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ABSTRACT

Severe fever with thrombocytopenia syndrome
(SFTS) is a growing concern as an emerging tick-borne
infectious disease originating from the SFTS virus
(SFTSV), a recent addition to the Phlebovirus genus
under the family of bunyaviruses. SFTS is typically
identified by  symptoms such as  fever,
thrombocytopenia, leukopenia, and gastrointestinal
problems, accompanied by a potentially high case
fatality rate. Thus, early and accurate diagnosis is
essential  for effective
management. This review delves into the existing

treatment and  disease

methodologies  for SFTS  detection, including
pathogenic,  molecular, and  immunological
technologies.

SEVERE FEVER WITH
THROMBOCYTOPENIA SYNDROME

The severe fever with thrombocytopenia syndrome
virus (SFTSV) is an emergent tick-borne virus causing
severe fever and thrombocytopenia, accompanied by
high mortality rates (/-2). Identified initially in 2009
within the Hubei Province, China, this virus fits into
the Bandavirus genus of the Phenuiviridae family (3). It
was later detected in Taiwan, China (4), Japan (5), the
Republic of Korea (6), and Vietnam (7). Transmission
of the SFTS disease is primarily via the arthropod
vector, notably through tick bites (8). Transmission
through animals such as cats (9), dogs (10), and
cheetahs (77) is also reported. Cases of human-to-
human transmission of SFTSV have been noted,
involving contact with blood and bodily fluids, even in
hospital settings (72—13). The potential for SFTSV
transmission from pets to humans presents a risk to pet
owners and veterinary professionals alike (9,74).

The clinical manifestation of SFTS typically presents
with fever, thrombocytopenia, and leukocytopenia.
Patients may also experience fatigue, chills, headaches,
lymphadenopathy, and gastrointestinal symptoms,
among other systemic manifestations like muscular
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symptoms and coagulopathy (75). The case fatality rate
of SFTS patients varies across China, the Republic of
Korea, and Japan, ranging from approximately 6% to
over 40% (2,16-17). The case fatality rate can escalate
to 75% in cases complicated by hemophagocytic
syndrome (/8). The world is yet without an effective
clinical treatment for this condition, and work on the
development of an inactivated vaccine against SFTS is
still in progress. Consequently, the World Health
Organization has designated SFTSV as a priority
pathogen that requires urgent attention (79).

A variety of detection methods for SFTSV have been
developed, encompassing pathogenic, molecular, and
immunological ~approaches. Pathogenic detection
includes virus isolation via cell culture and electron
microscopy techniques (3,20-21). Nucleic acid
amplification techniques such as reverse transcription-
polymerase chain reaction (RT-PCR) (22-23), loop-
mediated isothermal amplification (LAMP) (24), and
recombinase polymerase amplification (RPA) (25).
Rapid diagnostic tests, such as lateral flow assays,
provide prompt results and prove beneficial in
resource-limited environments (3). Serological assays,
including  enzyme-linked ~immunosorbent  assays
(ELISAs) (26), indirect immunofluorescence assays
(IFAs) (27), and immunochromatographic tests (ICTs)
(28), remain the most extensively used methods for
identifying SFTSV-specific antibodies in patient serum
or plasma.

This review will summarize the current landscape of
SFTSV detection methods, The critical importance of
prompt and precise diagnosis of SFTSV infection in
patient management and disease control underscores
the necessity for the development of rapid, sensitive,
and specific diagnostic methods.

PATHOGENIC CHARACTERISTICS
OF SFTSV

Structural and Genetic Analysis of SFTSV
SFTSV, a negative-sense RNA virus from the
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Phenuiviridae family, typically possesses a spherical or
pleomorphic structure, with a diameter measuring
between 80 and 120 nm. It is an enveloped virus,
characterized by a lipid bilayer and surface
glycoproteins that form spike-like features (20-21).
The genome of SFTSV is segmented into three distinct
negative-sense RNA strands, specifically designated as
small (S), medium (M), and large (L) segments (20).
The S segment, containing 1,744 nucleotides, codes
for the nucleocapsid protein (N) (29-30). The M
segment, made up of 3,378 nucleotides, is responsible
for coding the glycoprotein precursor (GPC) (31).
Lastly, the L segment, with 6,368 nucleotides, codes
for the RNA-dependent RNA polymerase (RdRp)
(32).

The SFTSV N protein is a highly conserved 116-
amino acid protein that forms the nucleocapsid
through its interaction with the viral RNA. The N
protein is composed of two domains: the N-terminal
domain that interacts with the RNA, and the C-
terminal domain that is involved in oligomerization
and protein-protein interactions (30).

The glycoprotein precursor of SFTSV undergoes
post-translational cleavage, forming spikes on the
surface of the virus. The Gn protein plays a critical role
in attaching to the receptors of the host cell, while the
Gec protein facilitates fusion with the membranes of the
host cell (31).

The SFTSV RdRp is a large protein with multiple
domains. The N-terminal region contains the RNA-
binding and capping domains, while the C-terminal
region contains the polymerase domain, responsible for
catalyzing the RNA replication and transcription (32).

Electron Microscopy (EM) for SFTSV

SFTSV  presents as spherical or pleomorphic
particles, with diameters ranging between 80 and 120
nm. The virus also features a lipid envelope with
prominent surface spikes, approximately 12-20 nm in
length, and houses a dense core protecting the vital
genomic material, which was conducted by EM
analysis (3). Then, the full-length structure and 3D
model of SFTSV L protein by cryogenic EM were
reported (28,33-34).

Virus Isolation
This process of isolating SFTSV often includes the
introduction of clinical samples or cell culture
supernatants into susceptible cell lines. This is then
followed by observing cytopathic effects (CPE) and the
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replication via molecular
techniques (3). Numerous studies have reported

verification of  viral
success in isolating SFTSV from a range of sources,
including patient samples, ticks, and animals that have
been experimentally infected (3,35-39).

It’s important to note that SFTSV can infect a
variety of cells, including 1929, Vero E6, Vero, and
DH82 cells. However, CPEs were only identified in
DHS82 cells (3). Furthermore, Vero cells were
employed to isolate SFTS at temperatures of 37 °C and
39 °C, suggesting that the SFTSV strain Z]J2013-06
from a patient demonstrated limited replication at
39 °C as per the research conducted by Feng et al. (35).

Ten infective SFTSVs were isolated successfully
from various tick species in one 2021 study (38).
Moreover, the viral sequences extracted from the ticks
demonstrated remarkable homology to the sequences
previously isolated from SFTS patients from the same
region of sample collection.

Wei et al. (39) conducted a study on the ability of
SEFTSV to infect BEAS-2B cells. Utilizing cell culture
techniques, they assessed the overall antibody
production in the serum as well as the viral load in the
tissue of mice infected with SFTSV via aerosol
exposure.

Virus isolation has been utilized in the SFTSV
transmission cycle. According to a study by Jiao et al.,
goats inoculated with SFTSV showed no disease signs
and did not expel the virus through either respiratory
or digestive routes. This finding suggests that without
specific arthropod species as carriers, an efficacious
viral transmission cycle cannot be established in natural

conditions (36).

NUCLEIC ACID DETECTION

Detection of SFTSV genome could be achieved by
different nucleic acid detection techniques such as RT-
PCR (13,40-43), real-time RT-PCR (23,2841,
44-48), LAMP (24,49-50), as well as RPA
(25,51-52).

Conventional Nucleic Acid Detection

The S segment codes for the nucleocapsid protein —
a crucial element for the processes of viral assembly and
replication (29). A two-tube multiplex real-time RT-
PCR assay, designed for the identification of four
hemorrhagic fever viruses: SFTSV, Hantaan virus,
Seoul virus, and the dengue virus. It targets the
nucleocapsid protein in the SFTSV genome (47).
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The ability to differentiate between SFTSV strains
can be facilitated by the M segment. A one-step RT-
PCR assay targeting this M segment was developed by
Sun et al. (23), which exhibited high specificity and
sensitivity and was capable of detecting as few as 10
copies of the viral RNA per reaction.

The L segment — responsible for encoding the
RNA-dependent RNA polymerase — is frequently
targeted in SFTSV RT-PCR assays due to its relatively
preserved characteristics. This focus on the L segment
affords significant specificity in the detection of
SFTSV (32).

RT-PCR and real-time RT-PCR assays are widely
used for the detection and quantification of SFTSV in
samples, such as blood, serum, and
cerebrospinal  fluid (43,53-55). They are also
employed in epidemiological investigations, such as
tick and animal infected surveillance, analysis of viral
genetic diversity, as well as a crucial role in the
evaluation of antiviral drugs and vaccines against

SFTSV (9,36,56-61).

clinical

Rapid Nucleic Acid Detection

The method of LAMP exhibits considerable
potential for SFTSV detection given its efficiency,
rapidity, and economic feasibility (62-63). The one-
step, single-tube reverse transcription LAMP assay for
rapid identification of RNA from SFTSV with a
detection limit of 10x50% tissue culture infective dose
(TCIDsg) per mL, demonstrated high specificity and
sensitivity. After combining with the fluorescent
detection reagent (FDR) method, results could be
determined by observing a color change within 30 min
(64). Jang et al. developed a multiplex RT-LAMP to
identify larger segments and GroES genes for SFTSV
and Orientia tsutsugamushi (OT) (24). The sensitivity
of the multiplex SFTSV/OT/Internal control (IC) RT-
LAMP assay proved comparable to that of the
commercial PowerChek™ SFTSV Real-time PCR
(91.3% wvs. 95.6%). Moreover, it displayed a higher
sensitivity (91.6%) than the LiliF™ TSUTSU nested
PCR (75%), with the multiplex SFTSV/OT RT-
LAMP assay exhibited 100% specificity. The LAMP
assay has been successfully implemented in clinical
specimens from both humans (50,64-66) and cats
(67), indicating promising applications.

RPA is a novel isothermal nucleic acid amplification
technique that offers rapid, sensitive, and specific
detection of SFTSV with constant temperature
between 37 and 42 °C as well as eliminates the need
for thermal cycling equipment (68-70). RPA assays
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can be combined with various detection methods, such
as fluorescence, lateral flow, or colorimetric detection,
to facilitate rapid and straightforward readouts
(71-72).

Zhou et al. implemented the RT-RPA assay to
detect SFTSV in serum samples (25). The detection
limit was illustrated to be 241 copies per reaction at a
95% probability, with a sensitivity and specificity rate
of approximately 96.00% and 98.95% respectively.
Thus, the rapid RT-RPA assay presents itself as a
promising candidate for point-of-care detection
methods of SFTSV.

The advent of molecular technology has facilitated
the development of novel detection methods for
SFTSV, utilizing CRISPR-Cas13a (73). Huang et al.
(52) and Park et al. (74) applied CRISPR-Casl2a
system combined with RT-RPA to detect SFTS. In
Huang et al.’s report, three copies of the L gene from
the SFTSV genome per reaction were enough to ensure
stable detection within 40 min. In Park et al. research,
it successfully diagnosed SFTSV infections with the
reaction time of 50 min from blood plasma without
cross-reactivity to other viruses.

IMMUNOLOGICAL TEST

Serological assays, which detect SFTSV-specific
antibodies in patients’ or animals’ serum or plasma,
have been extensively utilized. These assays comprise

ELISAs (26,35,75-78), IFAs (45,78), and ICTs (28).

ELISAs for SFTSV Detection

Various SFTSV-specific antigens have been
employed in  ELISAs, SFTSV
nucleocapsid protein (NP), glycoprotein (GP), and
non-structural protein (NSs). Predominantly, NP-
based ELISA is utilized and has demonstrated superior
diagnostic precision for SFTSV serodiagnosis (26,79).

A sandwich ELISA predicated on recombinant N
protein for the detection of total antibodies targeting
this virus in humans and animals (36). SFTSV-specific
IgM antibodies detectable in patient serum merely
three days post-symptom onset, peaking approximately
two weeks later, have also been revealed (78).
Furthermore, SFTSV-specific IgG antibodies became
detectable about six days post-symptom onset,
persisting up to six months. In a report by Yu,
recombinant SFTSV-N (tSFTSV-N) protein was
produced using an Escherichia coli expression system

and purified (80). Additionally, Yu established

encompassing
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tSFTSV-N protein-based IgG ELISA and IgM ELISA
systems.

ELISA methods are currently being extensively
utilized to monitor SFTSV infection in humans as well
as animals. According to a report by Tran et al. (78),
the seroprevalence of anti-SFTSV IgM or IgG was
recorded at 3.64% (26 out of 714) with a high IgM
antibodies positivity titer >80 (0.28%, 2 out of 714).
Lee et al. (75) developed a competitive ELISA for
diagnosing STFV in bovine sera using a monoclonal
antibody where lab-immunized positive sera exhibited
a 98.1% consistency with IFA results. A 2020 study by
Duan et al. (87) introduced enzyme-antibody-
modified gold nanoparticle probes for the ultrasensitive
detection of the nucleocapsid protein in SFTSV, where
the detection limit for NP was 0.9 pg/mL,
demonstrating good specificity and reproducibility.

Utilizing IFAs for the Detection of SFTSV

The IFA technique, which is recombinant antigen-
based, utilizes recombinant viral proteins from a
heterologous system as the source of the antigen. A case
in point is the research conducted by Tran et al.
whereby serum samples from 714 healthy Vietnamese
residents were collected (78). To assess the SFTSV
seroprevalence, the samples underwent IFA, ELISA,
and the 50% focus reduction neutralization test
(FRNT50) assay. The neutralizing antibodies against
SFTSV recorded a range of 15.5 to 55.9 in terms of
titer.

Utilizing ICAs for SFTSV Detection
Upholding  the
interaction, immunochromatographic tests employ
capillary action to transport the sample along the strip,
where either antibodies or antigens are immobilized
and labeled. (28).

Wang et al. (28) implemented the ICA method,
which involves the use of gold nanoparticles coated
with recombinant SFTSV to simultaneously detect
both IgG and IgM antibodies to SFTSV. This method
was developed and assessed using 245 positive serum
samples from China CDC of SFTSV infection. The
ensuing results revealed positive and negative
coincidence rates of 98.4% and 100% for IgM, as well
as 96.7% and 98.6% for IgG, respectively.

principle of antigen-antibody

DISCUSSION

In conclusion, a myriad of diagnostic methods have
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emerged and have been implemented for recognizing
SFTSV  infection.  This etiological,
immunological, and molecular methodologies. While
strides have been made in detecting SFTSV, substantial
efforts regarding  standardization  and
automation, along with the cultivation of multiplex
assays for enhancing detection efficiency and accuracy.
As a result, forthcoming research should prioritize
resolving these challenges, whilst secking novel
diagnostic approaches that will aid us in battling this
lethal disease.

For consistent and trustworthy results vital for
patient care, it is essential that all labs adopt uniform
methodologies and procedures for detecting SETSV.
Without such standardization, the validity and
reliability of SFTSV detection can fluctuate across
different labs, impeding effective identification and
containment of virus outbreaks. Automating these
techniques could enhance efficiency, minimize costs,
and allow labs to tackle larger volumes of samples in
less time. Moreover, automation mitigates the risk of
human errors, thereby enhancing the accuracy and
reliability of the results obtained. Implementing
assays enhance  the
effectiveness and accuracy of SFTSV detection. These
assays allow for the simultaneous detection of multiple
pathogens in a single sample. Consequently, labs could
identify SFTSV as well as other tick-borne diseases
with  similar ~ symptoms, such as  Anaplasma
phagocytophilum and  Borrelia burgdorferi. Multiplex
assays would be especially beneficial in environments
where multiple tick-borne diseases are prevalent.

SFTSV represents a significant health threat that
necessitates prompt and precise identification to
facilitate appropriate treatment and manage potential
outbreaks. It is recommended that standardization and
automation be prioritized in conjunction with the
development of multiplex assays to
the detection  effectiveness and  precision.  The
introduction of innovative diagnostic approaches, such
as  next-generation sequencing and  biomarker
recognition, could potentially yield more meticulous
and sensitive detection methods for SFTSV.
Undertaking these challenges is integral to the effective
containment and prevention of this virus’ spread.
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