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Theoretical Epidemiology Needs Urgent Attention in China
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ABSTRACT

The mathematical method to which theoretical
epidemiology belongs is one of the three major
methodologies in epidemiology. It is of great value in
diagnosing infectious disease epidemic trends and
evaluating the effectiveness of prevention and control
measures. This paper aims to summarize the brief
history of the development of theoretical
epidemiology, common types of mathematical models,
and key steps to develop a mathematical model. It also
provides some thoughts and perspectives on the
development  and  application  of
epidemiology in China.

theoretical

Theoretical epidemiology, also referred to as
mathematical modeling in epidemiology, is a
significant component of  epidemiological
methodologies. It has played a crucial role in managing
infectious disease outbreaks in China, particularly
during the coronavirus disease 2019 (COVID-19)
pandemic. The field aids in understanding disease
transmission mechanisms, assessing epidemics on-site,
and refining prevention strategies (/—6). Despite its
contributions, there remain challenges in advancing
theoretical epidemiology in China, notably in training
public health professionals, applying disease control
measures, and sustaining scholarly interest. The future
trajectory of interest in this discipline, post the
integration of COVID-19 prevention into China’s
infectious disease management, poses an important
consideration.

A BRIEF HISTORY OF THE
DEVELOPMENT OF THEORETICAL
EPIDEMIOLOGY

Based on our comprehensive review of theoretical
epidemiology literature, several seminal contributions
have shaped our understanding of disease dynamics.
R. A. Ross, in 1902, employed mathematical models to
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evaluate malaria interventions (), while W. H. Hamer
in 1906 highlighted the importance of reducing
susceptible populations to control epidemics (8-10). In
1928, Reed-Frost elucidated infection spread across
generations (/7). McKendrick and Kermack between
1927 and 1935 introduced differential equations to
depict disease transmission and the transmission
threshold concept (712-14). George MacDonald
further explored transmission dynamics by posing
critical questions regarding infected individuals
entering a population: What would occur if an infected
individual entered a population? How many new
infections would result (75)? The Threshold Theory in
1970 suggested that 80% vaccine coverage could
eradicate smallpox. Mathematical modeling gained
prominence following the 2003 SARS outbreak, aiding
in  transmissibility  calculations and  evaluating
prevention measures (/6-20). The 2009 Influenza A
(HIN1) pandemic witnessed extensive modeling to
assess vaccination effectiveness and establish influenza
surveillance ~ systems (27/-24). The COVID-19
pandemic prompted accelerated development in
theoretical ~ epidemiology, with various models
predicting trends, simulating transmission, and
evaluating control measures to inform government
decision-making (3—4,25-30). Subsequently,
theoretical epidemiology has focused on refining
models and addressing previous limitations, such as
real-time database optimization and dynamic modeling
to monitor disease progress (3/-32).

OVERVIEW OF COMMON TYPES OF
MATHEMATICAL MODELS IN
THEORETICAL EPIDEMIOLOGY

Upon reviewing the literature, we identified two
main types of mathematical models in theoretical
epidemiology: “data-driven” models and “mechanism-
driven” models.

« . » .

Data-driven” models encompass various approaches
to investigate the connection between disease
occurrence and time. These methods involve temporal

regression models, control charts, time series models
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like autoregressive integrated moving average model
(ARIMA), Monte Carlo algorithmic models, gray
theory models, neural network models, and related
derivatives (33).

This category of methods focuses on analyzing large
datasets of case information to comprehend the trends
of diseases or health conditions over time. It involves
examining the correlation between disease occurrences
and time or other variables, developing models, and
forecasting disease prevalence trends.

This model type offers the advantage of rapid and
simple forecasting based on historical data. However,
its primary drawbacks include using time as an
independent  variable and  attributing  disease
development solely to temporal changes. These models
often rely heavily on data, overlooking the infectious
and epidemiologic aspects of disease (34). Typically,
such models focus solely on prediction, utilizing
historical data to simulate scenarios for forecasting, and
rarely assess the effectiveness of infectious disease
prevention and control strategies (35-36).

“Mechanism-driven” models are grounded in a
comprehensive understanding of the disease process.
These models simulate  population  dynamics,
progressing  from  susceptibility to incubation,
symptomatic or asymptomatic infection, and eventual
recovery or mortality. They incorporate key
epidemiological ~ factors such as infectiousness,
pathogenicity, and virulence (7,6,37-39). Additionally,
they integrate practical prevention and control
measures, including pharmacological interventions
(e.g., antiviral drugs, antibiotics, vaccines) and non-
pharmacological strategies (such as contact tracing,
testing, school closures, hand hygiene, social
distancing, mask-wearing), environmental disinfection,
and vector control. These models are parameterized to
reflect variations across different populations and
adjust for interrelated parameters, ensuring alignment
with real-world scenarios of disease transmission and
control.

The models can be classified based on the object of
study and parameter properties into two categories:
1) models with a group object and deterministic
parameters, exemplified by the transmission dynamics
model (7,4,6,40-45); 2) models with an individual
object and stochastic parameters, illustrated by agent-
based models (46-47), multiagent system (MAS) (48),
cellular automata (CA) (£9-50), and others.

Mechanism-driven  models offer several key
advantages: 1) They excel in uncovering the
fundamental mechanisms of diseases and providing
detailed explanations of epidemiological occurrences;
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2) These models offer high flexibility in modeling. By
employing a dynamics model that considers the natural
history of the disease, features, and
epidemiological characteristics like the “three links”
and “two factors,” supplemented by biological
evidence, and utilizing mathematical tools such as
differential equations and computer technology, these
models can effectively simulate disease transmission
processes. This leads to enhanced predictive reliability,
aiding in public health decision-making and the
formulation of effective intervention strategies; 3)
Mechanism-driven modeling necessitates a
multidisciplinary approach, integrating knowledge and
techniques from epidemiology, biology, statistics, and
computer science. This interdisciplinary collaboration
results in a more holistic comprehension of disease
complexity,  facilitating  the  proposition  of
comprehensive solutions.

clinical

The model exhibits significant limitations: 1) It is
highly sensitive to the initial values and relies heavily
on subjective and empirical factors for parameter
settings, with unclear significance of individual
usage; 2) Its
mathematical and theoretical derivation demands a

parameters in practical rigorous
deep understanding of mathematics and computer
science, limiting its universal applicability in frontline

systems.

MODEL BUILDING PROCESS

When developing mechanism-driven  models,
researchers must consider key factors such as the
research’s objective and the compatibility of the data
with the selected model. Subsequently, selecting a
suitable model to evaluate transmissibility, morbidity,
and other anticipated outcome measures is vital. The
precise construction and selection of mechanism-
driven models are essential to accurately replicate real-
world scenarios and achieve desired outcomes. Hence,
the process of model building and assessment
calculations should adhere to a standardized and
reproducible methodology. As such, our research team
has introduced the “MODELS” modeling framework,
comprising six primary steps and 19 sub-steps in the
modeling process (51).

OUTLOOK

The current mathematical model has limitations in
practical application. Therefore, it is essential to
validate its accuracy using real data and enhance it
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through adjustments. The model serves as a theoretical
foundation and enhances data support for disecase
Here, personal opinions on its future
development are discussed.

The “connotation” of theoretical epidemiology is
expected to be further enhanced: The complexity and
professional limitations of mathematical modeling have
hindered extensive research and application of
infectious disease mathematical modeling in Chinese
public health. This is attributed to several factors:
1) Studies primarily focus on methodologies rather
than practical implementation in public health; 2)
Some research lacks clear parameter interpretation and

control.

comprehensive system dynamics; 3) Inconsistencies
exist among experts regarding the natural history and
transmission mechanisms of infectious diseases, for
example, the percentage and transmissibility of
asymptomatic infections are often overlooked.

The “outreach” of theoretical epidemiology is
expected to be further expanded: The emergence of
new infectious disease outbreaks present opportunities
for the advancement of theoretical epidemiology,
encompassing both theory and practical application.
The theoretical aspect interdisciplinary
collaboration, crucial for addressing complex public
health issues by integrating various fields like infectious
disease epidemiology, ecology, pathogen biology,
genetics, applied mathematics, and computer science in
the age of real-world and big data (52). The practical
application aims to extend the reach of theoretical
epidemiology from infectious diseases to areas such as
chronic non-communicable diseases. This expansion is
poised to stimulate the progress of public health
strategies and aid in addressing global health
challenges.

Theoretical epidemiology will play an important role
in the training and pooling of human resources: Our
research team surveyed the status of theoretical

involves

epidemiology instruction in academic and Center for
Disease Control and Prevention (CDC) settings
throughout China. Findings reveal a significant
demand for theoretical epidemiology research and
application within CDCs nationwide. However, there
is a notable absence of theoretical epidemiology
education in undergraduate programs across Chinese
universities, hindering its practical application in
epidemiology. Theoretical epidemiology is critical to
understanding epidemic trends and transmission
patterns of disease, and we therefore call for its
inclusion in basic public health and preventive
medicine curricula. This integration not only enhances
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the preparedness of future public health professionals
but also reinforces the knowledge base within the
discipline. By fostering theoretical epidemiology
education, we aim to fortify the public health system to
effectively combat infectious disease outbreaks and
health emergencies.
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