[1]
|
Udaondo Z, Huertas MJ. Fighting the enemy: one health approach against microbial resistance. Microb Biotechnol 2020;13(4):888 − 91. https://doi.org/10.1111/1751-7915.13587. |
[2]
|
GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. Lancet 2024;404(10459):1199 − 226. https://doi.org/10.1016/S0140-6736(24)01867-1. |
[3]
|
Ma YY, Chen P, Mo Y, Xiao YH. WHO revised bacterial priority pathogens list to encourage global actions to combat AMR. hLife 2024;2(12):607 − 10. https://doi.org/10.1016/j.hlife.2024.10.003. |
[4]
|
Painuli S, Semwal P, Sharma R, Akash S. Superbugs or multidrug resistant microbes: a new threat to the society. Health Sci Rep 2023;6(8):e1480. https://doi.org/10.1002/hsr2.1480. |
[5]
|
Sati H, Carrara E, Savoldi A, Hansen P, Garlasco J, Campagnaro E, et al. The WHO Bacterial Priority Pathogens List 2024: a prioritisation study to guide research, development, and public health strategies against antimicrobial resistance. Lancet Infect Dis 2025;25(9):1033 − 43. https://doi.org/10.1016/S1473-3099(25)00118-5. |
[6]
|
Ding L, Hu FP. China’s new national action plan to combat antimicrobial resistance (2022-25). J Antimicrob Chemother 2023;78(2):558 − 60. https://doi.org/10.1093/jac/dkac435. |
[7]
|
Xiao YH, Nishijima T. Status and challenges of global antimicrobial resistance control: a dialogue between Professors Yonghong Xiao and Takeshi Nishijima. hLife 2024;2(2):47 − 9. https://doi.org/10.1016/j.hlife.2023.11.004. |
[8]
|
Qin XH, Ding L, Hao M, Li P, Hu FP, Wang MG. Antimicrobial resistance of clinical bacterial isolates in China: current status and trends. JAC Antimicrob Resist 2024;6(2):dlae052. https://doi.org/10.1093/jacamr/dlae052. |
[9]
|
Luo QX, Lu P, Chen YB, Shen P, Zheng BW, Ji JR, et al. ESKAPE in China: epidemiology and characteristics of antibiotic resistance. Emerg Microbes Infect 2024;13(1):2317915. https://doi.org/10.1080/22221751.2024.2317915. |
[10]
|
Shen C, Luo L, Zhou HY, Xiao YL, Zeng JX, Zhang LL, et al. Emergence and ongoing outbreak of ST80 vancomycin-resistant Enterococcus faecium in Guangdong province, China from 2021 to 2023: a multicenter, time-series and genomic epidemiological study. Emerg Microbes Infect 2024;13(1):2361030. https://doi.org/10.1080/22221751.2024.2361030. |
[11]
|
Chen HB, Yin YY, van Dorp L, Shaw LP, Gao H, Acman M, et al. Drivers of methicillin-resistant Staphylococcus aureus (MRSA) lineage replacement in China. Genome Med 2021;13(1):171. https://doi.org/10.1186/s13073-021-00992-x. |
[12]
|
Zhou WX, Jin Y, Chen P, Ge Q, Dong X, Chen YB, et al. Reshaping the battlefield: a decade of clonal wars among Staphylococcus aureus in China. Drug Resist Updat 2025;78:101178. https://doi.org/10.1016/j.drup.2024.101178. |
[13]
|
Li P, Liang QQ, Liu WG, Zheng BW, Liu LZ, Wang W, et al. Convergence of carbapenem resistance and hypervirulence in a highly-transmissible ST11 clone of K. pneumoniae: an epidemiological, genomic and functional study. Virulence 2021;12(1):377 − 88. https://doi.org/10.1080/21505594.2020.1867468. |
[14]
|
Chen T, Ying LY, Xiong LY, Wang XT, Lu P, Wang Y, et al. Understanding carbapenem-resistant hypervirulent Klebsiella pneumoniae: key virulence factors and evolutionary convergence. hLife 2024;2(12):611 − 24. https://doi.org/10.1016/j.hlife.2024.06.005. |
[15]
|
Shi JC, Mao XT, Sun FT, Cheng JH, Shao LY, Shan X, et al. Epidemiological characteristics and antimicrobial resistance of extensively drug-resistant Acinetobacter baumannii in ICU wards. Microbiol Spectr 2025;13(4):e02619 − 24. https://doi.org/10.1128/spectrum.02619-24. |
[16]
|
Song YQ, Mu YQ, Wong NK, Yue Z, Li J, Yuan M, et al. Emergence of hypervirulent Pseudomonas aeruginosa pathotypically armed with co-expressed T3SS effectors ExoS and ExoU. hLife 2023;1(1):44 − 56. https://doi.org/10.1016/j.hlife.2023.02.001. |
[17]
|
Wheeler NE, Price V, Cunningham-Oakes E, Tsang KK, Nunn JG, Midega JT, et al. Innovations in genomic antimicrobial resistance surveillance. Lancet Microbe 2023;4(12):e1063 − 70. https://doi.org/10.1016/S2666-5247(23)00285-9. |
[18]
|
Weinmaier T, Conzemius R, Bergman Y, Lewis S, Jacobs EB, Tamma PD, et al. Validation and application of long-read whole-genome sequencing for antimicrobial resistance gene detection and antimicrobial susceptibility testing. Antimicrob Agents Chemother 2023;67(1):e01072 − 22. https://doi.org/10.1128/aac.01072-22. |
[19]
|
Wang Q, Wang RB, Wang SY, Zhang AR, Duan QY, Sun SJ, et al. Expansion and transmission dynamics of high risk carbapenem-resistant Klebsiella pneumoniae subclones in China: an epidemiological, spatial, genomic analysis. Drug Resist Updat 2024;74:101083. https://doi.org/10.1016/j.drup.2024.101083. |
[20]
|
Wu YL, Chu WW, Hu XQ, Lyu YY, Tai JH, Li RJ, et al. Genomic characteristics and phylogenetic analyses of colonization and infection with carbapenem-resistant Klebsiella pneumoniae in multicenter intensive care units: a cohort study. Microbiol Spectr 2025;13(4):e01584 − 24. https://doi.org/10.1128/spectrum.01584-24. |
[21]
|
Cipriani G, Helmersen K, Mazzon RR, Wagner G, Aamot HV, Ferreira FA. Evaluation of whole-genome sequencing protocols for detection of antimicrobial resistance, virulence factors and mobile genetic elements in antimicrobial-resistant bacteria. J Med Microbiol 2025;74(3):001990. https://doi.org/10.1099/jmm.0.001990. |
[22]
|
Chen QW, Liu LZ, Hu XF, Jia X, Gong XW, Feng YJ, et al. A small KPC-2-producing plasmid in Klebsiella pneumoniae: implications for diversified vehicles of carbapenem resistance. Microbiol Spectr 2022;10(3):e02688 − 21. https://doi.org/10.1128/spectrum.02688-21. |
[23]
|
Liu LZ, Lou NJ, Liang QQ, Xiao W, Teng GQ, Ma JG, et al. Chasing the landscape for intrahospital transmission and evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae. Sci Bull (Beijing) 2023;68(23):3027 − 47. https://doi.org/10.1016/j.scib.2023.10.038. |
[24]
|
Huang M, Liu LZ, Li XX, Shi Y, Zhang HM, Lu T, et al. Heterogeneity and clinical genomics of blaKPC-2-producing, carbapenem-resistant Pseudomonas aeruginosa. hLife 2024;2(6):314 − 9. https://doi.org/10.1016/j.hlife.2024.04.001. |
[25]
|
Sun SW, Chen XYZ. Mechanism-guided strategies for combating antibiotic resistance. World J Microbiol Biotechnol 2024;40(10):295. https://doi.org/10.1007/s11274-024-04106-8. |
[26]
|
Feng J, Zheng YL, Ma WQ, Ihsan A, Hao HH, Cheng GY, et al. Multitarget antibacterial drugs: an effective strategy to combat bacterial resistance. Pharmacol Ther 2023;252:108550. https://doi.org/10.1016/j.pharmthera.2023.108550. |
[27]
|
Li ZW, Guo ZH, Lu X, Ma XC, Wang XK, Zhang R, et al. Evolution and development of potent monobactam sulfonate candidate IMBZ18g as a dual inhibitor against MDR Gram-negative bacteria producing ESBLs. Acta Pharm Sin B 2023;13(7):3067 − 79. https://doi.org/10.1016/j.apsb.2023.03.002. |
[28]
|
Jia J, Zheng MX, Zhang CW, Li BL, Lu C, Bai YF, et al. Killing of Staphylococcus aureus persisters by a multitarget natural product chrysomycin A. Sci Adv 2023;9(31):eadg5995. https://doi.org/10.1126/sciadv.adg5995. |
[29]
|
Liu JY, Cao YG, Xu CG, Li RC, Xiong YY, Wei Y, et al. Quaternized antimicrobial peptide mimics based on harmane as potent anti-MRSA agents by multi-target mechanism covering cell wall, cell membrane and intracellular targets. Eur J Med Chem 2024;276:116657. https://doi.org/10.1016/j.ejmech.2024.116657. |
[30]
|
Liu F, Dawadi S, Maize KM, Dai R, Park SW, Schnappinger D, et al. Structure-based optimization of pyridoxal 5’-phosphate-dependent transaminase enzyme (BioA) inhibitors that target biotin biosynthesis in Mycobacterium tuberculosis. J Med Chem 2017;60(13):5507 − 20. https://doi.org/10.1021/acs.jmedchem.7b00189. |
[31]
|
Xu YC, Yang J, Li WH, Song SJ, Shi Y, Wu LH, et al. Three enigmatic BioH isoenzymes are programmed in the early stage of mycobacterial biotin synthesis, an attractive anti-TB drug target. PLoS Pathog 2022;18(7):e1010615. https://doi.org/10.1371/journal.ppat.1010615. |
[32]
|
Shi Y, Cao QD, Sun J, Hu XF, Su Z, Xu YC, et al. The opportunistic pathogen Pseudomonas aeruginosa exploits bacterial biotin synthesis pathway to benefit its infectivity. PLoS Pathog 2023;19(1):e1011110. https://doi.org/10.1371/journal.ppat.1011110. |
[33]
|
Huang HM, Chang SH, Cui T, Huang M, Qu JX, Zhang HM, et al. An inhibitory mechanism of AasS, an exogenous fatty acid scavenger: implications for re-sensitization of FAS II antimicrobials. PLoS Pathog 2024;20(7):e1012376. https://doi.org/10.1371/journal.ppat.1012376. |
[34]
|
Su Z, Zhang WZ, Shi Y, Cui T, Xu YC, Yang RS, et al. A bacterial methyltransferase that initiates biotin synthesis, an attractive anti-ESKAPE druggable pathway. Sci Adv 2024;10(51):eadp3954. https://doi.org/10.1126/sciadv.adp3954. |
[35]
|
MacNair CR, Rutherford ST, Tan MW. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat Rev Microbiol 2024;22(5):262 − 75. https://doi.org/10.1038/s41579-023-00993-0. |
[36]
|
Xu T, Yan XT, Kang AY, Yang LH, Li XH, Tian Y, et al. Development of membrane-targeting fluorescent 2-phenyl-1H-phenanthro[9,10-d]imidazole-antimicrobial peptide mimic conjugates against methicillin-resistant Staphylococcus aureus. J Med Chem 2024;67(11):9302 − 17. https://doi.org/10.1021/acs.jmedchem.4c00436. |
[37]
|
Sousa CA, Ribeiro M, Vale F, Simões M. Phenazines: natural products for microbial growth control. hLife 2024;2(3):100 − 12. https://doi.org/10.1016/j.hlife.2023.11.005. |
[38]
|
Rafiq MS, Shabbir MA, Raza A, Irshad S, Asghar A, Maan MK, et al. CRISPR-Cas system: a new dawn to combat antibiotic resistance. BioDrugs 2024;38(3):387 − 404. https://doi.org/10.1007/s40259-024-00656-3. |
[39]
|
Li Y, Cui XY, Yang XY, Liu GQ, Zhang J. Artificial intelligence in predicting pathogenic microorganisms’ antimicrobial resistance: challenges, progress, and prospects. Front Cell Infect Microbiol 2024;14:1482186. https://doi.org/10.3389/fcimb.2024.1482186. |
[40]
|
Beyer P, Paulin S. The antibacterial research and development pipeline needs urgent solutions. ACS Infect Dis 2020;6(6):1289 − 91. https://doi.org/10.1021/acsinfecdis.0c00044. |
[41]
|
Gao GF, Hoffmann JA, Walzer C, Lu JH. Global public health crisis response: a roundtable discussion with Professor George Fu Gao, Professor Jules A Hoffmann, Professor Chris Walzer and Professor Jiahai Lu. hLife 2023;1(2):63 − 70. https://doi.org/10.1016/j.hlife.2023.10.001. |