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Summary

What is already known about this topic?
Previous studies have explored the spatial transmission
patterns of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and have assessed the
associated risk factors. However, none of these studies
have quantitatively described the spatiotemporal
transmission patterns and risk factors for Omicron
BA.2 at the micro (within-city) scale.

What is added by this report?

This study highlights the heterogeneous spread of the
2022 Omicron BA.2 epidemic in Shanghai, and
identifies associations between different metrics of
spatial spread at the subdistrict level and demographic
and socioeconomic characteristics of the population,
human mobility patterns, and adopted interventions.
What are the implications for public health
practice?

Disentangling different risk factors might contribute to
a deeper understanding of the transmission dynamics
and ecology of coronavirus disease 2019 and an
effective design of monitoring and management
strategies.

An Omicron BA.2 epidemic occurred in Shanghai,
China in early March 2022. The objective of our study
is to quantify the spatial spread of the epidemic across
Shanghai subdistricts and identify risk factors. This
study provides quantitative estimates of the epidemic
arrival time, growth rate, and infection attack rate
(IAR) as of May 31, 2022, and uses a generalized linear
mixed effect model (GLMM) to explore their
associations with demographic and socioeconomic
characteristics of the population, human mobility, and
interventions at the subdistrict level. We found that
the epidemic growth rate was positively associated with
the epidemic arrival time and subdistricts farther away
from the (likely) origin of the outbreak had lower
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growth rates. The IAR was negatively correlated with
the arrival time, distance from the initial outbreak
location, subdistrict location, and booster coverage in
the population aged 65 years and above; a positive
association was found for population density and gross
domestic product (GDP). This study highlights the
role of the geographical structure of the city, human
mobility, population characteristics, and adopted
interventions in shaping the dynamics of the epidemic.

Shanghai is divided into 16 districts and 216
subdistricts. In the initial phase of the outbreak, grid
management was implemented at the subdistrict level
and entailed partial lockdown and mass nucleic acid
screening for high-risk areas and non-high-risk areas.
Afterward, eastern Shanghai entered a population-wide
lockdown on March 28, and then the rest of Shanghai
entered a lockdown phase on April 1 (Supplementary
Figure S1, available in https://weekly.chinacdc.cn/).
The city-wide lockdown was fully lifted on June 1,
2022.

Daily aggregated data on the number of infections
and individual-level data of all severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infections
were extracted from multiple publicly available official
data sources. The initial (identified) foci of the
outbreak was the cultural activity center of Shiquan
subdistrict in Putuo District, where a cluster of 14
SARS-CoV-2 positive individuals was detected starting
from March 1, 2022 ().

To describe the time course of the Omicron
outbreak in Shanghai, we estimated the following three
indicators at the subdistrict level: 1) epidemic arrival
time (i.e., the date of the first confirmed infection in a
subdistrict), 2) IAR (i.e., the cumulative number of
reported infections in a subdistrict divided by the total
population in that subdistrict), and 3) epidemic growth
rate.

To explore potential risk factors associated with the
epidemic arrival time, growth rate, and IAR across
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subdistricts, we included several covariates that belong
to four general categories: demographic characteristics,
socioeconomic characteristics, human mobility, and
interventions (Supplementary Table S1, available in
https://weekly.chinacdc.cn/). The arrival time of the
epidemic represents a response when
measuring the spread of the infection; however, we also

variable

considered it as an explanatory variable when exploring
its association with the epidemic growth rate and IAR.

A correlation analysis was conducted to assess
collinearities between the independent variables. We
built a GLMM model to estimate the proportion of
variance in the response variables ascribable to intra-
and inter-district variation. The significance level was
set to 0.1 for candidate variable selection, and 0.05 for
multivariate regression. To test whether the random
model was appropriately chosen, we also estimated
spatial autocorrelation between residuals using Moran’s
I statistic. To quantify the uncertainty of model
selection, a generalized estimating equation (GEE)
model accounting for spatial clustering was used in a
sensitivity analysis. The detailed statistical methods are
presented in the Supplementary Material. All the
analyses were performed in R 4.1.0 (R Foundation for
Statistical Computing, Vienna, Austria).

As of May 31, 2022, a total of 626,840 SARS-CoV-
2 infections had been reported in 99.54% of the
Shanghai subdistricts. High heterogeneity in the spatial
distribution of infections was found across subdistricts,
with 27.78% of the subdistricts accounting for more
than 70% of all infections (Supplementary Figure S2,
available in https://weekly.chinacdc.cn/).

The spatial spread of the epidemic showed a clear
spatial trend from the city center to adjacent areas, and
a continuous spread toward suburban and rural areas.
The spatial distribution of the arrival time was highly
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heterogeneous, with 35.19%, 41.67%, and 97.69% of
the subdistricts reporting infections within the first
week, second week, and a month, respectively.

We analyzed the correlation between the epidemic
arrival time and the geographical distance from the
initial outbreak location. The regression model showed
that compared to the geographic and effective
distances, the pre-epidemic flow of travelers showed a
slightly weaker correlation with the epidemic arrival
time (Figure 1).

By fitting a linear regression model to the logarithm
of the daily number of new confirmed infections from
February 26 to April 1, 2022, the overall epidemic
growth rate for Shanghai was estimated to be 0.23 per
day [95% confidence interval (CI): 0.22-0.25].
Excluding 6 subdistricts reporting no infections before
the lockdown and 49 subdistricts with R%<0.6, as well
as 3 subdistricts with only two data points, we analyzed
the estimated growth rates for the remaining 158
subdistricts. The growth rate was lognormal-
distributed, with a range of 0.06 to 0.39, which was
positively associated with the arrival time of the
epidemic (Figure 2A-2C).

The results of the univariate analysis were reported
in the Supplementary Table S2  (available in
https://weekly.chinacdc.cn/). The final selected model
showed that the arrival time positively correlated with
the growth rate of the epidemic [odds ratio (OR): 1.03,
95% CI: 1.02-1.04]. Subdistricts located in the
suburban ring (OR: 0.85, 95% CI: 0.73-0.98) and
outside the suburban ring (OR: 0.59, 95% CI
0.49-0.70) were associated with a significantly lower
epidemic growth rate (Figure 2D). The residuals did
not show significant spatial autocorrelation with
Moran’s [ analysis. The results were robust after
removing the outliers. We obtained similar results with
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FIGURE 1. Scatter plots of the correlation between epidemic arrival time and (A) geographical distance, (B) effective

distance, and (C) baseline flows.

Note: Dots in the scatter plot were colored by different districts.
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FIGURE 2. Epidemic growth rate and its associated factors. (A) Geographical distribution of growth rates for 158
subdistricts. (B) Distribution of the estimated epidemic growth rate (per day) by subdistrict and fit of a log-normal distribution.
(C) Scatter plot of the epidemic growth rate and arrival time. (D) Factors associated with the growth rate.

Note: In panel A, of the 216 subdistricts, 6 subdistricts reporting no infections before the lockdown, 49 subdistricts with an
R*<0.6, and 3 subdistricts with only two data points for estimating their growth rates, were excluded from the regression; the
excluded subdistricts are shown in white. In panel C, dots were colored by different districts. In panel D, dots and lines
indicate point estimates and 95% confidence intervals of the odds ratio. Odds ratio was calculated as exponentiated
regression coefficients. Numbers on the side of the dots indicate the numerical value of the point estimate.

Abbreviation: Ref.=reference category.

* indicates P-value<0.05;

** indicates P-value<0.01;

*** indicates P-value<0.001.

a GEE model (Supplementary Table S3, available in
https://weekly.chinacdc.cn/).

As of May 31, 2022, the overall IAR in Shanghai
was estimated to be 2.42%. However, the IAR was
highly heterogeneous across subdistricts, ranging from
0 to 13.75%. The epidemic arrival time was
significantly associated with the IAR. The final selected
model showed that the arrival time was negatively

correlated with the IAR (OR: 0.59, 95% CI
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0.46-0.75). Among the investigated demographic
characteristics, population density was positively
associated with the IAR (OR: 1.38, 95% CI
1.20-1.60). Among the socioeconomic characteristics,
subdistricts that were farther apart from the initial
outbreak location were associated with a significantly
lower IAR (OR: 0.96, 95% CI: 0.95-0.98). GDP at
the district level positively correlated with the IAR
(OR: 151, 95% CI. 1.23-1.85). Compared to
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subdistricts located in the inner ring, subdistricts
located farther away from the inner ring were
significantly associated with lower IARs (OR for
middle ring: 0.51, 95% CI: 0.35-0.73; OR for outer
ring: 0.43, 95% CI: 0.32-0.58; OR for suburban ring:
0.16, 95% CI. 0.11-0.24; OR for outside suburban
ring: 0.05, 95% CI: 0.03-0.08). Among the vaccine-
related covariates, booster coverage for people aged 65
years and above was associated with a significantly
lower IAR (OR: 0.73, 95% CI: 0.55-0.96, Figure 3).
Moran’s [ for the residuals showed no significant
spatial autocorrelation. The results were robust after
removing the outliers, and similar results were obtained

with a GEE model (Supplementary Table S4, available

A

in https://weekly.chinacdc.cn/).

DISCUSSION

This study highlights the heterogeneous spread of
the 2022 Omicron BA.2 epidemic in Shanghai, and
identifies associations between different metrics of
spatial spread at the subdistrict level and demographic
and socioeconomic characteristics of the population,
human mobility patterns, and adopted interventions.

The identified (likely) foci of the outbreak was the
cultural activity center of the Shiquan subdistrict in
Putuo District. However, we could not rule out the
possibility that the Omicron outbreak might have
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FIGURE 3. Infection attack rate and its associated factors. (A) Geographical distribution of the infection attack rates at the
subdistrict level as of May 31, 2022. (B) Distribution of the infection attack rate by subdistrict and fit of a log-normal
distribution. (C) Scatter plot of the infection attack rate and arrival time. (D) Factors associated with the infection attack rate.
Note: In panel C, dots were colored by different districts. In panel D, dots and lines indicate point estimates and 95%
confidence intervals of the odds ratio. Odds ratio was calculated as exponentiated regression coefficients. Numbers on the
side of the dots indicate the numerical value of the point estimates.

Abbreviation: GDP=gross domestic product; Ref.=reference category.

* indicates P-value<0.05;

** indicates P-value<0.01;

*** indicates P-value<0.001.
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originated from multiple sources that resulted in
chains prior to the
identification of the first local transmission event.

Our findings suggest that the subdistricts with
stronger connections to the initial outbreak location
had higher chances of being reached by the epidemic
early on, which is consistent with observations for the
2009 HINTI influenza pandemic and 2003 SARS
epidemic (2). The epidemic growth rate was positively
associated with the arrival time of the epidemic,
suggesting that the targeted interventions implemented
in high-risk areas were insufficient to slow down
transmission (3).

Human mobility is generally considered to be key in
determining the risk of infection and the spread of
epidemics (4-5). However, in our multivariate
regression models, we found that pre-epidemic
population flows were not significantly associated with
the IAR or growth rate. This could be explained by its
strong collinearity with the epidemic arrival time,
which ultimately had a strong impact on determining
the type and timing of adoption of control measures
(6).

Subdistricts with a higher GDP were found to have
a higher IAR, consistent with a previous study (7).
This indicates that subdistricts with a higher GDP
trend to have more factories and enterprises, causing
more gathering and higher risk of transmission
accordingly.

Initially, the outbreak spread in and around the
inner ring. Previous literature also found that the
COVID-19 pandemic in the United States was
characterized by a geographically localized mosaic of
transmission along an urban-rural gradient (8-9),
suggesting that geographic distance may play an
important role in SARS-CoV-2 spread. Finally, the
public health impact of COVID-19 vaccines has
already been widely discussed in the literature (10-13)
and our study confirms previous evidence.

Our study suffers from limitations that are rooted in
the uncertainty and fragmentary nature of publicly
available sources, such as a high level of missing data
for key variables, such as the date of symptom onset.
Additionally, the population flows were provided by
China Unicom and thus may suffer from the limitation
intrinsic of mobile phone data. Moreover, we cannot
exclude the possibility that there are other potential
risk factors that were not considered in our study (e.g.,
housing
Meteorological factors may play an important role to
explain the heterogeneity in the temporal and spatial

simultaneous transmission

conditions and meteorological factors).

Chinese Center for Disease Control and Prevention

spread of infectious diseases, but we did not include
them here as the variation may be very limited across
the small study location and the short study period.
Finally, this study does not provide causal
relationships, but only provides associations between
different metrics of the epidemic spread with a set of
indicators.

In conclusion, this study provides a quantitative
description of the spatiotemporal spread of the
Omicron BA.2 variant in Shanghai at the subdistrict
level. Our findings highlight the role of the
geographical structure of the city, human mobility,
socioeconomic characteristics of the population, and
adopted interventions in shaping the dynamics of the
epidemic. Disentangling these factors might contribute
to a deeper understanding the transmission dynamics
and ecology of COVID-19 and guide the design of
monitoring and management strategies.
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SUPPLEMENTARY MATERIAL

Generalized Linear Mixed Effect Model

Arrival time. We built a generalized linear mixed effect model (GLMM) to estimate the proportion of variance in
the response variables attributable to intra- and inter-district variation. For the arrival time, we used a GLMM with
random intercept effect and log link function to assess its association with geographical distance from the initial
outbreak location. We used the concept of “effective distance” (7), wherein the distance between locations depends
on the strength of their link; in our case, the strength of the link is measured as the outflows from initial outbreak
location.

Epidemic growth rate. Similarly, we used a GLMM with random intercept, random slope, and log link function
to explore whether and to what extent the arrival time correlates with the epidemic growth rate, while controlling
for other covariates. To select which explanatory variables to include in the final model, we first used univariate
regression for candidate variable selection, then we run multivariate regressions. Finally, we performed a forward
stepwise model selection based on Akaike’s Information Criterion (AIC) and likelihood ratio test.

The specification of the final GLMM for the epidemic growth rate is the following:

g(/iz‘j) = a + Piarrival_time; + ﬁzjringl_j +

where ¢ is a log link function; 7 represents the subdistrict; j represents the distric; a represents the
intercept; arrival_time; and ring,denote the fixed effects of the arrival time and ring where the subdistrict is located; #
represents the district-specific random intercept effects; 3,; represents the district-specific random slope effects; and
pi=E (Y}j| u; 35;) is the mean of the response variable (i.e., the epidemic growth rate) ¥; for a given value of the
random effects.

Infection attack rate. To explore driving factors associated with the infection attack rate, we used the same
GLMM. After model selection, the specification of the final GLMM for IAR is the following:

g( M,»j) =+ ﬂljarriml_timel-j + ﬁzdmsityij + ﬁ3jrz'ngl_j + Bydistance;+ 35 GDP;; + ﬂGbowter_GSij +u

where ¢ is a log link function; 7 represents the subdistrict; j represents the district; a represents the
intercept; arrival_time;, demz‘tyl,j,rz’ngy, distance, GDPy;, and booster_65;; denote the fixed effects of the arrival time,
population density, ring where the subdistrict is located, distance from the initial outbreak location, GDP, and
booster vaccination coverage of people aged 65 years and above; u; represents the district-specific random intercept
effects; By and f;; represents the district-specific random slope effects; and p; = E (Y,-J-| u; By, 63].) is the mean of the
response variable (i.e., the infection attack rate) ¥} for a given value of the random effects.

Observations with a Cook’s Distance greater than 20 times the mean value were considered outliers and excluded
from the analysis. Odd ratios were calculated by exponentiating the coefficients and confidence interval from the
regression results. Diagnostics were performed to assess regression assumptions.

Generalized Estimating Equation Model
In addition to the GLMM, we also built a generalized estimating equation (GEE) model to regress the epidemic
growth rate and infection attack rate. The GEE model relies on a similar specification of the initial GLM fitting, but
with no random effects. To further account for spatial clustering and possible correlation structure, GEE uses #; to
define the clustering structure of the data with a working correlation matrix that defines the correlation within each
cluster (i.e., district). We provide the results for the exchangeable correlation matrix, but independent and
unstructured matrices were explored as well and gave very similar results.
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SUPPLEMENTARY TABLE S1. Definition and data sources for potential risk factors.

Type Factors Level Data source

Demographic characteristics*

1. Population density (x1,000 people/km?) Subdistrict 6th and 7th Census (2-3)
2. Proportion of people aged 65 years old and over (%) Subdistrict 6th and 7th Census (2-3)
3. Ratio of population with household registration to the effective population (%) Subdistrict ggi?g(?’?i Statistics Year

Socioeconomic characteristics

4. Distance from the initial outbreak location, i.e., cultural activity center in

Shiquan subdistrict of Putuo District (km) Subdistrict  Amap (5)

Shanghai Statistics Year

5. Gross domestic product (GDP) (x100 million CNY) District Book (4)
L Shanghai Statistics Year
6.C f 9
overage of green area (%) District Book (4)

7. Ring where the subdistrict is located
e Inner ring: subdistricts with more than half of the area within the Inner-city
Elevated Beltway;
e Middle ring: subdistricts between the Inner-city Elevated Beltway and the
Middle Ring Road;
e Quter ring: subdistricts between the Middle Ring Road and the Outer Ring
Road, i.e., S20;
e Suburban ring: subdistricts between the S20 Road and the Highway around
Shanghai City, i.e., G1501;
e Outside the suburban ring: subdistricts outside the G1501 Road

Human behavior?
8. Baseline flows during pre-epidemic (x1,000 trips): daily average population
flows (inflows, outflows and inner flows) for a given subdistrict in the last week of Subdistrict China Unicom (6)
February, i.e., between February 21 and February 27, 2022.
9. Outflows from the initial outbreak location (i.e., Shiquan subdistrict) to other
215 subdistricts during pre-epidemic (x1,000 trips): daily average outflows Subdistrict China Unicom (6)
between February 21 and February 27, 2022

Vaccine and non-pharmaceutical interventions

Subdistrict Public sources

10. Vaccine coverage (%)’

e Primary vaccination coverage of total population

e Booster vaccination coverage of total population Subdistrict

e Primary vaccination coverage of people aged 65 years old and over

e Booster vaccination coverage of people aged 65 years old and over

11. Whether a given subdistrict was classified as high-risk area or not, during

grid management phase between March 16 and March 27, 2022

12. Lockdown time of eastern and western Shanghai, defined as subdistricts

east and west of the Huangpu River

e Eastern Shanghai: March 28

e Western Shanghai: April 1

13. Reduction in daily population flows after lockdown (%): the subtraction of

daily average flows during early lockdown (between April 1 and April 7, 2022)  Subdistrict ~ China Unicom? (6)

from the baseline flows and the division by the baseline
Abbreviation: CNY=Chinese Yuan.
* Subdistrict-level population data after 2017 were derived from the 7th National Census of China and the latest reports by local authorities.
For the subdistricts with unavailable population data after 2017, the subdistrict-level population data for 2020 were inferred from the
population size of each district in 2020 and the population proportion of each subdistrict in the Sixth National Census in 2010.
T The population flow data is provided by one of the largest national mobile carriers in China, China Unicom, and is aggregated based on all
users’ mobile phone activity records across the city, including geographic location. We then aggregated the daily inflows, outflows, and
internal flows at the subdistrict level.
$ The numerator is vaccinated individuals, and the denominator is census population. If floating population who was vaccinated were
counted in the numerator, it may result in coverage exceeding 100%. Besides, census population for some subdistricts is not up to date,
possibly leading to overestimation of coverage. Thus, the coverage would be truncated to 100%, if exceeding 100%.

Public sources and internal
report

Subdistrict Public sources

Subdistrict Public sources
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SUPPLEMENTARY TABLE S2. Univariate regression for growth rate and infection attack rate.
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Epidemic growth rate

Infection attack rate (%)

Effect
Estimate  Pr(>|z|) 95% CI Estimate  Pr(>|z|) 95% CI

Population density 1.01 <0.001***  (1.003, 1.01) 2.16 <0.001***  (1.95, 2.39)
Proportion of people aged >65 1.07 0.271 (0.95, 1.20) 0.99 0.140 (0.97, 1.004)
E\Ztigﬁ‘;fc‘;?/zugzma‘t’;’g: household registrationto 4 0.918 (0.93, 1.06) 205  <0.001*** (1.67,2.52)
Distance from initial outbreak location 0.91 0.036* (0.83, 0.99) 0.93 <0.001***  (0.92, 0.94)
GDP 1.03 0.591 (0.92, 1.17) 2.23 0.050 (1.08, 4.60)
Coverage of green area 1.00 0.763 (0.98, 1.03) 0.93 0.401 (0.81, 1.08)
Ring where the subdistrict is located

Inner ring Ref - - Ref - -

Middle ring 0.94 0.373 (0.82, 1.08) 0.46 0.009**  (0.30, 0.72)

Outer ring 0.94 0.424 (0.81, 1.09) 0.40 0.005**  (0.26, 0.63)

Suburban ring 0.82 0.021* (0.70, 0.97) 0.15 <0.001***  (0.09, 0.24)

Outside suburban ring 0.61 <0.001***  (0.50, 0.74) 0.05 <0.001***  (0.03, 0.08)
Baseline flows 1.02 0.593 (0.95, 1.10) 1.86 <0.001***  (1.53, 2.27)
Outflows from initial outbreak location 1.04 0.089 (0.99, 1.08) 1.54 <0.001***  (1.39, 1.72)
Primary coverage of total population 0.99 <0.001*** (0.99, 0.996) 0.44 0.074 (0.18, 1.08)
Booster coverage of total population 0.99 <0.001*** (0.98, 0.996) 0.11 <0.001***  (0.06, 0.22)
Primary coverage of people aged >65 1.00 0.381 (1.00, 1.00) 0.81 0.370 (0.52, 1.26)
Booster coverage of people aged >65 1.00 0.726 (0.99, 1.00) 0.74 0.150 (0.50, 1.11)
High-risk area 0.93 0.141 (0.85, 1.02) 1.70 <0.001*** (1.29, 2.25)
Lockdown time

March 28 - - - Ref - -

April 1 - - - 4.53 <0.001***  (2.35, 8.76)
Reduction in flows after lockdown - - - 1.05 <0.001***  (1.04, 1.07)
Arrival time 1.02 <0.001***  (1.01, 1.03) 0.53 0.004**  (0.37,0.75)
Abbreviation: GDP=gross domestic product; Cl/=confidence intervals; Ref=reference.
* P<0.05;
**P<0.01;
*** P<0.001.
SUPPLEMENTARY TABLE S3. Generalized estimating equation model for growth rate.

Exchangeable Independence Unstructured

Effect

Estimate Pr(>|z|)

95% CI  Estimate Pr(>|z|)

95% CI

Estimate Pr(>[z]) 95% CI

Intercept
Arrival time
Ring where the subdistrict is located
Inner ring
Middle ring
Outer ring
Suburban ring

Outside suburban ring

0.13 <0.001*** (0.12, 0.15)
1.03 <0.001*** (1.02, 1.04)

Ref
1.00
1.05
1.01
0.79

0.986
0.253
0.865
0.061

(0.88, 1.14)
(0.94, 1.26)
(0.90, 1.14)
(0.61, 1.01)

0.13 <0.001*** (0.12, 0.15)
1.03 <0.001*** (1.02, 1.04)

Ref -

1.00 0.983
1.09 0.254
1.01  0.869
0.79 0.060

(0.88, 1.14)
(0.94, 1.26)
(0.90, 1.14)
(0.61, 1.01)

0.13 <0.001*** (0.12, 0.15)
1.03 <0.001*** (1.02, 1.04)

Ref
1.00
1.09
1.01
0.79

0.985 (0.88, 1.14)
0.253  (0.94, 1.26)
0.866  (0.90, 1.14)
0.061 (0.61,1.01)

Note: Total N=158. df=152.

Abbreviation: Cl=confidence intervals; Ref=reference.

* P<0.05;
** P<0.01;
*** P<0.001.
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SUPPLEMENTARY TABLE S4. Generalized estimating equation model for infection attack rate.

Effect Exchangeable Independence Unstructured
Estimate Pr(>|z]) 95%Cl Estimate Pr(>|z]) 95% Cl/ Estimate Pr(>[z]) 95% CI
Intercept 0.01 <0.001*** (0, 0.03) 0.01  <0.001***(0.01, 0.03) 0.01 <0.001*** (0, 0.04)
Arrival time 0.75 0.013* (0.59, 0.94) 0.74 0.009** (0.59, 0.93) 0.73 0.008** (0.58, 0.92)
Population density 1.51 0.001** (1.20, 1.91) 1.57  <0.001***(1.26, 1.96) 1.65 <0.001***(1.29, 2.10)
E)':;flg‘r’f from the initial outbreak 101 0653 (098 103) 101 0536 (0981.03) 101 0442 (0.98,1.04)
GDP 135 <0.001***(1.17,1.56)  1.35 <0.001***(1.20,1.53)  1.33  0.001** (1.13, 1.58)
Ring where the subdistrict is located
Inner ring Ref - - Ref - - Ref - -
Middle ring 0.45 <0.001***(0.34, 0.59) 0.42 <0.001***(0.32, 0.56) 0.44  <0.001***(0.31, 0.63)
Outer ring 0.46  <0.001***(0.36, 0.58) 0.43 <0.001***(0.34, 0.55) 0.44 <0.001***(0.34, 0.58)
Suburban ring 018  <0.001**(0.13,0.24)  0.17  <0.001***(0.13,0.23)  0.17  <0.001*** (0.12, 0.24)
Outside suburban ring 0.06 <0.001***(0.04, 0.09) 0.05 <0.001***(0.04, 0.08) 0.06 <0.001***(0.04, 0.09)
gg‘\’;t;:s";‘(’frage ofpeopleaged= 67 0.001" (0.53,0.84) 067 0002 (0.53,0.86) 068  0.002* (0.54,0.87)

Note: Total N=216. df=198.

Abbreviation: Cl=confidence intervals; Ref=reference.
* P<0.05;

** P<0.01;

*** P<0.001.

Jiading
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Songjiang

Fengxian

=

Eastern Shanghai Western Shanghai

SUPPLEMENTARY FIGURE S1. Geographic division of eastern and western Shanghai.

Note: Eastern and western Shanghai are naturally separated by the Huangpu River (blue layer). Specifically, eastern
Shanghai contained the districts of Pudong New Area, Fengxian, Jinshan, Chongming, as well as partial Minhang and
Songjiang; while the rest areas were grouped into western Shanghai.
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SUPPLEMENTARY FIGURE S2. Temporal dynamics and geographical distribution of confirmed severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infections. (A) Visualization of the ring where the subdistrict is located. (B)
Geographical distribution of confirmed SARS-CoV-2 infections at the subdistrict level. (C) Daily number of new confirmed
infections by date of reporting and by date of sample collection.

Note: Shanghai is divided into 16 districts (light grey boundary) and 216 subdistricts (black boundary) shown in panel A. The
colored area corresponds to the ring where the subdistrict is located.
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