[1] Iuliano AD, Roguski KM, Chang HH, Muscatello DJ, Palekar R, Tempia S, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 2018;391(10127):1285 − 300. https://doi.org/10.1016/S0140-6736(17)33293-2.
[2] Zhang YZ, Bambrick H, Mengersen K, Tong SL, Hu WB. Using internet-based query and climate data to predict climate-sensitive infectious disease risks: a systematic review of epidemiological evidence. Int J Biometeorol 2021;65(12):2203 − 14. https://doi.org/10.1007/s00484-021-02155-4.
[3] Brownstein JS, Rader B, Astley CM, Tian HY. Advances in artificial intelligence for infectious-disease surveillance. N Engl J Med 2023;388(17):1597 − 607. https://doi.org/10.1056/NEJMra2119215.
[4] Kraemer MUG, Tsui JLH, Chang SY, Lytras S, Khurana MP, Vanderslott S, et al. Artificial intelligence for modelling infectious disease epidemics. Nature 2025;638(8051):623 − 35. https://doi.org/10.1038/s41586-024-08564-w.
[5] Dong YH, Wang LP, Burgner DP, Miller JE, Song Y, Ren X, et al. Infectious diseases in children and adolescents in China: analysis of national surveillance data from 2008 to 2017. BMJ 2020;369:m1043. https://doi.org/10.1136/bmj.m1043.
[6] Nottmeyer LN, Sera F. Influence of temperature, and of relative and absolute humidity on COVID-19 incidence in England - A multi-city time-series study. Environ Res 2021;196:110977. https://doi.org/10.1016/j.envres.2021.110977.
[7] Krymova E, Béjar B, Thanou D, Sun T, Manetti E, Lee G, et al. Trend estimation and short-term forecasting of COVID-19 cases and deaths worldwide. Proc Natl Acad Sci USA 2022;119(32):e2112656119. https://doi.org/10.1073/pnas.2112656119.
[8] Prasanth S, Singh U, Kumar A, Tikkiwal VA, Chong PHJ. Forecasting spread of COVID-19 using google trends: a hybrid GWO-deep learning approach. Chaos Solitons Fractals 2021;142:110336. https://doi.org/10.1016/j.chaos.2020.110336.
[9] Holmdahl I, Buckee C. Wrong but useful - what covid-19 epidemiologic models can and cannot tell US. N Engl J Med 2020;383(4):303 − 5. https://doi.org/10.1056/NEJMp2016822.
[10] Chin V, Samia NI, Marchant R, Rosen O, Ioannidis JPA, Tanner MA, et al. A case study in model failure? COVID-19 daily deaths and ICU bed utilisation predictions in New York state. Eur J Epidemiol 2020;35(8):733 − 42. https://doi.org/10.1007/s10654-020-00669-6.
[11] Morgan OW, Abdelmalik P, Perez-Gutierrez E, Fall IS, Kato M, Hamblion E, et al. How better pandemic and epidemic intelligence will prepare the world for future threats. Nat Med 2022;28(8):1526 − 8. https://doi.org/10.1038/s41591-022-01900-5.
[12] Uyeki TM, Hui DS, Zambon M, Wentworth DE, Monto AS. Influenza. Lancet 2022;400(10353):693 − 706. https://doi.org/10.1016/S0140-6736(22)00982-5.
[13] Milinovich GJ, Williams GM, Clements AC, Hu WB. Internet-based surveillance systems for monitoring emerging infectious diseases. Lancet Infect Dis 2014;14(2):160 − 8. https://doi.org/10.1016/S1473-3099(13)70244-5.
[14] Xu L, Zhou C, Luo ST, Chan DK, McLaws ML, Liang WN. Modernising infectious disease surveillance and an early-warning system: the need for China’s action. Lancet Reg Health West Pac 2022;23:100485. https://doi.org/10.1016/j.lanwpc.2022.100485.
[15] Zhang R, Lai KY, Liu WH, Liu YH, Ma XW, Webster C, et al. Associations between short-term exposure to ambient air pollution and influenza: an individual-level case-crossover study in Guangzhou, China. Environ Health Perspect 2023;131(12):127009. https://doi.org/10.1289/EHP12145.
[16] Guo F, Zhang P, Do V, Runge J, Zhang K, Han ZS, et al. Ozone as an environmental driver of influenza. Nat Commun 2024;15(1):3763. https://doi.org/10.1038/s41467-024-48199-z.