[1] World Health Organization. WHO Coronavirus (COVID-19) Dashboard. 2021. https://covid19.who.int/. [2021-10-17].https://covid19.who.int/
[2] Shang YF, Li HW, Zhang R. Effects of pandemic outbreak on economies: evidence from business history context. Front Public Health 2021;9:632043. http://dx.doi.org/10.3389/fpubh.2021.632043CrossRef
[3] Ma SM, Lai XQ, Chen Z, Tu SH, Qin K. Clinical characteristics of critically ill patients co-infected with SARS-CoV-2 and the influenza virus in Wuhan, China. Int J Infect Dis 2020;96:683 − 7. http://dx.doi.org/http://dx.doi.org/10.1016/j.ijid.2020.05.068CrossRef
[4] Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect Dis 2014;14(1):480. http://dx.doi.org/10.1186/1471-2334-14-480CrossRef
[5] Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med 2020;27(2):taaa021. http://dx.doi.org/10.1093/jtm/taaa021CrossRef
[6] Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021;372(6538):eabg3055. http://dx.doi.org/10.1126/science.abg3055CrossRef
[7] Tian DD, Sun YH, Zhou JM, Ye Q. The global epidemic of SARS-CoV-2 variants and their mutational immune escape. J Med Virol 20211‐11. http://dx.doi.org/10.1002/jmv.27376.CrossRef
[8] Liu Y, Rocklöv J. The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. J Travel Med 2021;28(7):taab124. http://dx.doi.org/10.1093/jtm/taab124CrossRef
[9] Lechien JR, Saussez S. Importance of epidemiological factors in the evaluation of transmissibility and clinical severity of SARS-CoV-2 variants. Lancet Infect Dis 2021. http://dx.doi.org/10.1016/S1473-3099(21)00474-6CrossRef
[10] Olsen SJ, Azziz-Baumgartner E, Budd AP, Brammer L, Sullivan S, Pineda RF, et al. Decreased influenza activity during the covid-19 pandemic—United States, Australia, Chile, and South Africa, 2020. Morb Mortal Wkly Rep 2020;69(37):1305 − 9. http://dx.doi.org/10.15585/mmwr.mm6937a6CrossRef
[11] Soo RJJ, Chiew CJ, Ma S, Pung R, Lee V. Decreased influenza incidence under COVID-19 control measures, Singapore. Emerg Infect Dis 2020;26(8):1933 − 5. http://dx.doi.org/10.3201/eid2608.201229CrossRef
[12] Suntronwong N, Thongpan I, Chuchaona W, Lestari FB, Vichaiwattana P, Yorsaeng R, et al. Impact of COVID-19 public health interventions on influenza incidence in Thailand. Pathog Glob Health 2020;114(5):225 − 7. http://dx.doi.org/10.1080/20477724.2020.1777803CrossRef
[13] Lei H, Xu MD, Wang X, Xie Y, Du XJ, Chen T, et al. Nonpharmaceutical interventions used to control COVID-19 reduced seasonal influenza transmission in China. J Infect Dis 2020;222(11):1780 − 3. http://dx.doi.org/10.1093/infdis/jiaa570CrossRef
[14] Kuo SC, Shih SM, Chien LH, Hsiung CA. Collateral benefit of COVID-19 control measures on influenza activity, Taiwan. Emerg Infect Dis 2020;26(8):1928 − 30. http://dx.doi.org/10.3201/eid2608.201192CrossRef
[15] Public Health England. Surveillance of influenza and other seasonal respiratory viruses in the UK Winter 2020 to 2021. 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/995284/Surveillance_of_influenza_and_other_seasonal_respiratory_viruses_in_the_UK_2020_to_2021-1.pdf. [2021-10-2].https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/995284/Surveillance_of_influenza_and_other_seasonal_respiratory_viruses_in_the_UK_2020_to_2021-1.pdf
[16] Sullivan SG, Carlson S, Cheng AC, Chilver MBN, Dwyer DE, Irwin M, et al. Where has all the influenza gone? The impact of COVID-19 on the circulation of influenza and other respiratory viruses, Australia, March to September 2020. Eurosurveillance 2020;25(47):2001847. http://dx.doi.org/10.2807/1560-7917.ES.2020.25.47.2001847CrossRef
[17] Huang QS, Wood T, Jelley L, Jennings T, Jefferies S, Daniells K, et al. Impact of the COVID-19 nonpharmaceutical interventions on influenza and other respiratory viral infections in New Zealand. Nat Commun 2021;12(1):1001. http://dx.doi.org/10.1038/s41467-021-21157-9CrossRef
[18] Feng LZ, Zhang T, Wang Q, Xie YR, Peng ZB, Zheng JD, et al. Impact of COVID-19 outbreaks and interventions on influenza in China and the United States. Nat Commun 2021;12(1):3249. http://dx.doi.org/10.1038/s41467-021-23440-1CrossRef
[19] Groves HE, Piché-Renaud PP, Peci A, Farrar DS, Buckrell S, Bancej C, et al. The impact of the COVID-19 pandemic on influenza, respiratory syncytial virus, and other seasonal respiratory virus circulation in Canada: a population-based study. Lancet Reg Health – Am 2021;1:100015. http://dx.doi.org/10.1016/j.lana.2021.100015CrossRef
[20] Aledort JE, Lurie N, Wasserman J, Bozzette SA. Non-pharmaceutical public health interventions for pandemic influenza: an evaluation of the evidence base. BMC Public Health 2007;7(1):208. http://dx.doi.org/10.1186/1471-2458-7-208CrossRef
[21] Cowling BJ, Ali ST, Ng TWY, Tsang TK, Li JCM, Fong MW, et al. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study. Lancet Public Health 2020;5(5):E279 − 88. http://dx.doi.org/10.1016/S2468-2667(20)30090-6CrossRef
[22] You JHS. Impact of COVID-19 infection control measures on influenza-related outcomes in Hong Kong. Pathog Glob Health 2021;115(2):93 − 9. http://dx.doi.org/10.1080/20477724.2020.1857492CrossRef
[23] Dadashi M, Khaleghnejad S, Elkhichi PA, Goudarzi M, Goudarzi H, Taghavi A, et al. COVID-19 and influenza Co-infection: a systematic review and meta-analysis. Front Med 2021;8:681469. http://dx.doi.org/10.3389/fmed.2021.681469CrossRef
[24] Alosaimi B, Naeem A, Hamed ME, Alkadi HS, Alanazi T, Al Rehily SS, et al. Influenza co-infection associated with severity and mortality in COVID-19 patients. Virol J 2021;18(1):127. http://dx.doi.org/10.1186/s12985-021-01594-0CrossRef
[25] Musuuza JS, Watson L, Parmasad V, Putman-Buehler N, Christensen L, Safdar N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: a systematic review and meta-analysis. PLoS One 2021;16(5):e0251170. http://dx.doi.org/10.1371/journal.pone.0251170CrossRef
[26] Covin S, Rutherford GW. Coinfection, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and influenza: an evolving puzzle. Clin Infect Dis 2021;72(12):e993 − 4. http://dx.doi.org/10.1093/cid/ciaa1810CrossRef
[27] Iacobucci G. Covid-19: risk of death more than doubled in people who also had flu, English data show. BMJ 2020;370:m3720. http://dx.doi.org/10.1136/bmj.m3720CrossRef
[28] Rubin R. What happens when COVID-19 collides with flu season? JAMA 2020;324(10):923 − 5. http://dx.doi.org/10.1001/jama.2020.15260CrossRef
[29] Lee K, Jalal H, Raviotta JM, Krauland MG, Zimmerman RK, Burke DS, et al. Predicting the impact of low influenza activity in 2020 on population immunity and future influenza season in the United States. medRxiv 2021. http://dx.doi.org/10.1101/2021.08.29.21262803.http://dx.doi.org/10.1101/2021.08.29.21262803
[30] Bai L, Zhao YL, Dong JZ, Liang SM, Guo M, Liu XJ, et al. Coinfection with influenza a virus enhances SARS-CoV-2 infectivity. Cell Res 2021;31(4):395 − 403. http://dx.doi.org/10.1038/s41422-021-00473-1CrossRef
[31] Zhang AJ, Lee ACY, Chan JFW, Liu FF, Li C, Chen YX, et al. Coinfection by severe acute respiratory syndrome coronavirus 2 and influenza A(H1N1)pdm09 virus enhances the severity of pneumonia in golden Syrian hamsters. Clin Infect Dis 2021;72(12):e978 − 92. http://dx.doi.org/10.1093/cid/ciaa1747.CrossRef
[32] Belongia EA, Osterholm MT. COVID-19 and flu, a perfect storm. Science 2020;368(6496):1163. http://dx.doi.org/10.1126/science.abd2220CrossRef
[33] Baker RE, Park SW, Yang WC, Vecchi GA, Metcalf CJE, Grenfell BT. The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections. Proc Natl Acad Sci USA 2020;117(48):30547 − 53. http://dx.doi.org/10.1073/pnas.2013182117CrossRef
[34] World Health Organization. Coronavirus disease (COVID-19): similarities and differences between COVID-19 and influenza 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-similarities-and-differences-covid-19-and-influenza. [2021-8-20].https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-similarities-and-differences-covid-19-and-influenza
[35] Zhou XL, Ding GY, Shu T, Fu SZ, Tong WW, Tu XP, et al. The outbreak of coronavirus disease 2019 interfered with influenza in Wuhan. SSRN Journal 2020. http://dx.doi.org/10.2139/ssrn.3555239.http://dx.doi.org/10.2139/ssrn.3555239
[36] Organisation for Economic Co-operation and Development. Influenza vaccination rates. 2020. https://data.oecd.org/healthcare/influenza-vaccination-rates.htm. [2021-8-20].https://data.oecd.org/healthcare/influenza-vaccination-rates.htm
[37] The Academy of Medical Sciences. Preparing for a challenging winter 2020/21. 2020. https://acmedsci.ac.uk/file-download/51353957. [2021-9-10].https://acmedsci.ac.uk/file-download/51353957
[38] World Health Organization. Evaluation of influenza vaccine effectiveness: a guide to the design and interpretation of observational studies. 2017. https://apps.who.int/iris/bitstream/handle/10665/255203/9789241512121-eng.pdf. [2021-9-20].https://apps.who.int/iris/bitstream/handle/10665/255203/9789241512121-eng.pdf
[39] Wang CB, Chiu ML, Lin PC, Liang WM, Chen CY, Chang YJ, et al. Prompt oseltamivir therapy reduces medical care and mortality for patients with influenza infection: an Asian population cohort study. Medicine 2015;94(27):e1070. http://dx.doi.org/10.1097/MD.0000000000001070CrossRef
[40] Hayden FG, Sugaya N, Hirotsu N, Lee N, De Jong MD, Hurt AC, et al. Baloxavir marboxil for uncomplicated influenza in adults and adolescents. N Engl J Med 2018;379(10):913 − 23. http://dx.doi.org/10.1056/NEJMoa1716197CrossRef