[1]
|
Uplekar M, Weil D, Lonnroth K, Jaramillo E, Lienhardt C, Dias HM, et al. WHO’s new end TB strategy. Lancet 2015;385(9979):1799 − 801. http://dx.doi.org/10.1016/S0140-6736(15)60570-0CrossRef
|
[2]
|
WHO. Global tuberculosis report 2020. Geneva: World Health Organization; 2020. https://www.who.int/publications/i/item/9789240013131.https://www.who.int/publications/i/item/9789240013131 |
[3]
|
Castor K, Mota FB, da Silva RM, Cabral BP, Maciel EL, de Almeida IN, et al. Mapping the tuberculosis scientific landscape among BRICS countries: a bibliometric and network analysis. Mem Inst Oswaldo Cruz 2020;115:e190342. http://dx.doi.org/10.1590/0074-02760190342CrossRef
|
[4]
|
Wang LX, Zhang H, Ruan YZ, Chin DP, Xia YY, Cheng SM, et al. Tuberculosis prevalence in China, 1990-2010; a longitudinal analysis of national survey data. Lancet 2014;383(9934):2057 − 64. http://dx.doi.org/10.1016/S0140-6736(13)62639-2).CrossRef
|
[5]
|
Ou XC, Li Q, Su D, Xia H, Wang SF, Zhao B, et al. A pilot study: VereMTB detection kit for rapid detection of multidrug-resistant Mycobcterium tuberculosis in clinical sputum samples. PLoS One 2020;15(3):e0228312. http://dx.doi.org/10.1371/journal.pone.0228312CrossRef
|
[6]
|
Zhou Y, Anthony R, Wang SF, Ou XC, Liu DX, Zhao YL, et al. The epidemic of multidrug resistant tuberculosis in China in historical and phylogenetic perspectives. J Infect 2020;80(4):444 − 53. http://dx.doi.org/10.1016/j.jinf.2019.11.022CrossRef
|
[7]
|
Wang SF, Zhou Y, Zhao B, Ou XC, Xia H, Zheng Y, et al. Characteristics of compensatory mutations in the rpoC gene and their association with compensated transmission of Mycobacterium tuberculosis. Front Med 2020;14(1):51 − 9. http://dx.doi.org/10.1007/s11684-019-0720-xCrossRef
|
[8]
|
Xia H, van den Hof S, Cobelens F, Zhou Y, Zhao B, Wang SF, et al. Value of pyrazinamide for composition of new treatment regimens for multidrug-resistant Mycobacterium tuberculosis in China. BMC Infect Dis 2020;20(1):19. http://dx.doi.org/10.1186/s12879-020-4758-9CrossRef
|
[9]
|
Meehan CJ, Goig GA, Kohl TA, Verboven L, Dippenaar A, Ezewudo M, et al. Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol 2019;17(9):533 − 45. http://dx.doi.org/10.1038/s41579-019-0214-5CrossRef
|
[10]
|
Hicks ND, Carey AF, Yang J, Zhao YL, Fortune SM. Bacterial genome-wide association identifies novel factors that contribute to ethionamide and prothionamide susceptibility in Mycobacterium tuberculosis. mBio 2019;10(2):e00616 − 19. http://dx.doi.org/10.1128/mBio.00616-19CrossRef
|
[11]
|
Yang Y, Walker TM, Walker AS, Wilson DJ, Peto TEA, Crook DW, et al. DeepAMR for predicting co-occurrent resistance of Mycobacterium tuberculosis. Bioinformatics 2019;35(18):3240 − 9. http://dx.doi.org/10.1093/bioinformatics/btz067CrossRef
|
[12]
|
Liu DX, He WC, Jiang MX, Zhao B, Ou XC, Liu CF, et al. Development of a loop-mediated isothermal amplification coupled lateral flow dipstick targeting erm(41) for detection of Mycobacterium abscessus and Mycobacterium massiliense. AMB Express 2019;9:11. http://dx.doi.org/10.1186/s13568-019-0734-4CrossRef
|
[13]
|
Liu LG, Jiang FT, Chen LH, Zhao B, Dong J, Sun LL, et al. The impact of combined gene mutations in inhA and ahpC genes on high levels of isoniazid resistance amongst katG non-315 in multidrug-resistant tuberculosis isolates from China. Emerg Microbes Infect 2018;7(1):1 − 10. http://dx.doi.org/10.1038/s41426-018-0184-0CrossRef
|
[14]
|
CRyPTIC Consortium and the 100, 000 Genomes Project, Allix-Béguec C, Arandjelovic I, Bi LJ, Beckert P, Bonnet M, et al. Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N Engl J Med 2018;379(15):1403 − 15. http://dx.doi.org/10.1056/NEJMoa1800474CrossRef
|
[15]
|
Hicks ND, Yang J, Zhang XB, Zhao B, Grad YH, Liu LG, et al. Clinically prevalent mutations in Mycobacterium tuberculosis alter propionate metabolism and mediate multidrug tolerance. Nat Microbiol 2018;3(9):1032 − 42. http://dx.doi.org/10.1038/s41564-018-0218-3CrossRef
|