[1] Liu MM, Zhang Y, Ding R, Gao YX, Yang M. Response of activated sludge to the treatment of oxytetracycline production waste stream. Appl Microbiol Biotechnol 2013;97(19):8805 − 12. http://dx.doi.org/10.1007/s00253-012-4589-8CrossRef
[2] Liu MM, Zhang Y, Yang M, Tian Z, Ren LR, Zhang SJ. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system. Environ Sci Technol 2012;46(14):7551 − 7. http://dx.doi.org/10.1021/es301145mCrossRef
[3] Tang L, Feng HD, Luan X, Han ZM, Yang M, Zhang Y. Occurrence, distribution, and behaviors of erythromycin A, production byproducts, transformation products, and resistance genes in a full-scale erythromycin A production wastewater treatment system. Water Res 2023;245:120640. http://dx.doi.org/10.1016/j.watres.2023.120640CrossRef
[4] World Health Organization. UN Initiative on Greening Procurement in the Health Sector from Products to Services, 2015. https://www.who.int/publications/i/item/9789241508667.[2023-10-13].https://www.who.int/publications/i/item/9789241508667
[5] Medlicott K, Wester A, Gordon B, Montgomery M, Tayler E, Sutherland D, et al. Technical brief on water, sanitation, hygiene and wastewater management to prevent infections and reduce the spread of antimicrobial resistance. Geneva: WHO/FAO/OIE; 2020.
[6] The AMR Industry Alliance. https://www.amrindustryalliance.org/. [2023-10-23].https://www.amrindustryalliance.org/
[7] The Pharmaceutical Supply Chain Initiative (PSCI). https://pscinitiative.org. [2023-10-23].https://pscinitiative.org
[8] Tell J, Caldwell DJ, Häner A, Hellstern J, Hoeger B, Journel R, et al. Science-based targets for antibiotics in receiving waters from pharmaceutical manufacturing operations. Integr Environ Assess Manag 2019;15(3):312 − 9. http://dx.doi.org/10.1002/ieam.4141CrossRef
[9] Vestel J, Caldwell DJ, Tell J, Constantine L, Häner A, Hellstern J, et al. Default predicted no-effect target concentrations for antibiotics in the absence of data for the protection against antibiotic resistance and environmental toxicity. Integr Environ Assess Manag 2022;18(4):863 − 7. http://dx.doi.org/10.1002/ieam.4560CrossRef
[10] The AMR Industry Alliance. Antibiotic Manufacturing Standard: Minimizing risk of developing antibiotic resistance and aquatic ecotoxicity in the environment resulting from the manufacturing of human antibiotics, 2022. https://www.amrindustryalliance.org/shared-goals/common-antibiotic-manufacturing-framework/. [2023-10-23].https://www.amrindustryalliance.org/shared-goals/common-antibiotic-manufacturing-framework/
[11] Bengtsson-Palme J, Larsson DGJ. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ Int 2016;86:140 − 9. http://dx.doi.org/10.1016/j.envint.2015.10.015CrossRef
[12] Larsson DGJ, Flach CF. Antibiotic resistance in the environment. Nat Rev Microbiol 2022;20(5):257 − 69. http://dx.doi.org/10.1038/s41579-021-00649-xCrossRef
[13] Han ZM, Feng HD, Luan X, Shen YP, Ren LR, Deng LJ, et al. Three-year consecutive field application of erythromycin fermentation residue following hydrothermal treatment: cumulative effect on soil antibiotic resistance genes. Engineering 2022;15:78 − 88. http://dx.doi.org/10.1016/j.eng.2022.05.011CrossRef
[14] Li D, Yang M, Hu JY, Zhang Y, Chang H, Jin F. Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Res 2008;42(1 − 2):307 − 17. http://dx.doi.org/10.1016/j.watres.2007.07.016CrossRef
[15] Li D, Yu T, Zhang Y, Yang M, Li Z, Liu MM, et al. Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river. Appl Environ Microbiol 2010;76(11):3444 − 51. http://dx.doi.org/10.1128/AEM.02964-09CrossRef
[16] Tang M, Dou XM, Tian Z, Yang M, Zhang Y. Enhanced hydrolysis of streptomycin from production wastewater using CaO/MgO solid base catalysts. Chem Eng J 2019;355:586 − 93. http://dx.doi.org/10.1016/j.cej.2018.08.173CrossRef
[17] Tang M, Gu Y, Wei DB, Tian Z, Tian Y, Yang M, et al. Enhanced hydrolysis of fermentative antibiotics in production wastewater: hydrolysis potential prediction and engineering application. Chem Eng J 2020;391:123626. http://dx.doi.org/10.1016/j.cej.2019.123626CrossRef
[18] Tang M, Li F, Yang M, Zhang Y. Degradation of kanamycin from production wastewater with high-concentration organic matrices by hydrothermal treatment. J Environ Sci 2020;97:11 − 8. http://dx.doi.org/10.1016/j.jes.2020.04.032CrossRef
[19] Yi QZ, Gao YX, Zhang H, Zhang HF, Zhang Y, Yang M. Establishment of a pretreatment method for tetracycline production wastewater using enhanced hydrolysis. Chem Eng J 2016;300:139 − 45. http://dx.doi.org/10.1016/j.cej.2016.04.120CrossRef
[20] He YP, Tian Z, Luan X, Han ZM, Zhang Y, Yang M. Recovery of biological wastewater treatment system inhibited by oxytetracycline: rebound of functional bacterial population and the impact of adsorbed oxytetracycline on antibiotic resistance. Chem Eng J 2021;418:129364. http://dx.doi.org/10.1016/j.cej.2021.129364CrossRef
[21] He YP, Tian Z, Yi QZ, Zhang Y, Yang M. Impact of oxytetracycline on anaerobic wastewater treatment and mitigation using enhanced hydrolysis pretreatment. Water Res 2020;187:116408. http://dx.doi.org/10.1016/j.watres.2020.116408CrossRef
[22] Tian Y, Tian Z, Feng HD, Luan X, Han ZM, Zhang Y, et al. Unveiling the threshold values of organic and oxytetracycline loadings for nitrification recovery of a full-scale pharmaceutical wastewater treatment system. Chem Eng J 2023;463:142487. http://dx.doi.org/10.1016/j.cej.2023.142487CrossRef
[23] Tian Y, Tian Z, He YP, Sun GX, Zhang Y, Yang M. Removal of denatured protein particles enhanced UASB treatment of oxytetracycline production wastewater. Sci Total Environ 2022;816:151549. http://dx.doi.org/10.1016/j.scitotenv.2021.151549CrossRef
[24] Yi QZ, Zhang Y, Gao YX, Tian Z, Yang M. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: simultaneous reduction of COD and ARGs. Water Res 2017;110:211 − 7. http://dx.doi.org/10.1016/j.watres.2016.12.020CrossRef
[25] Han ZM, Luan X, Feng HD, Deng YQ, Yang M, Zhang Y. Metagenomic insights into microorganisms and antibiotic resistance genes of waste antibiotic fermentation residues along production, storage and treatment processes. J Environ Sci 2024;136:45 − 55. http://dx.doi.org/10.1016/j.jes.2022.10.035CrossRef
[26] Wang CY, Ding R, Gao YX, Yang M, Zhang Y. Performance and yeast tracking in a full-scale oil-containing paromomycin production wastewater treatment system using yeast. Water 2017;9(4):295. http://dx.doi.org/10.3390/w9040295CrossRef
[27] Zhang Y, Xie JP, Liu MM, Tian Z, He ZL, van Nostrand JD, et al. Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems. Water Res 2013;47(16):6298 − 308. http://dx.doi.org/10.1016/j.watres.2013.08.003CrossRef
[28] Sun GX, Zhang Y, Gao YX, Han XG, Yang M. Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology: performance, mechanism, and full-scale application. Water Res 2020;173:115517. http://dx.doi.org/10.1016/j.watres.2020.115517CrossRef
[29] Han ZM, Zhang Y, Yang M. Deterring the transmission of AMR in the environment: a Chinese perspective. In: Mothadaka MP, Vaiyapuri M, Rao Badireddy M, Ravishankar CN, Bhatia R, Jena J, editors. Handbook on antimicrobial resistance: current status, trends in detection and mitigation measures. Singapore: Springer. 2023; p. 1-15. http://dx.doi.org/10.1007/978-981-16-9723-4_52-1.http://dx.doi.org/10.1007/978-981-16-9723-4_52-1
[30] Panorel I, Schaaf N, Verma N, Shaw B, Salin K, Prakash S. Responsible antibiotics manufacturing platform (RAMP) framework. Stockholm: Stockholm International Water Institute; 2023.
[31] Access to Medicine Foundation. Methods matter: What steps are companies taking to help curb AMR by manufacturing responsibly? https://accesstomedicinefoundation.org/resource/what-are-pharmaceutical-companies-doing-to-limit-amr-risk-in-the-production-of-antibiotics.[2023-10-23].https://accesstomedicinefoundation.org/resource/what-are-pharmaceutical-companies-doing-to-limit-amr-risk-in-the-production-of-antibiotics
[32] Liu MM, Zhang Y, Zhang H, Zhang HF, Li KX, Tian Z, et al. Ozonation as an effective pretreatment for reducing antibiotic resistance selection potency in oxytetracycline production wastewater. Desalin Water Treat 2017;74:155 − 62. http://dx.doi.org/10.5004/dwt.2017.20731CrossRef
[33] Ministry of Ecology and Environment of the People’s Republic of China. HJ 1305-2023 Guideline on available techniques of pollution prevention and control for pharmaceutical industry - Active pharmaceutical ingredients (fermentation, chemical synthesis, extraction) and preparation categories. Beijing: China Environmental Science Press, 2023. (In Chinese).