[1] Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect 2018;7(1):141. https://doi.org/10.1038/s41426-018-0144-8CrossRef
[2] Hassan KA, Elbourne LDH, Tetu SG, Melville SB, Rood JI, Paulsen IT. Genomic analyses of Clostridium perfringens isolates from five toxinotypes. Res Microbiol 2015;166(4):255 − 63. https://doi.org/10.1016/j.resmic.2014.10.003CrossRef
[3] Grenda T, Jarosz A, Sapała M, Grenda A, Patyra E, Kwiatek K. Clostridium perfringens-opportunistic foodborne pathogen, its diversity and epidemiological significance. Pathogens 2023;12(6):768. https://doi.org/10.3390/pathogens12060768CrossRef
[4] Kiu R, Caim S, Painset A, Pickard D, Swift C, Dougan G, et al. Phylogenomic analysis of gastroenteritis-associated Clostridium perfringens in England and Wales over a 7-year period indicates distribution of clonal toxigenic strains in multiple outbreaks and extensive involvement of enterotoxin-encoding (CPE) plasmids. Microb Genom 2019;5(10):e000297. https://doi.org/10.1099/mgen.0.000297CrossRef
[5] Zhao FL, Gao X, Zhen BJ, Zhang P, Luo YX, Wang RP, et al. Laboratory detection and analysis of a suspected diarrhea outbreak caused by Clostridium perfringens. Chin J Food Hyg 2023;35(7):1109 − 13. https://doi.org/10.13590/j.cjfh.2023.07.021CrossRef
[6] Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM. Foodborne illness acquired in the United States-unspecified agents. Emerg Infect Dis 2011;17(1):16 − 22. https://doi.org/10.3201/eid1701.P21101CrossRef
[7] Bamford C, Milligan P, Kaliski S. Dangers of Clostridium perfringens food poisoning in psychiatric patients. S Afr J Psychiatr 2019;25:1339. https://doi.org/10.4102/sajpsychiatry.v25i0.1339CrossRef
[8] Mak PHW, Rehman MA, Kiarie EG, Topp E, Diarra MS. Production systems and important antimicrobial resistant-pathogenic bacteria in poultry: a review. J Anim Sci Biotechnol 2022;13(1):148. https://doi.org/10.1186/s40104-022-00786-0CrossRef
[9] Ngamwongsatit B, Tanomsridachchai W, Suthienkul O, Urairong S, Navasakuljinda W, Janvilisri T. Multidrug resistance in Clostridium perfringens isolated from diarrheal neonatal piglets in Thailand. Anaerobe 2016;38:88 − 93. https://doi.org/10.1016/j.anaerobe.2015.12.012CrossRef
[10] Yan ZL, Fu B, Zhu YY, Zhang YY, Wu YC, Xiong PF, et al. High intestinal carriage of Clostridium perfringens in healthy individuals and ICU patients in Hangzhou, China. Microbiol Spectr 2024;12(7):e0338523. https://doi.org/10.1128/spectrum.03385-23CrossRef
[11] Golden NJ, Crouch EA, Latimer H, Kadry AR, Kause J. Risk assessment for Clostridium perfringens in ready-to-eat and partially cooked meat and poultry products. J Food Prot 2009;72(7):1376 − 84. https://doi.org/10.4315/0362-028X-72.7.1376CrossRef
[12] Zhang TF, Zhang WT, Ai DY, Zhang RR, Lu Q, Luo QP, et al. Prevalence and characterization of Clostridium perfringens in broiler chickens and retail chicken meat in central China. Anaerobe 2018;54:100 − 3. https://doi.org/10.1016/j.anaerobe.2018.08.007CrossRef
[13] Matsuda A, Aung MS, Urushibara N, Kawaguchiya M, Sumi A, Nakamura M, et al. Prevalence and genetic diversity of toxin genes in clinical isolates of Clostridium perfringens: coexistence of alpha-toxin variant and binary enterotoxin genes (bec/cpile). Toxins (Basel) 2019;11(6):326. https://doi.org/10.3390/toxins11060326CrossRef
[14] Kwong JC, Mercoulia K, Tomita T, Easton M, Li HY, Bulach DM, et al. Prospective whole-genome sequencing enhances national surveillance of Listeria monocytogenes. J Clin Microbiol 2016;54(2):333 − 42. https://doi.org/10.1128/JCM.02344-15CrossRef
[15] Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016;44(W1):W242 − 5. https://doi.org/10.1093/nar/gkw290CrossRef
[16] Shrestha A, Mehdizadeh Gohari I, Li JH, Navarro M, Uzal FA, McClane BA. The biology and pathogenicity of Clostridium perfringens Type F: a common human enteropathogen with a new(ish) name. Microbiol Mol Biol Rev 2024;88(3):e0014023. https://doi.org/10.1128/mmbr.00140-23CrossRef
[17] Sarker MR, Carman RJ, McClane BA. Inactivation of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops. Mol Microbiol 1999;33(5):946 − 58. https://doi.org/10.1046/j.1365-2958.1999.01534.xCrossRef
[18] Kobayashi S, Wada A, Shibasaki S, Annaka M, Higuchi H, Adachi K, et al. Spread of a large plasmid carrying the cpe gene and the tcp locus amongst Clostridium perfringens isolates from nosocomial outbreaks and sporadic cases of gastroenteritis in a geriatric hospital. Epidemiol Infect 2009;137(1):108 − 13. https://doi.org/10.1017/S0950268808000794CrossRef
[19] Tanaka D, Kimata K, Shimizu M, Isobe J, Watahiki M, Karasawa T, et al. Genotyping of Clostridium perfringens isolates collected from food poisoning outbreaks and healthy individuals in Japan based on the cpe locus. Jpn J Infect Dis 2007;60(1):68 − 9. https://doi.org/10.7883/yoken.JJID.2007.68CrossRef
[20] Álvarez-Pérez S, Blanco JL, García ME. Clostridium perfringens type A isolates of animal origin with decreased susceptibility to metronidazole show extensive genetic diversity. Microb Drug Resist 2017;23(8):1053 − 8. https://doi.org/10.1089/mdr.2016.0277CrossRef