[1] Chu SG, Villalba JA, Liang XL, Xiong K, Tsoyi K, Ith B, et al. Palmitic acid-rich high-fat diet exacerbates experimental pulmonary fibrosis by modulating endoplasmic reticulum stress. Am J Respir Cell Mol Biol 2019;61(6):737 − 46. https://doi.org/10.1165/rcmb.2018-0324OC.
[2] Suryadevara V, Ramchandran R, Kamp DW, Natarajan V. Lipid mediators regulate pulmonary fibrosis: potential mechanisms and signaling pathways. Int J Mol Sci 2020;21(12):4257. https://doi.org/10.3390/ijms21124257.
[3] Burgy O, Loriod S, Beltramo G, Bonniaud P. Extracellular lipids in the lung and their role in pulmonary fibrosis. Cells 2022;11(7):1209. https://doi.org/10.3390/cells11071209.
[4] Oikonomou N, Mouratis MA, Tzouvelekis A, Kaffe E, Valavanis C, Vilaras G, et al. Pulmonary autotaxin expression contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol 2012;47(5):566 − 74. https://doi.org/10.1165/rcmb.2012-0004OC.
[5] Peng FD, Dai J, Qian QJ, Cao XF, Wang LF, Zhu M, et al. Serum metabolic profiling of coal worker’s pneumoconiosis using untargeted lipidomics. Environ Sci Pollut Res Int 2022;29(56):85444 − 53. https://doi.org/10.1007/s11356-022-21905-4.
[6] Ma RM, Fan YL, Huang XX, Wang JW, Li S, Wang YY, et al. Lipid dysregulation associated with progression of silica-induced pulmonary fibrosis. Toxicol Sci 2023;191(2):296 − 307. https://doi.org/10.1093/toxsci/kfac124.
[7] Wang WR, Peng FD, Ding CG, Li T, Wang HQ. An analysis of targeted serum lipidomics in patients with pneumoconiosis – China, 2022. China CDC Wkly 2023;5(38):849 − 55. https://doi.org/10.46234/ccdcw2023.161.
[8] Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids Health Dis 2020;19(1):122. https://doi.org/10.1186/s12944-020-01278-8.
[9] Agassandian M, Mallampalli RK. Surfactant phospholipid metabolism. Biochim Biophys Acta 2013;1831(3):612 − 25. https://doi.org/10.1016/j.bbalip.2012.09.010.
[10] Deng XD, Hao CF, Li YP, Guo YH, Si HF, He J, et al. Lysophosphatidylcholine acyltransferase 1 alleviates silica-induced pulmonary fibrosis by modulating lipid metabolism. Biomed Pharmacother 2022;155:113638. https://doi.org/10.1016/j.biopha.2022.113638.
[11] Magkrioti C, Galaris A, Kanellopoulou P, Stylianaki EA, Kaffe E, Aidinis V. Autotaxin and chronic inflammatory diseases. J Autoimmun 2019;104:102327. https://doi.org/10.1016/j.jaut.2019.102327.
[12] Saito K, Tanaka N, Ikari J, Suzuki M, Anazawa R, Abe M, et al. Comprehensive lipid profiling of bleomycin-induced lung injury. Appl Toxicol 2019;39(4):658 − 71. https://doi.org/10.1002/jat.3758.
[13] Hsu HS, Liu CC, Lin JH, Hsu TW, Hsu JW, Su K, et al. Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis. Sci Rep 2017;7(1):14272. https://doi.org/10.1038/s41598-017-14612-5.
[14] Zhang H, Zhang SQ, Wang Y, Zhang CL. Preliminary study of exon sequence in pneumoconiosis using high-throughput and intervention of EGFR-TKIs on silicosis rats. Chin J Ind Hyg Occup Dis 2019;37(6):408 − 15. https://doi.org/10.3760/cma.j.issn.1001-9391.2019.06.002.
[15] Uhlson C, Harrison K, Allen CB, Ahmad S, White CW, Murphy RC. Oxidized phospholipids derived from ozone-treated lung surfactant extract reduce macrophage and epithelial cell viability. Chem Res Toxicol 2002;15(7):896 − 906. https://doi.org/10.1021/tx010183i.