[1]
|
WHO. World malaria report 2022. 2022. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022. [2023-12-14]. |
[2]
|
Engdahl CS, Tikhe CV, Dimopoulos G. Discovery of novel natural products for mosquito control. Parasit Vectors 2022;15(1):481. https://doi.org/10.1186/s13071-022-05594-zCrossRef
|
[3]
|
Cai L, Hu XY, Liu S, Wang L, Lu H, Tu H, et al. The research progress of Chikungunya fever. Front Public Health 2023;10:1095549. https://doi.org/10.3389/fpubh.2022.1095549CrossRef
|
[4]
|
Varo R, Chaccour C, Bassat Q. Update on malaria. Med Clin (Barc) 2020;155(9):395 − 402. https://doi.org/10.1016/j.medcli.2020.05.010CrossRef
|
[5]
|
Genton B. R21/Matrix-MTM malaria vaccine: a new tool to achieve WHO’s goal to eliminate malaria in 30 countries by 2030? J Travel Med 2023;30(8):taad140. http://dx.doi.org/10.1093/jtm/taad140. |
[6]
|
Tuells J, Henao-Martínez AF, Franco-Paredes C. Yellow fever: a perennial threat. Arch Med Res 2022;53(7):649 − 57. https://doi.org/10.1016/j.arcmed.2022.10.005CrossRef
|
[7]
|
Biswal S, Borja-Tabora C, Martinez Vargas L, Velásquez H, Theresa Alera M, Sierra V, et al. Efficacy of a tetravalent dengue vaccine in healthy children aged 4-16 years: a randomised, placebo-controlled, phase 3 trial. Lancet 2020;395(10234):1423 − 33. https://doi.org/10.1016/S0140-6736(20)30414-1CrossRef
|
[8]
|
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature 2013;496(7446):504 − 7. https://doi.org/10.1038/nature12060CrossRef
|
[9]
|
Zhang WR, Wang JN, Liu QM, Gong ZY. A review of pathogens transmitted by the container-inhabiting mosquitoes, aedes albopictus, a global public health threat. China CDC Wkly 2023;5(44):984 − 90. https://doi.org/10.46234/ccdcw2023.185CrossRef
|
[10]
|
Suh PF, Elanga-Ndille E, Tchouakui M, Sandeu MM, Tagne D, Wondji C, et al. Impact of insecticide resistance on malaria vector competence: a literature review. Malar J 2023;22(1):19. https://doi.org/10.1186/s12936-023-04444-2CrossRef
|
[11]
|
Karl S, Katusele M, Freeman TW, Moore SJ. Quality control of long-lasting insecticidal nets: are we neglecting it? Trends Parasitol 2021;37(7):610-21. http://dx.doi.org/10.1016/j.pt.2021.03.004. |
[12]
|
Corrêa APSA, Galardo AKR, Lima LA, Câmara DCP, Müller JN, Barroso JFS, et al. Efficacy of insecticides used in indoor residual spraying for malaria control: an experimental trial on various surfaces in a “test house”. Malar J 2019;18(1):345. https://doi.org/10.1186/s12936-019-2969-6CrossRef
|
[13]
|
N’Guessan R, Assi SB, Koffi A, Ahoua Alou PL, Mian A, Achee NL, et al. EaveTubes for control of vector-borne diseases in Côte d’Ivoire: study protocol for a cluster randomized controlled trial. Trials 2023;24(1):704. https://doi.org/10.1186/s13063-023-07639-9CrossRef
|
[14]
|
Kurucz K, Zeghbib S, Arnoldi D, Marini G, Manica M, Michelutti A, et al. Aedes koreicus, a vector on the rise: Pan-European genetic patterns, mitochondrial and draft genome sequencing. PLoS One 2022;17(8):e0269880. https://doi.org/10.1371/journal.pone.0269880CrossRef
|
[15]
|
Kobylinski KC, Tipthara P, Wamaket N, Chainarin S, Kullasakboonsri R, Sriwichai P, et al. Ivermectin metabolites reduce Anopheles survival. Sci Rep 2023;13(1):8131. https://doi.org/10.1038/s41598-023-34719-2CrossRef
|
[16]
|
Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 2015;526(7572):207 − 11. https://doi.org/10.1038/nature15535CrossRef
|
[17]
|
Wang GH, Gamez S, Raban RR, Marshall JM, Alphey L, Li M, et al. Combating mosquito-borne diseases using genetic control technologies. Nat Commun 2021;12(1):4388. https://doi.org/10.1038/s41467-021-24654-zCrossRef
|
[18]
|
Mafra-Neto A, Dekker T. Novel odor-based strategies for integrated management of vectors of disease. Curr Opin Insect Sci 2019;34:105 − 11. https://doi.org/10.1016/j.cois.2019.05.007CrossRef
|
[19]
|
WHO. Global technical strategy for malaria 2016–2030, 2021 update. 2021. https://www.who.int/publications-detail-redirect/9789240031357. [2023-12-14]. |
[20]
|
Manzi S, Nelli L, Fortuna C, Severini F, Toma L, Di Luca M, et al. A modified BG-Sentinel trap equipped with FTA card as a novel tool for mosquito-borne disease surveillance: a field test for flavivirus detection. Sci Rep 2023;13(1):12840. https://doi.org/10.1038/s41598-023-39857-1CrossRef
|
[21]
|
Sarma DK, Rathod L, Mishra S, Das D, Agarwal A, Sharma G, et al. Molecular surveillance of dengue virus in field-collected Aedes mosquitoes from Bhopal, central India: evidence of circulation of a new lineage of serotype 2. Front Microbiol 2023;14:1260812. https://doi.org/10.3389/fmicb.2023.1260812CrossRef
|
[22]
|
Paradkar PN, Sahasrabudhe PR, Ghag Sawant M, Mukherjee S, Blasdell KR. Towards integrated management of dengue in Mumbai. Viruses 2021;13(12):2436. https://doi.org/10.3390/v13122436CrossRef
|
[23]
|
Fouet C, Kamdem C. Integrated mosquito management: is precision control a luxury or necessity? Trends Parasitol 2019;35(1):85 − 95. http://dx.doi.org/10.1016/j.pt.2018.10.004. |
[24]
|
Mulderij-Jansen V, Pundir P, Grillet ME, Lakiang T, Gerstenbluth I, Duits A, et al. Effectiveness of Aedes-borne infectious disease control in Latin America and the Caribbean region: A scoping review. PLoS One 2022;17(11):e0277038. https://doi.org/10.1371/journal.pone.0277038CrossRef
|
[25]
|
Adelman ZN, Kojin BB. Malaria-resistant mosquitoes (Diptera: Culicidae); The principle is proven, but will the effectors be effective? J Med Entomol 2021;58(5):1997-2005. http://dx.doi.org/10.1093/jme/tjab090. |
[26]
|
Liu QY. The sustainable control strategy and key technology of Aedes vector. Electron J Emerg Infect Dis 2018;3(2):75 − 9. https://doi.org/10.19871/j.cnki.xfcrbzz.2018.02.004CrossRef
|
[27]
|
Liu QY, Liu XB, Chang N, Zhang L. Advances and achievements in the surveillance and control of vectors and vector-borne diseases in China, 2012-2021. Chin J Vector Biol Control 2022;33(5):613 − 21,654. https://doi.org/10.11853/j.issn.1003.8280.2022.05.001CrossRef
|
[28]
|
Xu JG. Reverse microbial etiology. Dis Surveill 2019;34(7):593 − 8. https://doi.org/10.3784/j.issn.1003-9961.2019.07.005CrossRef
|
[29]
|
Bartumeus F, Costa GB, Eritja R, Kelly AH, Finda M, Lezaun J, et al. Sustainable innovation in vector control requires strong partnerships with communities. PLoS Negl Trop Dis 2019;13(4):e0007204. https://doi.org/10.1371/journal.pntd.0007204CrossRef
|
[30]
|
Petrone ME, Earnest R, Lourenço J, Kraemer MUG, Paulino-Ramirez R, Grubaugh ND, et al. Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic. Nat Commun 2021;12(1):151. https://doi.org/10.1038/s41467-020-20391-xCrossRef
|
[31]
|
Wang HM, Qiu JQ, Li C, Wan HL, Yang CH, Zhang T. Applying the spatial transmission network to the forecast of infectious diseases across multiple regions. Front Public Health 2022;10:774984. https://doi.org/10.3389/fpubh.2022.774984CrossRef
|
[32]
|
Aerts C, Revilla M, Duval L, Paaijmans K, Chandrabose J, Cox H, et al. Understanding the role of disease knowledge and risk perception in shaping preventive behavior for selected vector-borne diseases in Guyana. PLoS Negl Trop Dis 2020;14(4):e0008149. https://doi.org/10.1371/journal.pntd.0008149CrossRef
|
[33]
|
Isman MB. Botanical insecticides in the twenty-first century—fulfilling their promise? Annu Rev Entomol 2020;65:233-49. http://dx.doi.org/10.1146/annurev-ento-011019-025010. |
[34]
|
Zheng XY, Zhang DJ, Li YJ, Yang C, Wu Y, Liang X, et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 2019;572(7767):56 − 61. https://doi.org/10.1038/s41586-019-1407-9CrossRef
|
[35]
|
Sharma M, Kumar V. Mosquito-larvicidal Binary (BinA/B) proteins for mosquito control programs —advancements, challenges, and possibilities. Curr Res Insect Sci 2022;2:100028. https://doi.org/10.1016/j.cris.2021.100028CrossRef
|
[36]
|
Resnik DB. Two unresolved issues in community engagement for field trials of genetically modified mosquitoes. Pathog Glob Health 2019;113(5):238 − 45. https://doi.org/10.1080/20477724.2019.1670490CrossRef
|
[37]
|
Müller R, Bálint M, Hardes K, Hollert H, Klimpel S, Knorr E, et al. RNA interference to combat the Asian tiger mosquito in Europe: a pathway from design of an innovative vector control tool to its application. Biotechnol Adv 2023;66:108167. https://doi.org/10.1016/j.biotechadv.2023.108167CrossRef
|
[38]
|
Sabet A, Goddard J. Promise or peril: using genetically modified mosquitoes in the fight against vector-borne disease. Am J Med 2022;135(3):281 − 3. https://doi.org/10.1016/j.amjmed.2021.08.036CrossRef
|
[39]
|
Connelly R. Highlights of medical entomology 2018: the importance of sustainable surveillance of vectors and vector-borne pathogens. J Med Entomol 2019;56(5):1183 − 7. https://doi.org/10.1093/jme/tjz134CrossRef
|
[40]
|
Horstick O, Runge-Ranzinger S. Multisectoral approaches for the control of vector-borne diseases, with particular emphasis on dengue and housing. Trans Roy Soc Trop Med Hyg 2019;113(12):823 − 8. https://doi.org/10.1093/trstmh/trz020CrossRef
|
[41]
|
WHO. Global vector control response 2017-2030. 2017. https://www.who.int/publications-detail-redirect/9789241512978. [2023-12-14]. |
[42]
|
WHO. Tripartite and UNEP support OHHLEP’s definition of “One Health”. 2021. https://www.who.int/news/item/01-12-2021-tripartite-and-unep-support-ohhlep-s-definition-of-one-health. [2023-12-14]. |
[43]
|
Lorusso V. Parasitology and one health—perspectives on Africa and beyond. Pathogens 2021;10(11):1437. https://doi.org/10.3390/pathogens10111437CrossRef
|
[44]
|
WHO. Quadripartite call to action for One Health for a safer world. 2023. https://www.who.int/news/item/27-03-2023-quadripartite-call-to-action-for-one-health-for-a-safer-world. [2023-12-14]. |
[45]
|
Qi YP, Wang JN, Wu YY, Fu XF, Li YF, Huang J, et al. Evaluation and discussion of effect of "mosquito and fly-free village" establishment in Hongxi village, Jiashan, Zhejiang. Dis Surveill 2021;36(9):873 − 8. https://doi.org/10.3784/jbjc.202106010313CrossRef
|
[46]
|
Guo S, Huang WZ, Sun JM, Gong ZY, Ling F, Wu HZ, et al. “Mosquito-free villages”: practice, exploration, and prospects of sustainable Mosquito Control - Zhejiang, China. China CDC Wkly 2019;1(5):70 − 4. https://doi.org/10.46234/ccdcw2019.021CrossRef
|
[47]
|
Guo S, Huang W, Ling F, Wu H, Sun J, Lou Y, et al. Discussion on construction standard and evaluation index of "mosquito-free village" in Zhejiang province. Chin J Vector Biol Control 2018;29(2):177 − 80. https://doi.org/10.11853/j.issn.1003.8280.2018.02.016CrossRef
|
[48]
|
Liu YS, Zhou Y. Challenges and countermeasures for beautiful countryside construction in China. J Agric Resour Environ 2015;32(2):97 − 105. https://doi.org/10.13254/j.jare.2015.0092CrossRef
|
[49]
|
Wu H, Liu Y, Huang W, Ling F, Lou YJ, Sun J, et al. Evaluation on construction of “mosquito-free village” in Pujiang county, Zhejiang, China. Chin J Vector Biol Control 2018;29(3):283 − 6. https://doi.org/10.11853/j.issn.1003.8280.2018.03.016CrossRef
|
[50]
|
Zhu HB, Ye HF, Chen M, Zeng Y, Chen F, Fu ZJ. Effectiveness evaluation of 'mosquito-free village' construction in Qingtian county, Zhejiang province, China. Chin J Vector Biol Control 2021;32(3):365 − 8. https://doi.org/10.11853/j.issn.1003.8280.2021.03.021CrossRef
|
[51]
|
State Administration for Market Regulation, Standardization Administration. GB/T 23797-2020 Surveillance methods for vector density—Mosquito. Beijing: Standards Press of China, 2020. http://www.csres.com/detail/354742.html. (In Chinese). |
[52]
|
Zheng XY, Wu Y, Zhang DJ, Hong XY, Xi ZY. Combining Wolbachia-based approach and sterile insect techniques eliminate Aedes albopictus population in field. J Nanjing Agric Univ 2020;43(3):387 − 91. https://doi.org/10.7685/jnau.202003100CrossRef
|