[1] Sierra-Ruelas É, Bernal-Orozco MF, Macedo-Ojeda G, Márquez-Sandoval YF, Altamirano-Martínez MB, Vizmanos B. Validation of semiquantitative FFQ administered to adults: a systematic review. Public Health Nutr 2021;24(11):3399 − 418. https://doi.org/10.1017/S1368980020001834.
[2] Cui Q, Xia Y, Liu YS, Sun YF, Ye K, Li WJ, et al. Validity and reproducibility of a FFQ for assessing dietary intake among residents of northeast China: northeast cohort study of China. Br J Nutr 2023;129(7):1252 − 65. https://doi.org/10.1017/S0007114522002318.
[3] Zhao D, Gong YY, Huang LY, Lv RX, Gu YX, Ni CX, et al. Validity of food and nutrient intakes assessed by a food frequency questionnaire among Chinese adults. Nutr J 2024;23(1):23. https://doi.org/10.1186/s12937-024-00921-9.
[4] Mao YK, Weng JY, Xie QY, Wu LD, Xuan YL, Zhang J, et al. Association between dietary inflammatory index and Stroke in the US population: evidence from NHANES 1999-2018. BMC Public Health 2024;24(1):50. https://doi.org/10.1186/s12889-023-17556-w.
[5] Yu DM, Zhao LY, Zhao WH. Status and trends in consumption of grains and dietary fiber among Chinese adults (1982-2015). Nutr Rev 2020;78(Suppl 1):43 − 53. https://doi.org/10.1093/nutrit/nuz075.
[6] Bedi S, Liu YT, Orr-Ewing L, Dash D, Koyejo S, Callahan A, et al. Testing and evaluation of health care applications of large language models: a systematic review. JAMA 2025;333(4):319 − 28. https://doi.org/10.1001/jama.2024.21700.
[7] Shool S, Adimi S, Saboori Amleshi R, Bitaraf E, Golpira R, Tara M. A systematic review of large language model (LLM) evaluations in clinical medicine. BMC Med Inform Decis Mak 2025;25(1):117. https://doi.org/10.1186/s12911-025-02954-4.
[8] Shen YQ, Xu YQ, Ma JJ, Rui WS, Zhao C, Heacock L, et al. Multi-modal large language models in radiology: principles, applications, and potential. Abdom Radiol (NY) 2025;50(6):2745 − 57. https://doi.org/10.1007/s00261-024-04708-8.
[9] Sun HN, Zhang K, Lan W, Gu QF, Jiang GX, Yang X, et al. An AI dietitian for type 2 diabetes mellitus management based on large language and image recognition models: preclinical concept validation study. J Med Internet Res 2023;25:e51300. https://doi.org/10.2196/51300.
[10] Shonkoff E, Cara KC, Pei XC, Chung M, Kamath S, Panetta K, et al. AI-based digital image dietary assessment methods compared to humans and ground truth: a systematic review. Ann Med 2023;55(2):2273497. https://doi.org/10.1080/07853890.2023.2273497.
[11] Theodore Armand TP, Nfor KA, Kim JI, Kim HC. Applications of artificial intelligence, machine learning, and deep learning in nutrition: a systematic review. Nutrients 2024;16(7):1073. https://doi.org/10.3390/nu16071073.