infectious disease epidemiology.

This study compares the outcomes of traditional
methods, specifically the process-credible threshold
approach, with two machine learning techniques to
assess the suitability and reliability of machine learning
methods for early warning systems in infectious disease

detection.
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METHODS

In this study, “infectious disease early warning”
refers to identifying outbreak signs before or during its
initial phases through the analysis of infectious disease
data from various surveillance sources. Data from
January 2020 to May 2023, including influenza-like
illness (ILI) statistics, the Baidu index, and clinical
data, were analyzed. All methodologies used in this
study relied on a uniform and collective data origin.

ILI data from the National Influenza Surveillance
Network in China were segmented into China
Northern ILI%, Shandong Province ILI%, and
Weifang City ILI%. The ILI definition matched the
criteria established by the Department of Disease
Control and Prevention of the National Health
Commission of China, identifying ILI as fever (body
temperature >38 °C) with cough or sore throat, as
referenced (8). ILI% represented the ratio of cases
among individuals seeking medical care.

The Baidu index, sourced from the publicly
accessible Baidu index website, represents the aggregate
search frequency of specified keywords on Baidu web
pages, with each keyword assigned a particular weight.
In the context of “treatment,” the index takes into
account search terms including “Flu Treatment,”
“Cold Medicine,” “Antipyretic,” “Lianhuaqingwen,”
“What is the most effective flu
“Liuganwan,” “Ganmaoqingre,” “Banlangen,”
“Baijiahei,” “Oseltamivir,” and “Tamiflu.” Conversely,

medicine,”

the Baidu index for “non-fever symptoms” comprises
phrases such as “Fever,” “Cough,” “Pharyngalgia,”
“Sore throat,” “Runny nose,” “Pneumonia,” “Chest
tightness,” “Symptoms of influenza,” “Sneezing,”
“Lacking in strength,” and “Muscle soreness” (9).
Clinical data from primary and tertiary medical
institutions in Weifang City included 21,584,148 chief

complaints, 23,128,256 initial diagnoses, 39,486,100
pharmaceutical sales, and 426,171
emergency call data (120). This study focused on

instances of

respiratory symptoms data, incorporating chief
complaints, diagnoses, pharmaceutical sales, and
emergency call data (120) with proportional
representation.

This study performed a comparative analysis of three
early warning methods used in Weifang City, China.
The first method improves upon the conventional
threshold approach by autonomously determining an
optimal threshold, enhancing its practical usability.
The second method utilizes supervised machine
learning models, whereas the third employs
unsupervised machine learning models. Specific details
of these models are provided below.

Method 1: Adaptive Dynamic Threshold

Method (ADTM)

The ADTM method integrates automatic
adjustments into conventional fixed-threshold methods
to improve sensitivity and specificity. It consists of five
comprehensive phases.

Phase 1. Modeling and parameter setting: Establish
models for three distinct scenarios: the beginning of an
epidemic season, sudden increases in case numbers,
and outliers surpassing historical levels. Each scenario
had specific thresholds set through various techniques
(Table 1). A total of 1,620 thresholds were determined
based on the three warning signal scenarios and
different criteria (Figure 1). This process aimed to
ensure the model’s accuracy in accommodating the
dynamic and changing patterns in epidemiological
data.

Figure 1 illustrates the criteria for activating alerts in
various scenarios. In the epidemic season, an alert is

triggered by either “Abrupt Growth” or “Outliers

TABLE 1. Scenarios and criteria for setting early warning thresholds for infectious diseases.

Warning signal
scenarios

Criteria

A1. Exceeds standard deviations (0.5x, 1x, 1.5x, 2x, 3x) compared to the same period over the last three years,

A. Outliers over
historical levels

calculated for the past 3 or 7 days.

A2. Exceeds the 50th to 90th percentiles of case numbers compared to the same period in the past three years,
calculated for the past 2 days or weeks.

Retrospective time: Two intervals of three days, for a total of six days.
B1. Absolute change, calculated as the percentage difference between the mean case numbers of two 3-day

B. Abrupt Growth

intervals, with thresholds at 10%, 20%, and 30%.

B2. Acceleration of absolute change, defined as the difference between absolute changes at adjacent intervals.
Acceleration thresholds established at 0.005, 0.01, and 0.015.
Criteria based on exceeding historical data thresholds over 3 or 7 consecutive days.

C1. Set at 0.5 times the historical mean.
C2. Standard deviation thresholds at 0.8x, 1x, 1.2x, and 1.5x of the historical average.

C. Epidemic season

C3. Percentile thresholds at the 50th, 70th, 80th, and 90th percentiles based on historical data.
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Epidemic season:
- Abrupt Growth OR

- Outliers over historical level

Off-Epidemic season:

- Abrupt Growth AND
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FIGURE 1. Mapping of scenarios and criteria for infectious disease early warning thresholds.

exceeding historical levels.” Conversely, during the off-
epidemic season, an alert necessitates the concurrent
presence of both “Abrupt Growth” and “Outliers
exceeding historical levels.”

Phase 2. Threshold determination using SoftMax
function: This method employs a Softmax function to
determine the warning thresholds. The aim is to
optimize the balance between timeliness, sensitivity,
and specificity for threshold determination, which is
crucial for accurate and timely epidemic detection.

Phase 3. Optimal warning strategy for single-source
data: Optimally calibrated warning thresholds are
applied to single-source data indicators, such as ILI.
Warning signals are generated whenever such data
surpasses the established threshold, signaling potential
health risks that warrant immediate attention.

Phase 4. Integration of multi-source warning signals:
Warning signals are synthesized from multi-source
warning signals. A comprehensive assessment of
warning probability is achieved by calculating a
weighted ensemble probability, where each data source
is assigned a specific weight. This integration enhances
the reliability and accuracy of the warning systems.

Phase 5. Threshold setting for warning probability:
A definitive threshold for the warning probability is
established to evaluate integrated warning signals.
Exceeding this threshold prompts the issuance of an
alert, signaling the potential emergence of a public
health threat or the initiation of an epidemic.

During these specified phases, the ADTM provides a
comprehensive strategy for epidemic surveillance. It
incorporates single-source and multi-source data while
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adjusting thresholds dynamically based on critical
epidemiological parameters.

Comparative study of early warning methods: The
timeliness of an early warning method was determined
by the date of the first warning signal, positioned
within the timeline of an outbreak period. The volume
of warnings is reflected in the count of days with issued
warning signals, as dictated by the warning rules.
Consistency was assessed using the Kappa coefficient,
which accounts for the probability of random
agreement. Statistical significance was attributed to
findings with a P<0.05.

Method 2: Machine Learning Supervised

Method (MLSM)

This approach employs fully supervised learning to
reframe the warning issue as a classification task. It
accomplishes the categorization of warning levels
through the acquisition of multi-source time-series
characteristics. The efficacy of early warning for the
target (Weifang ILI%) attained by
constructing a dataset suitable for supervised learning
the Gradient

machine learning model

metric is

and utilizing eXtreme Boosting

(XGBoost) (10). The
XGBoost model, which leverages decision trees and
gradient boosting, serves as the underlying framework,
which we detail in the Supplementary Materials
(available at https://weekly.chinacdc.cn/). Initially,
aligning the multi-source time series with the warning
labels of the target metric establishes a correspondence
between features and labels. Subsequently, these
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features and labels are fed into the XGBoost model for
training, effectively addressing the supervised learning
issue as illustrated in Figure 2.

In the MLSM study, we utilized a training set
spanning from January 1, 2020 to November 30,
2022, comprising 1065 days. The test set ranged from
December 1, 2022 to May 31, 2023, totaling 182
days. The training set to test set ratio is approximately
6:1 requirements for dataset partitioning.

Method 3: Machine Learning
Unsupervised Method (MLUM)

This approach reconceptualizes the challenge of early
warning into a task of anomaly detection. Utilizing
unsupervised  learning,  the model  analyzes
characteristics of multi-source time series data to
identify atypical signals indicative of early warnings.
We employ the Isolation Forest algorithm, a machine
learning model notably used for its efficacy in anomaly
detection (7I), to thoroughly examine the intrinsic
properties of the provided multi-source time series
data. The fundamental principle of the Isolation Forest
method is that normal and anomalous data points
manifest distinct traits; by evaluating and segregating
the outliers, the model successfully pinpoints potential
anomalies  (Supplementary ~ Figure S1, available
athttps://weekly.chinacdc.cn/). An advantage of this
technique over fully supervised learning is that it
eschews the necessity for data labeling, thereby
simplifying the implementation of the early warning
system (Figure 2). Both the training and test sets in the
MLUM were identical to those in the MLSM.

A
Standardized data after aggregation

Multi-source data

FIGURE 2. Schematic diagram of the MLSM and MLUM models

The traditional adaptive dynamic threshold
method’s effectiveness was rigorously compared with
two other methods by assessing their sensitivity and
specificity. To establish a reliable benchmark for this
evaluation, we wused an expert-based consensus.
Professionals from the Weifang CDC and senior
medical experts reviewed case timelines, labeling
moments requiring early warning with a “1” and all
other instances with a “0.” The application of our
technique and the subsequent analyses were performed
using Python (version 3.6.13; Python Software
Foundation, Fredericksburg, VA, US), aided by the
scikit-learn library (version 0.24.2), and the R (version
4.3.1; The R Foundation for Statistical Computing,
Vienna, Austria). For Python analyses, the utilized
packages included Pandas (1.2.0), Numpy (1.19.5),
Xgboost (2.0.3), and Scikit-learn (1.0). For R, the
employed packages were ggplot2 (3.4.4), patchwork
(1.1.3), scales (1.2.1), dplyr (1.1.4), tidyverse (2.0.0),
and readxl (1.4.3).

RESULTS

This study evaluated the performance of the
traditional ADTM in comparison with two machine-
learning-based methods, MLSM and MLUM, over a
period of 182 days from December 1, 2022 to May 31,
2023. ADTM issued 37 warnings with a sensitivity of
71% and a specificity of 85%. MLSM generated 35
warnings with a sensitivity of 82% and a specificity of
87%, while MLUM produced 63 warnings with a
sensitivity of 100% and a specificity of 80%. ADTM

Xgboost model

5 Q=8
BEeE
[ e oA

Isolation forest
model
Early warning result

Abbreviation: MLSM=machine learning supervised method; MLUM=machine learning unsupervised method.
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and MLUM issued initial warnings on December 11, Panel A illustrates the warning signals derived from

with MLSM following on December 16. Pairwise the ADTM method for the Weifang ILI% data. Panel

Kappa coefficient analysis indicated significant B shows the results using the MLSM method, and

consistency among these methods (P<0.05) (Figure 3, Panel C depicts the outcomes from the MLUM

Table 2). method. The blue line represents the ILI percentage
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FIGURE 3. Comparative early warning models using three different approaches. (A) ADTM; (B) MLSM; (C) MLUM.
Abbreviation: ADTM=adaptive dynamic threshold method; MLSM=machine learning supervised method; MLUM=machine
learning unsupervised method.
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TABLE 2. Comparative analysis of warning signal detection methods: ADTM, MLSM, and MLUM.

Consistency' (Kappa)

Method Warni i | Timeliness’ Sensitivity (% Specificity (%

ethods arning signals y (%) p y (%) ADTM MLSM MLUM
ADTM 37 Dec 11, 2022 85 1.00 § §
MLSM 35 Dec 16, 2022 87 0.62 1.00 §
MLUM 63 Dec 11, 2022 100 80 0.62 0.52 1.00

Note: The values denote the Kappa coefficient.

Abbreviation: ADTM=adaptive dynamic threshold method; MLSM=machine learning supervised method; MLUM=machine learning

unsupervised method.
* indicates the date when the warning signals were first initiated.

T represents the consistency, measured by the pairwise Kappa coefficient.

§ signifies a statistical difference with a P value of less than 0.05.

curve, while the red points indicate the warning
signals.

In addition, in this study, we utilized three
evaluation metrics, precision, recall, and Fl-score, to
evaluate the warning results of the test set, as shown in
Supplementary Table S1 (available at https://weekly.
chinacdc.cn/).

DISCUSSION

Early warning systems have advanced by utilizing
diverse data sources, incorporating big data and
machine learning to improve surveillance. This
research compares the ADTM approach with MLSM
and MLUM, assessing their effectiveness in early
warning scenarios. Through establishing ADTM as the
reference point, we evaluate the consistency of results
from MLSM and MLUM, empbhasizing the impact of
machine learning on enhancing public health
readiness.

This study introduces an enhanced method for
infectious disease surveillance, integrating an automatic
threshold selection system to enhance adaptability and
scalability across various regions. The China Infectious
Diseases Automated-Alert and Response System
(CIDARS) implements a spatiotemporal early warning
model for Type 1 diseases, covering nine infectious
diseases, and Type 2 diseases involving 19 infectious
diseases, utilizing Fixed-threshold, Temporal, and
Spatial detection methods (10). However, challenges
arose in determining precise thresholds for different
times, populations, policies (77), and
behaviors, hindering rapid adjustments to these factors.
To tackle this issue, a dynamic threshold selection
function has been developed in this study, enabling
real-time adaptation of thresholds, thereby increasing
the method’s versatility and facilitating its application
across diverse geographical areas.

The three methodologies, ADTM, MLSM, and

regions,
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MLUM, exhibit varying effectiveness and suitability in
early warning systems. MLSM and MLUM represent
the fundamental paradigms of machine learning, each
offering unique approaches to problem solving.
ADTM and MLUM are particularly relevant for timely
anomaly detection crucial for outbreak response.
ADTM excels in specificity, reducing false alarms and
saving resources, but may lack sensitivity in detecting
certain anomalies. MLSM strikes a balance between
sensitivity and  specificity,  albeit  with  less
straightforward interpretability. MLUM stands out for
its high sensitivity, benefiting disease detection at the
expense of specificity, making it valuable for conditions
with significant clinical impacts. Validating the
reliability of machine learning methods in infectious
disease early warning, the study uses ADTM as a
benchmark.  Machine learning’s  computational
strength, combined with independence from
traditional benchmarks, bears promise for future
applications. However, caution is advised as predictive
models, with moderate Kappa coefficient agreement,
are not infallible and should not be the sole
determinants of public health decisions. A more robust
approach involves integrating diverse data sources and
surveillance methods with predictive models to
early warning system reliability and
effectiveness, mitigating the limitations of single-model
predictions and fortifying public health strategies.

The methodology of the study has limitations,
particularly in finding a dependable benchmark for
early warning models, notably with machine learning.
The study aimed to compare models under similar
conditions without in-depth exploration of their
intricacies. The MLUM model prioritized timeliness
and sensitivity, albeit with a trade-off in specificity due
to its parameter settings. Future research may consider
more sophisticated models to enhance accuracy.
Furthermore, the study was confined to the Weifang
area, suggesting the necessity for broader validation in

enhance
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other regions in subsequent work.
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SUPPLEMENTARY MATERIAL

Model Introduction

XGBoost is a popular ensemble learning algorithm called eXtreme Gradient Boosting, commonly applied for
classification and regression purposes. It utilizes decision trees and the gradient boosting technique to enhance
model performance through iteratively training new decision trees.

XGBoost relies on decision trees as its fundamental components, with each tree functioning as a weak learner.
Decision trees encompass nodes, branches, and leaves, where nodes split based on features and leaf nodes correspond
to output values. The model’s goal is to minimize an objective function consisting of a loss function and
regularization term. This objective function evaluates the model’s performance, aiming to minimize it by seeking
new decision trees in each iteration. This optimization process can be described by Equation 1, which also represents
the objective function. In Equation 1, y, denotes the objective function, / represents the loss function, y; is the actual
label, 7, stands for the model’s predicted label, K denotes the number of trees, and € (f;) is the regularization term.

e = Zj=1l(y"’yi) + Z;Q (ﬂ) (M

XGBoost employs the gradient boosting strategy to minimize the objective function gradient at each iteration.

The process of generating a new tree includes fitting the negative gradient of the current model. This guides the
creation of new trees to prioritize poorly-performing samples from the previous model.

The negative gradient can be represented by Equation 2.
Nyi, §1)

95

To address overfitting, XGBoost incorporates regularization methods such as weight decay (L2 regularization) and
minimum split loss to manage tree depth and leaf node weights. The calculation for the regularization term is
detailed in Equation 3.

G, = - @)

Qf) =5 L 3)

The ultimate prediction is calculated by summing the predicted values of all generated trees, with each tree’s
impact adjusted by the learning rate. This methodology enables XGBoost to boost performance by amalgamating
diverse decision trees.

XGBoost is a potent machine learning algorithm, well-suited for medium to large-scale datasets and intricate
classification tasks. Optimal performance is attainable via meticulous parameter adjustment. Leveraging
multithreading and parallel computing, the model demonstrates efficient performance, enabling swift training on
extensive datasets. Incorporating regularization terms aids in averting overfitting and enhancing the model’s
generalization capabilities. XGBoost offers insights on feature importance, facilitating comprehension of the model’s
sensitivity to specific features. It adeptly manages missing values without necessitating supplementary processing.
Additionally, the algorithm accommodates diverse loss functions and evaluation metrics, rendering it versatile across
various problem types.

In this study, the model successfully meets the demands of the research task by providing scientifically precise
predictions for influenza-like case activity levels.

The Isolation Forest

Forest algorithm model was first introduced by Fei Tony Liu et al. It focuses on anomaly detection by
differentiating typical data from anomalies, enabling efficient classification by isolating the anomalous data points.

The primary operational concept of the Isolation Forest model involves randomly selecting a feature from the
dataset and choosing a separation value within its range. Samples are then split into branches based on this value.
This recursive process continues for each branch until only one sample is left or the defined recursion depth is met.

Anomalous data is distinguished from normal data by its unique features, requiring fewer partitioning steps for
isolation. Conversely, normal data necessitates more steps for isolation, leading to a longer path to the endpoint.
The model assesses the path length for each data point to reach isolation, with a shorter path indicating early
isolation and suggesting a higher likelihood of anomaly.
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To provide a clearer understanding of the Isolation Forest model’s training methodology, a straightforward
example is discussed. Refer to Supplementary Figure S1, which presents a set of data points plotted along a number
line, with their values arranged in ascending order. The objective is to identify any anomalies within these data
points. The initial step involves determining the median of all values, which lies between the maximum and
minimum data points, to serve as the initial split value. Following this initial split, data point Z becomes separated.
Subsequently, the median value amongst the remaining data points, A through I, is selected to define the second
split, consequently isolating data points F through I and leaving data points A through E. This bifurcation proceeds
recursively until each data point stands alone. Ultimately, data point Z is sequestered in just one split, whereas data
point E requires four splits for isolation. The fewer partitions required to isolate a data point signal a higher
likelihood of it being anomalous, hence data point Z is deemed more likely to be an outlier compared to data
point E.

Evaluation of Model Warning Results
In this study, three evaluation metrics, Precision, Recall, and F1-Score, were utilized to assess the warning
outcomes of the test set. The calculation equations for these metrics are presented below:

.. TP
Precision (Pre) = TP 1 TP @)
TP
Recall (Rec) = m (5)
Pre x Rec
F1= _—
1=2x Pre + Rec ©

True positive (TP) refers to the count of normal events correctly classified as normal, while true negative (TN)
denotes the count of abnormal events accurately identified as abnormal. False positive (FP) indicates the number of
abnormal events erroneously detected as normal, and false negative (FN) represents the count of normal events
mistakenly presented as abnormal. The detailed evaluation results are presented in Supplementary Table S1.
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SUPPLEMENTARY FIGURE S1. Training process of the Isolation Forest model.
SUPPLEMENTARY TABLE S1. Evaluation results based on the XGBoost warning model.
Weighted average Precision Recall F1-Score
XGBoost 0.93 0.88 0.90
Isolation forest 0.95 0.82 0.86
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Supplementary Table S1
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