[1] Caniça M, Manageiro V, Abriouel H, Moran-Gilad J, Franz CMAP. Antibiotic resistance in foodborne bacteria. Trends Food Sci Technol 2019;84:41-4. http://dx.doi.org/10.1016/j.jpgs.2018.08.001CrossRef
[2] Overdevest I, Willemsen I, Rijnsburger M, Eustace A, Xu L, Hawkey PM, et al. Extended-spectrum β-lactamase genes of Escherichia coli in chicken meat and humans, the netherlands. Emerg Infect Dis 2011;17(7):1216-22. http://dx.doi.org/10.3201/eid1707.110209CrossRef
[3] Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin Microbiol Rev 2019;32(3):e00135-18. http://dx.doi.org/10.1128/CMR.00135-18CrossRef
[4] Nicolas-Chanoine MH, Bertrand X, Madec JY. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 2014;27(3):543-74. http://dx.doi.org/10.1128/CMR.00125-13CrossRef
[5] Davis GS, Waits K, Nordstrom L, Grande H, Weaver B, Papp K, et al. Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims. BMC Microbiol 2018;18:174. http://dx.doi.org/10.1186/s12866-018-1322-5 .CrossRef
[6] Wang Y, Zhang RM, Li JY, Wu ZW, Yin WJ, Schwarz S, et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol 2017;2:16260. http://dx.doi.org/10.1038/nmicrobiol.2016.260CrossRef
[7] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. CLSI supplement M100. 30th ed. Wayne, PA: Clinical and Laboratory Standards Institute. 2020.
[8] The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters, Version 10.0. 2020. http://www.eucast.org.http://www.eucast.org
[9] Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014;15:524. http://dx.doi.org/10.1186/s13059-014-0524-xCrossRef
[10] Day MJ, Hopkins KL, Wareham DW, Toleman MA, Elviss N, Randall L, et al. Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: an epidemiological surveillance and typing study. Lancet Infect Dis 2019;19(12):1325-35. http://dx.doi.org/10.1016/S1473-3099(19)30273-7CrossRef
[11] Wang R, Zhang JY, Sui QW, Wan HF, Tong J, Chen MX, et al. Effect of red mud addition on tetracycline and copper resistance genes and microbial community during the full scale swine manure composting. Bioresour Technol 2016;216:1049-57. http://dx.doi.org/10.1016/j.biortech.2016.06.012CrossRef
[12] Roth N, Käsbohrer A, Mayrhofer S, Zitz U, Hofacre C, Domig KJ. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: a global overview. Poult Sci 2019;98(4):1791-804. http://dx.doi.org/10.3382/ps/pey539CrossRef
[13] Randall LP, Horton RH, Chanter JI, Lemma F, Evans SJ. A decline in the occurrence of extended-spectrum β-lactamase-producing Escherichia coli in retail chicken meat in the UK between 2013 and 2018. J Appl Microbiol 2021;130:247-57. http://dx.doi.org/10.1111/jam.14687CrossRef
[14] Wu CM, Wang YC, Shi XM, Wang S, Ren HW, Shen ZQ, et al. Rapid rise of the ESBL and mcr-1 genes in Escherichia coli of chicken origin in China, 2008-2014. Emerg Microbes Infect 2018;7(1):1-10. http://dx.doi.org/10.1038/s41426-018-0033-1CrossRef
[15] Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 2017;30(2):557-96. http://dx.doi.org/10.1128/CMR.00064-16CrossRef