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ABSTRACT

Introduction: Tracing transmission paths and
identifying infection sources have been effective in
curbing the spread of coronavirus disease 2019
(COVID-19). However, when facing a large-scale
outbreak, this is extremely time-consuming and labor-
intensive, and resources for infection source tracing
become limited. In this study, we aimed to use
knowledge graph (KG) technology to automatically
infer transmission paths and infection sources.

Methods: We constructed a KG model to
automatically extract epidemiological information and
contact relationships from case reports. We then used
an inference engine to identify transmission paths and
infection sources. To test the model’s performance, we
used data from two COVID-19 outbreaks in Beijing.

Results: The KG model performed well for both
outbreaks. In the first outbreak, 20 infection
relationships were identified manually, while 42
relationships were determined using the KG model. In
the second outbreak, 32 relationships were identified
manually and 31 relationships were determined using
the KG model. All discrepancies and omissions were
reasonable.

Discussion: The KG model is a promising tool for
predicting and controlling future COVID-19 epidemic
waves and other infectious disease pandemics. By
automatically inferring the source of infection, limited
resources can be used efficiently to detect potential
risks, allowing for rapid outbreak control.

Knowledge graphs (KGs) have been widely used in
the construction of knowledge bases for search engines
since their inception by Google. During the
coronavirus disease 2019 (COVID-19) pandemic, KGs
have played an important role in areas such as the
construction of COVID-19-related knowledge bases
(I-2), bibliometrics, drug information management,
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drug repurposing (3—4), auxiliary diagnosis and
treatment, and knowledge surveys. However, their
application has been limited in exploring infection
paths among cases (5—7) and identifying infection
sources.

Tracing transmission paths can help to promptly
identify the source of infection, detect high-risk areas
that may otherwise be overlooked, and facilitate the
identification of key populations, important sites with
high infection risk, and possible superspreaders, thus
allowing for timely actions to cut off the transmission
chain and effectively contain the spread of an outbreak.
However, in the face of the current COVID-19
pandemic and possible future pandemics with a huge
number of infected cases, it is extremely time-
consuming and  labor-intensive  to  conduct
epidemiologic  investigation,  identification, and
management of close contacts, thus further limiting the
resources allocated to tracing transmission paths and
identifying infection sources. It is difficult to manually
extract key information and trace infection paths
among cases from the vast amount of unstructured
textual data in case reports. Therefore, the use of
information technology is important to quickly extract
demographic and epidemiologic information, infer
transmission paths and infection sources, identify key
populations and key sites of high risk, and prevent
further transmission at the community level.

To improve the effectiveness of epidemiological
investigation and facilitate tracing of an infection
source, we used natural language processing (NLP) and
KG technologies to automatically extract structured
data from case reports, determine the infection
relationships among cases, trace the sources of
infection, and construct a directed KG to identify
infection
relationship intensity and transmission intensity.

sources using parameters including

METHODS

Study Design
Epidemiological data for COVID-19 cases in two
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clusters involving severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) wild-type strain and
Alpha variant were obtained from the Beijing Center
for Disease Prevention and Control (Beijing CDC).
Transmission chains were determined for each cluster
by health professionals at the Beijing CDC, which
served as the gold standard in the KG model.

KG Model Framework
Using NLP reports

automatically structured and data were extracted,

technology, case were

including sociodemographic characteristics,
epidemiologic information, and case relationships.
Epidemiologic information included the time of
exposure, time of onset, time of first positive nucleic
acid test, and time of diagnosis. Case relationships
included both clear contacts between cases (e.g., living
in the same household, dining together, contacts
during medical visits, working or studying in the same
room, and traveling in the same vehicle) and unclear
contacts, such as being in the same location at the same
time. Unclear contacts served as a supplement to clear
contacts.

The possibility (intensity) of each edge in the
calculated extracted

network  was using  the

Unstructured case
reports

information. Edges with the highest intensity were
preserved in the KG model, which was then presented
with three components: 1) name of the infected
individual (or individuals); 2) transmission paths
(relationships among cases); and 3) intensity of
A preliminary directed KG was
constructed using the above data, and the source of
infection was identified through pruning and
reconstruction of the directed KG (Figure 1).

transmission.

Preliminary Construction of Directed
Knowledge Graph

The directed KG was constructed in five steps: 1)
inferring the viral shedding period of infectors; 2)
inferring the infection time of infectees; 3) calculating
the transmissibility in each case; 4) tracing the
transmission paths between cases; and 5) constructing
the directed KG. The details of each step are outlined
below.

The viral shedding period of infectors was inferred.
We assumed that cases are most contagious two days
prior to and five days after symptom onset (8).
Therefore, given onset time t, the most highly
contagious period would be [t-2, t+5]. The time of the
last positive nucleic acid test was denoted as NAT _end.
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FIGURE 1. Flow chart of knowledge graph construction.

rl: intensity of contacts
r2: intensity of infectiousness

I

Inference engine ’

Note: This figure depicts the process of knowledge graph construction. Epidemiological information and case relationships
were first retrieved from unstructured case reports. This information included cases' sociodemographic characteristics, time
of exposure, time of onset, time of first positive nucleic acid test, time of diagnosis, and symptoms. Case relations included
clear contacts such as sharing the same household, dining together, contacts during medical visits, working or studying in
the same room, and traveling in the same vehicle, as well as unclear contacts such as appearing in the same location at the
same time. Edge weights were then inferred based on the intensity of contacts and infectiousness. Finally, pruning was
conducted according to the edge weights and inferred infection source.
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If t+5<NAT end, the case would still be infectious to a
certain extent during the [t+5, NAT_end] time
interval.

The infection time of each confirmed case was
inferred by tracing the transmission paths among cases.
The infection time of each infectee was set as (date of
onset — incubation period), which was approximately 3
to 14 days before symptom onset. For asymptomatic
cases, the infection time was defined as 3 to 14 days
before the first positive nucleic acid test result.

The transmissibility of each case was calculated,
assuming that asymptomatic cases are less infectious
than symptomatic ones.

Transmission paths among cases were traced and all
possible relationships between a case and all other cases
were calculated. As a result, multiple relationships may
be found between two cases. Unclear contacts were
assumed to have a lower probability of causing
infection than clear contacts.

A preliminary directed KG was constructed. Based
on the transmission paths discovered in the previous
steps, a directed KG was constructed with cases as
nodes and relationships as edges in the form of A — B.
The establishment of edges took time factors into full
consideration, i.e., a case with an earlier onset was
more likely to be a spreader and the infection time of
infectees had to fall within the viral shedding period of
the infectors.

Pruning and Reconstruction of Directed
Knowledge Graph

Given that there may be multiple relationships
between two cases in the directed KG, pruning of
edges based on their respective weight w was required
for construction of the transmission paths:

w=rlXr2Xrp

with 7/ representing the coefficient for viral
shedding, 72 the coefficient for the likelihood of case
relationships, 7p the individual characteristics, and w
the weight of the edges. The edge with the highest w
was taken as the most likely relationship between the
two cases.

The value of 71 was determined primarily by the
time point of exposure to infectors, i.e., how infectious
was the infector when the infectee was exposed?
Because concrete time points of exposure and viral
shedding were difficult to determine, the model
classified case infectiousness using three scales where
the infectiousness 5 days after symptom onset & > the
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infectiousness 2 days prior to symptom onset # > other
time window c¢. As a result,

r=t_end sum (Patient( t))

I=LSITT [o (Inféctor( t))’

In which, patient (1) represents the whole set of
infectees and infector (¢) represents the whole set of
infectors who have caused secondary cases in  days.

R(t start,t end) = Rule(X

Function Rule is the pre-defined infectiousness scale.
Here, we defined #=1.3 and #=2¢. When the calculated
relationship between @, &, and ¢ was larger than zo/ [for
instance, if 6> (1.3 + t0l) x a or b< (2 - tol) x ], the
model would constrain the iteration of 4, 4, and ¢ until
the constraint condition was met.

The value of 72 represents the intensity of the
relationships extracted from case reports. The model
classifies the intensity of relationships into different
categories based on the frequency and duration of
contacts. For instance, the transmission likelihood
could be assumed to be as follows: living together >
working together > dining together > traveling in the
same vehicle > living in the same community. The
value of 72 was further standardized between 0 and 1.

Compared with symptomatic cases, asymptomatic
cases may have a longer incubation period but lower
infectiousness. On the basis of the literature, we
assumed that the infectiousness of asymptomatic cases
was 30% (rp) of the infectiousness of symptomatic
cases (9).

By taking the aforementioned steps, preliminary
pruning of the directed KG was performed. However,
direct
transmission may coexist between cases. For instance,
transmission paths of A — B — Cand A — C might
both be reasonable. In such a situation, the model

in  practice, transmission and  indirect

would consider both edge weights and case onset dates
to determine whether an edge should be pruned or not.
Specifically, edges with lower weights were pruned
first; if two edges had the same weight, the model
would further compare the time points at which the
infectee was exposed to the infector. If the time points
were the same, no edges would be pruned and all
transmission paths would be retained.

described

guarantee that there is only one relationship (edge)

The process above can essentially
between two cases (nodes). However, some nodes may
be left on their own. In such cases, the model would
select one edge with the highest w value from those
pruned to reconstruct a relationship between cases,

with the aim of linking as many cases as possible.
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Identifying the Source of Infection

Depth-first search (DFS) was conducted starting
from a random node s and running through all other
nodes, generating a list L of all traversed nodes. With
DES performed on all nodes, the starting node S with
the longest L was identified as the source of infection.
That is, the case with the most comprehensive
transmission paths was selected as the infection source.

RESULTS

In the knowledge graph generated by the KG model,
COVID-19 cases were represented by entities, the
transmission paths (relationships) between cases were

represented by edges, and infectors’ onset time and
viral shedding duration comprised entity attributes.
With this structure, a complete knowledge graph with
transmission information was generated automatically.
To compare the transmission paths between the KG
model and professional determination more directly,
illustrations were drawn manually in the same style
(Figures 2 and 3).

A cluster of COVID-19 cases caused by the wild-
type strain of SARS-CoV-2 occurred in Shunyi
District, Beijing in 2020, involving a total of 42 cases.
Through
professional judgment, 20 infection relationships were

identified manually. The KG model identified 42

epidemiological ~ investigation  and

A: KG model result for Shunyi cluster -
42 relationships identified

/
i ms s
Gur Gt Conld Goes Gl

9 relationshipslaggregated

Comih Cold CHS15 i Con 17 o5 Gl G20 Can® G Candl it G Guct G
Caess /-\--- Cose 37 Con38 Cam30 Casedl

8 relationships aggregated

B: Manual result for Shunyi cluster -
20 relationships identified -

Unclear source

FIGURE 2. Transmission paths for Shunyi cluster. (A) A total of 42 relationships were identified in the knowledge graph (KG)
model for the Shunyi cluster. (B) A total of 20 relationships were identified by public health professionals for the Shunyi
cluster. Sources for Cases 12, 34-36, and 30—40 were unclear and were presented separately.

Note: Red arrows represented additional relationships identified by the KG model; black arrows represented different
relationships between the KG model and manual determination; gray arrows represented the same relationships. For
illustration purposes, 9 relationships from Case 10 to Case 16-24 were aggregated and presented in a gray square; 8
relationships from Case 12 to Case 34—41 were aggregated and presented in a gray square. The edge weights for Case 13
— Case 32 and Case 14 — Case 32 were the same thus both were kept. Sources for Cases 12, 34-36, and 30—40 were
unclear and were presented separately. or illustration purposes, 9 relationships from Case 10 to Case 16-24 were
aggregated and presented in a gray square; 8 relationships from Case 12 to Case 34-41 were aggregated and presented in
a gray square. The edge weights for Case 13 — Case 32 and Case 14 — Case 32 were the same thus both were kept.

Chinese Center for Disease Control and Prevention CCDC Weekly / Vol. 5/ No. 4 93



China CDC Weekly

A: KG model result for Daxing cluster

31 relationships identified Case 1
Case 2 Case 3 Case 4 Case 5 Case 6
Case 7 Case 8 Case9  Case 10 Case 11 Case12 Case13 Casel4 Casels

— 1 !

Case 16 Case17 Casel8

6 relationships aggregated 4 relationships aggregated

Case 19  Case 20 Case 27 Case 31 Case 32
Case21  Case22 Case 28

Case 23  Case 24 Case 29

Case 30
Case 25 Case 26 Case 33
B: Manual result for Shunyi cluster
32 relationships identified Case 2 Case 1
Case 10 Case 8 Case 7 Case 9 Case 4 Case 3 Case 6 Case 5

Case31 Case32 Case27 Case20 Casel9 Case26 Casell Casel3 Casel7 Casel4 Casel8 CaselS

Case28 Case22 Case2l Case25 Case 12 Case 16

Case29  Case24 Case23
Case 30

Case 33

FIGURE 3. Transmission paths for Daxing cluster. (A) A total of 31 relationships were identified in the KG model for the
Daxing cluster. (B) A total of 32 relationships were identified by public health professionals for the Daxing cluster.

Note: Red arrows indicated additional relationships identified by the KG model; black arrows indicated different relationships
between the KG model and manual determination; gray arrows indicated the same relationships; and orange arrows
indicated relationships omitted by the KG model. For illustration purposes, 9 relationships from Cases 7 to 21-24 were
aggregated, and four relationships from Case 8 to Cases 27-30 were aggregated. The infection source for Case 33 was
unclear. For illustration, 4 relationships from Cases 8 to 27—30 were aggregated; 8 relationships from Cases 7 to 19-23 and
25-26 were aggregated; and 4 relationships from Cases 6 to 11-12 and 16-17 were aggregated. The infection source for
Case 33 was unclear, while Cases 1 and 2 were both possible sources.

Abbreviation: KG=knowledge graph.

other. Among the seven edges, five were related to the
identification of index cases in households. The model

relationships, and an additional 22 relationships were
found to be possible after one-by-one deduction,

which could serve as an important supplement in the
judgment of the epidemic's development. One
relationship was different between the KG model and
manual determination, but both were found to be
possible (Figure 2).

An outbreak of the SARS-CoV-2 Alpha variant
occurred in Daxing District, Beijing in 2021, involving
33 cases in total. Manual tracing identified 32
relationships, while the KG model identified 31. Of
these, 24 edges were the same as those traced manually,
7 were different, and 1 edge was omitted. In manual
deduction, both infection paths were deemed possible;
thus, both were preserved, while the KG model only
kept the most likely infection path and pruned the
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suggested that, compared to family member B, family
member A had a greater likelihood of introducing the
virus into the household. The other two edges were
identified after a detailed analysis of case reports

(Figure 3).

DISCUSSION

The KG model described herein was able to
automatically extract data from unstructured text in
epidemiologic case reports and sort out complex
infection relationships. A directed KG that depicted
the identified case relationships and infection sources
was successfully constructed through a detailed
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pruning and reconstruction process. We tested the KG
model using two actual COVID-19 outbreaks that
occurred in Beijing, China, and the model was proven
effective in targeting the infection source.

Using the KG model to deduce transmission
pathways, “Case Zero” can be quickly identified,
allowing the government to direct limited resources
and determine the possible infection source (6).
Furthermore, the KG model can be used to identify
key transmission sites and key spreaders, which can
then inform the detection of populations at higher risk,
improve the efficiency of case screening, and help
contain the spread of an outbreak in a timely manner.
Additionally, a could be
organized for lonely nodes in the KG (i.e., cases whose

focused  investigation
transmission paths were not clear) to identify hidden
infection sources in a timely fashion. This could help
to quickly review the overall epidemic prevention and
control direction and address potential issues rapidly,
thus avoiding worsening of a current outbreak and
preventing future outbreaks. Although the prevention
and control strategy for COVID-19 has changed
substantially, the KG technology presented in this
paper could still enrich the current toolbox of public
health countermeasures and offer insights for future
epidemics caused by other emerging or existing
infectious diseases.

This study has some limitations. First, the KG
model is a tool for analyzing infection sources, and its
performance is largely affected by the completeness of
epidemiological case reports. To be used in future
epidemics, essential information from case reports
must be clarified in advance. Second, this model was
tested in small outbreaks, with good performance;
however, the model requires further validation in larger
outbreaks.
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