[1]
|
Buskwofie A, David-West G, Clare CA. A review of cervical cancer: incidence and disparities. J Natl Med Assoc 2020;112(2):229 − 32. http://dx.doi.org/0.1016/j.jnma.2020.03.002. |
[2]
|
Olusola P, Banerjee HN, Philley JV, Dasgupta S. Human papilloma virus-associated cervical cancer and health disparities. Cells 2019;8(6):622. https://doi.org/10.3390/cells8060622. |
[3]
|
Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, et al. Global cancer observatory: cancer today. Lyon: International Agency for Research on Cancer; 2024. |
[4]
|
Ma Y, Ke XT, Liang XY, Ding WP, Zhou DC, Ma AX, et al. Application of transmission dynamics model in economic evaluation on HPV vaccine vaccination: a brief introduction. Chin J Public Health 2021;37(12):1742 − 5. https://doi.org/10.11847/zgggws1128234. |
[5]
|
Pitman R, Fisman D, Zaric GS, Postma M, Kretzschmar M, Edmunds J, et al. Dynamic transmission modeling: a report of the ISPOR-SMDM modeling good research practices task force-5. Value Health 2012;15(6):828 − 34. https://doi.org/10.1016/j.jval.2012.06.011. |
[6]
|
Tota JE, Chevarie-Davis M, Richardson LA, Devries M, Franco EL. Epidemiology and burden of HPV infection and related diseases: implications for prevention strategies. Prev Med 2011;53:S12 − 21. https://doi.org/10.1016/j.ypmed.2011.08.017. |
[7]
|
Zayats R, Murooka TT, Mckinnon LR. HPV and the risk of HIV acquisition in women. Front Cell Infect Microbiol 2022;12:814948. https://doi.org/10.3389/fcimb.2022.814948. |
[8]
|
Korostil IA, Garland SM, Law MG, Regan DG. The association of HPV-16 seropositivity and natural immunity to reinfection: insights from compartmental models. BMC Infect Dis 2013;13(1):83. https://doi.org/10.1186/1471-2334-13-83. |
[9]
|
Wang XW, Peng HJ, Shi BY, Jiang DH, Zhang S, Chen BS. Optimal vaccination strategy of a constrained time-varying SEIR epidemic model. Commun Nonlinear Sci Numer Simul 2019;67:37 − 48. https://doi.org/10.1016/j.cnsns.2018.07.003. |
[10]
|
Johnson HC, Elfström KM, Edmunds WJ. Inference of type-specific HPV transmissibility, progression and clearance rates: a mathematical modelling approach. PLoS One 2012;7(11):e49614. https://doi.org/10.1371/journal.pone.0049614. |
[11]
|
Campos NG, Burger EA, Sy S, Sharma M, Schiffman M, Rodriguez AC, et al. An updated natural history model of cervical cancer: derivation of model parameters. Am J Epidemiol 2014;180(5):545 − 55. https://doi.org/10.1093/aje/kwu159. |
[12]
|
Zechmeister I, de Blasio BF, Garnett G, Neilson AR, Siebert U. Cost-effectiveness analysis of human papillomavirus-vaccination programs to prevent cervical cancer in Austria. Vaccine 2009;27(37):5133 − 41. https://doi.org/10.1016/j.vaccine.2009.06.039. |
[13]
|
Rees CP, Brhlikova P, Pollock AM. Will HPV vaccination prevent cervical cancer?. J Roy Soc Med 2020;113(2):64 − 78. https://doi.org/10.1177/0141076819899308. |
[14]
|
Owusu-Edusei K, Palmer C, Ovcinnikova O, Favato G, Daniels V. Assessing the health and economic outcomes of a 9-valent HPV vaccination program in the United Kingdom. J Health Econ Outcomes Res 2022;9(1):140 − 50. https://doi.org/10.36469/001c.34721. |
[15]
|
Elbasha EH, Dasbach EJ, Insinga RP. Model for assessing human papillomavirus vaccination strategies. Emerg Infect Dis 2007;13(1):28 − 41. https://doi.org/10.3201/eid1301.060438. |
[16]
|
Van de Velde N, Boily MC, Drolet M, Franco EL, Mayrand MH, Kliewer EV, et al. Population-level impact of the bivalent, quadrivalent, and nonavalent human papillomavirus vaccines: a model–based analysis. JNCI: J Natl Cancer Inst 2012;104(22):1712 − 23. https://doi.org/10.1093/jnci/djs395. |
[17]
|
De La Fuente J, Hernandez Aguado JJ, San Martín M, Ramirez Boix P, Cedillo Gómez S, López N. Estimating the epidemiological impact and cost-effectiveness profile of a nonavalent HPV vaccine in Spain. Hum Vaccin Immunother 2019;15(7-8):1949 − 61. https://doi.org/10.1080/21645515.2018.1560770. |
[18]
|
Chou HH, Chang SC, Sukarom I, Saxena K, Pavelyev A, Wu YH, et al. The clinical and economic impact of a nonavalent versus bivalent human papillomavirus national vaccination program in Taiwan. Value Health Reg Issues 2022;32:79 − 87. https://doi.org/10.1016/j.vhri.2022.06.006. |
[19]
|
Malik T, Imran M, Jayaraman R. Optimal control with multiple human papillomavirus vaccines. J Theor Biol 2016;393:179 − 93. https://doi.org/10.1016/j.jtbi.2016.01.004. |
[20]
|
Sharomi O, Malik T. A model to assess the effect of vaccine compliance on Human Papillomavirus infection and cervical cancer. Appl Math Modell 2017;47:528 − 50. https://doi.org/10.1016/j.apm.2017.03.025. |
[21]
|
Laprise JF, Drolet M, Boily MC, Jit M, Sauvageau C, Franco EL, et al. Comparing the cost-effectiveness of two- and three-dose schedules of human papillomavirus vaccination: a transmission-dynamic modelling study. Vaccine 2014;32(44):5845 − 53. https://doi.org/10.1016/j.vaccine.2014.07.099. |
[22]
|
Prem K, Choi YH, Bénard É, Burger EA, Hadley L, Laprise JF, et al. Global impact and cost-effectiveness of one-dose versus two-dose human papillomavirus vaccination schedules: a comparative modelling analysis. BMC Med 2023;21(1):313. https://doi.org/10.1186/s12916-023-02988-3. |
[23]
|
Jit M, Brisson M, Laprise JF, Choi YH. Comparison of two dose and three dose human papillomavirus vaccine schedules: cost effectiveness analysis based on transmission model. BMJ 2015;350:g7584. https://doi.org/10.1136/bmj.g7584. |
[24]
|
Burger EA, Campos NG, Sy S, Regan C, Kim JJ. Health and economic benefits of single-dose HPV vaccination in a Gavi-eligible country. Vaccine 2018;36(32):4823 − 9. https://doi.org/10.1016/j.vaccine.2018.04.061. |
[25]
|
Hirth J. Disparities in HPV vaccination rates and HPV prevalence in the United States: a review of the literature. Hum Vaccin Immunother 2019;15(1):146 − 55. https://doi.org/10.1080/21645515.2018.1512453. |
[26]
|
Cheung TH, Cheng SSY, Hsu D, Wong QWL, Pavelyev A, Sukarom I, et al. Health impact and cost-effectiveness of implementing gender-neutral vaccination with the 9-valent HPV vaccine in Hong Kong. Hum Vaccin Immunother 2023;19(2):2184605 https://doi.org/10.1080/21645515.2023.2184605. |
[27]
|
Simoens S, Bento-Abreu A, Merckx B, Joubert S, Vermeersch S, Pavelyev A, et al. Health impact and cost-effectiveness of implementing gender-neutral vaccination with the 9-valent human papillomavirus vaccine in Belgium. Front Pharmacol 2021;12:628434 https://doi.org/10.3389/fphar.2021.628434. |
[28]
|
Drolet M, Laprise JF, Martin D, Jit M, Bénard É, Gingras G, et al. Optimal human papillomavirus vaccination strategies to prevent cervical cancer in low-income and middle-income countries in the context of limited resources: a mathematical modelling analysis. Lancet Infect Dis 2021;21(11):1598 − 610 https://doi.org/10.1016/S1473-3099(20)30860-4. |
[29]
|
Saldaña F, Camacho-Gutiérrez JA, Villavicencio-Pulido G, Velasco-Hernández JX. Modeling the transmission dynamics and vaccination strategies for human papillomavirus infection: an optimal control approach. Appl Math Modell 2022;112:767 − 85 https://doi.org/10.1016/j.apm.2022.08.017. |