[1]
|
Walker MJ, Brouwer S. Scarlet fever makes a comeback. Lancet Infect Dis 2018;18(2):128 − 9. http://dx.doi.org/10.1016/S1473-3099(17)30694-1. |
[2]
|
Brouwer S, Rivera-Hernandez T, Curren BF, Harbison-Price N, De Oliveira DMP, Jespersen MG, et al. Pathogenesis, epidemiology and control of group A Streptococcus infection. Nat Rev Microbiol 2023;21(7):431 − 47. http://dx.doi.org/10.1038/s41579-023-00865-7. |
[3]
|
Ma Y, Gao S, Kang Z, Shan L, Jiao M, Li Y, et al. Epidemiological trend in scarlet fever incidence in China during the COVID-19 pandemic: A time series analysis. Front Public Health 2022;10:10923318. http://dx.doi.org/10.3389/fpubh.2022.923318. |
[4]
|
Hurst JR, Brouwer S, Walker MJ, Mccormick JK. Streptococcal superantigens and the return of scarlet fever. PLoS Pathog 2021;17(12):e1010097. http://dx.doi.org/10.1371/journal.ppat.1010097. |
[5]
|
Liu YH, Chan TC, Yap LW, Luo YP, Xu WJ, Qin SW, et al. Resurgence of scarlet fever in China: a 13-year population-based surveillance study. Lancet Infect Dis 2018;18(8):903 − 12. http://dx.doi.org/10.1016/S1473-3099(18)30231-7. |
[6]
|
You YH, Qin Y, Walker MJ, Feng LZ, Zhang JZ. Increased incidence of scarlet fever — China, 1999−2018. China CDC Wkly 2019;1(5):63 − 6. http://dx.doi.org/10.46234/ccdcw2019.019. |
[7]
|
Lynskey NN, Jauneikaite E, Li HK, Zhi XY, Turner CE, Mosavie M, et al. Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: a population-based molecular epidemiological study. Lancet Infect Dis 2019;19(11):1209 − 18. http://dx.doi.org/10.1016/S1473-3099(19)30446-3. |
[8]
|
Park DW, Kim SH, Park JW, Kim MJ, Cho SJ, Park HJ, et al. Incidence and characteristics of scarlet fever, South Korea, 2008–2015. Emerg Infect Dis 2017;23(4):658 − 61. http://dx.doi.org/10.3201/eid2304.160773. |
[9]
|
Feng GS, Yu SC, Liu SW. Application of trajectory analysis model in tracking data analysis. Chin Prev Med 2014;15(3):292-5. https://d.wanfangdata.com.cn/periodical/zgyfyxzz201403035. (In Chinese). |
[10]
|
You YH. Research progress on scarlet fever epidemic and associated factors. Chin J Appl Clin Pediatr 2022;37(21):1626-9. https://rs.yiigle.com/CN101070202221/1432045.htm. (In Chinese). |
[11]
|
Li HX, Zhou L, Zhao Y, Ma LJ, Liu XY, Hu J. Molecular epidemiology and antimicrobial resistance of group a streptococcus recovered from patients in Beijing, China. BMC Infect Dis 2020;20(1):507. http://dx.doi.org/10.1186/s12879-020-05241-x. |
[12]
|
Peng XM, Yang P, Wu SS, Lu GL, Shi WX, Zhao JC, et al. emm Types of mutation in scarlet-fever-related group A streptococcal, among children in Beijing, 2011–2014. Chin J Epidemiol 2015;36(12):1397-400. http://html.rhhz.net/zhlxbx/20151218.htm. (In Chinese). |
[13]
|
Chen ML, Cai JH, Davies MR, Li YF, Zhang C, Yao WL, et al. Increase of emm1 isolates among group A Streptococcus strains causing scarlet fever in Shanghai, China. Int J Infect Dis 2020;98:305 − 14. http://dx.doi.org/10.1016/j.ijid.2020.06.053. |
[14]
|
Wong SS, Yuen KY. Streptococcus pyogenes and re-emergence of scarlet fever as a public health problem. Emerg Microbes Infect 2012;1(7):e2. http://dx.doi.org/10.1038/emi.2012.9. |
[15]
|
Lee CF, Cowling BJ, Lau EHY. Epidemiology of reemerging scarlet fever, Hong Kong, 2005–2015. Emerg Infect Dis 2017;23(10):1707 − 10. http://dx.doi.org/10.3201/eid2310.161456. |
[16]
|
Chen HJ, Chen Y, Sun BJ, Wen LH, An XD. Epidemiological study of scarlet fever in Shenyang, China. BMC Infect Dis 2019;19(1):1074. http://dx.doi.org/10.1186/s12879-019-4705-9. |
[17]
|
Mahara G, Wang C, Huo D, Xu Q, Huang FF, Tao LX, et al. Spatiotemporal pattern analysis of scarlet fever incidence in Beijing, China, 2005-2014. Int J Environ Res Public Health 2016;13(1):131. http://dx.doi.org/10.3390/ijerph13010131. |
[18]
|
Rao HX, Li DM, Zhao XY, Yu J. Spatiotemporal clustering and meteorological factors affected scarlet fever incidence in mainland China from 2004 to 2017. Sci Total Environ 2021;777:146145. http://dx.doi.org/10.1016/j.scitotenv.2021.146145. |
[19]
|
Zhang T, Yang M, Xiao X, Feng Z, Li C, Zhou Z, et al. Spectral analysis based on fast Fourier transformation (FFT) of surveillance data: the case of scarlet fever in China. Epidemiol Infect 2014;142(3):520 − 9. http://dx.doi.org/10.1017/S0950268813001283. |
[20]
|
Mahara G, Wang C, Yang K, Chen SP, Guo J, Gao Q, et al. The association between environmental factors and scarlet fever incidence in Beijing region: using GIS and spatial regression models. Int J Environ Res Public Health 2016;13(11):1083. http://dx.doi.org/10.3390/ijerph13111083. |
[21]
|
Liu YH, Ding H, Chang ST, Lu R, Zhong H, Zhao N, et al. Exposure to air pollution and scarlet fever resurgence in China: a six-year surveillance study. Nat Commun 2020;11(1):4229. http://dx.doi.org/10.1038/s41467-020-17987-8. |
[22]
|
Jiang FC, Wei T, Hu XW, Han YL, Jia J, Pan B, et al. The association between ambient air pollution and scarlet fever in Qingdao, China, 2014-2018: a quantitative analysis. BMC Infect Dis 2021;21(1):987. http://dx.doi.org/10.1186/s12879-021-06674-8. |