[1]
|
Han ZM, Feng HD, Wang C, Wang XG, Yang M, Zhang Y, et al. Mitigating antibiotic resistance emissions in the pharmaceutical industry: global governance and available techniques. China CDC Wkly 2023;5(46):1038 − 44. https://doi.org/10.46234/ccdcw2023.195CrossRef
|
[2]
|
Hui XS, Fang WJ, Wang G, Liu HL, Dai XH. Waste recycling of antibiotic mycelial residue: the feasible harmless treatment and source control of antibiotic resistance. J Cleaner Prod 2023;401:136786. https://doi.org/10.1016/j.jclepro.2023.136786CrossRef
|
[3]
|
World Health Organization. Guidance on wastewater and solid waste management for manufacturing of antibiotics. Geneva: World Health Organization; 2024. Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/publications/i/item/9789240097254.[2024-9-13]. |
[4]
|
Yi QZ, Zhang Y, Gao YX, Tian Z, Yang M. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: simultaneous reduction of COD and ARGs. Water Res 2017;110:211 − 7. https://doi.org/10.1016/j.watres.2016.12.020CrossRef
|
[5]
|
Tang L, Feng HD, Luan X, Han ZM, Yang M, Zhang Y. Occurrence, distribution, and behaviors of erythromycin A, production byproducts, transformation products, and resistance genes in a full-scale erythromycin A production wastewater treatment system. Water Res 2023;245:120640. https://doi.org/10.1016/j.watres.2023.120640CrossRef
|
[6]
|
He YP, Tian Z, Luan X, Han ZM, Zhang Y, Yang M. Recovery of biological wastewater treatment system inhibited by oxytetracycline: rebound of functional bacterial population and the impact of adsorbed oxytetracycline on antibiotic resistance. Chem Eng J 2021;418:129364. https://doi.org/10.1016/j.cej.2021.129364CrossRef
|
[7]
|
Feng MM, Liu YW, Yang L, Li ZJ. Antibiotics and antibiotic resistance gene dynamics in the composting of antibiotic fermentation waste - a review. Bioresour Technol 2023;390:129861. https://doi.org/10.1016/j.biortech.2023.129861CrossRef
|
[8]
|
World Health Organization. Technical brief on water, sanitation, hygiene (WASH) and wastewater management to prevent infections and reduce the spread of antimicrobial resistance (AMR). Geneva: World Health Organization. 2020. https://www.who.int/publications/i/item/9789240006416. [2024-9-21] |
[9]
|
Zhang Y, Walsh TR, Wang Y, Shen JZ, Yang M. Minimizing risks of antimicrobial resistance development in the environment from a public one health perspective. China CDC Wkly 2022;4(49):1105 − 9. https://doi.org/10.46234/ccdcw2022.224CrossRef
|
[10]
|
Ministry of Ecology and Environment of the People’s Republic of China. Guideline on available techniques of pollution prevention and control for pharmaceutical industry——Active pharmaceutical ingredients (fermentation, chemical synthesis, extraction) and preparation categories. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/kxxjszn/202309/t20230926_1041928.shtml. [2024-11-25]. (In Chinese). |
[11]
|
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med 2021;18(3):e1003583. https://doi.org/10.1371/journal.pmed.1003583CrossRef
|
[12]
|
Chen CM. CiteSpace Ii: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci 2006;57(3):359 − 77. https://doi.org/10.1002/asi.20317CrossRef
|
[13]
|
AMR Industry Alliance. Minimizing risk of developing antibiotic resistance and aquatic ecotoxicity in the environment resulting from the manufacturing of human antibiotics. Geneva: AMR Industry Alliance. 2022. https://www.amrindustryalliance.org/wp-content/uploads/2022/06/AMRIA_Antibiotic-Manufacturing-Standard_EMBARGOED-UNTIL-JUN-14-8-am-EDT.pdf. [2024-12-5]. |
[14]
|
Kotwani A, Kapur A, Chauhan M, Gandra S. Treatment and disposal practices of pharmaceutical effluent containing potential antibiotic residues in two states in India and perceptions of various stakeholders on contribution of pharmaceutical effluent to antimicrobial resistance: a qualitative study. J Pharm Policy Pract 2023;16(1):59. https://doi.org/10.1186/s40545-023-00562-zCrossRef
|
[15]
|
Zhang H, Zhang Y, Yang M, Liu MM. Evaluation of residual antibacterial potency in antibiotic production wastewater using a real-time quantitative method. Environ Sci: Processes Impacts 2015;17(11):1923 − 9. https://doi.org/10.1039/C5EM00228ACrossRef
|
[16]
|
Kamal A, Kanafin YN, Satayeva A, Kim J, Poulopoulos SG, Arkhangelsky E. Removal of carbamazepine, sulfamethoxazole and aspirin at municipal wastewater treatment plant of Astana, Kazakhstan: paths to increase the efficiency of the treatment process. J Chem Technol Biotechnol 2024;99(11):2248 − 58. https://doi.org/10.1002/jctb.7713CrossRef
|
[17]
|
Zhang YY, Hu YF, Li XW, Gao LJ, Wang SY, Jia SY, et al. Prevalence of antibiotics, antibiotic resistance genes, and their associations in municipal wastewater treatment plants along the Yangtze River basin, China. Environ Pollut 2024;348:123800. https://doi.org/10.1016/j.envpol.2024.123800CrossRef
|
[18]
|
Lin Q, Yu CS, Chen KY, Yasir H, Luo AC, Liang ZW, et al. Occurrence of micropollutants in rural domestic wastewater in Zhejiang Province, China and corresponding wastewater-based epidemiology analysis. Sci Total Environ 2024;931:172686. https://doi.org/10.1016/j.scitotenv.2024.172686CrossRef
|
[19]
|
Hu JR, Lyu Y, Chen H, Li S, Sun WL. Suspect and nontarget screening reveal the underestimated risks of antibiotic transformation products in wastewater treatment plant effluents. Environ Sci Technol 2023;57(45):17439 − 51. https://doi.org/10.1021/acs.est.3c05008CrossRef
|
[20]
|
Meng F, Sun SJ, Geng JL, Ma LX, Jiang JP, Li B, et al. Occurrence, distribution, and risk assessment of quinolone antibiotics in municipal sewage sludges throughout China. J Hazard Mater 2023;453:131322. https://doi.org/10.1016/j.jhazmat.2023.131322CrossRef
|
[21]
|
Liu MM, Zhang Y, Yang M, Tian Z, Ren LR, Zhang SJ. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system. Environ Sci Technol 2012;46(14):7551 − 7. https://doi.org/10.1021/es301145mCrossRef
|
[22]
|
Liu MM, Ding R, Zhang Y, Gao YX, Tian Z, Zhang T, et al. Abundance and distribution of Macrolide-Lincosamide-Streptogramin resistance genes in an anaerobic-aerobic system treating spiramycin production wastewater. Water Res 2014;63:33 − 41. https://doi.org/10.1016/j.watres.2014.05.045CrossRef
|
[23]
|
Li D, Yang M, Hu JY, Ren LR, Zhang Y, Li KZA. Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river. Environ Toxicol Chem 2008;27(1):80 − 6. https://doi.org/10.1897/07-080.1CrossRef
|
[24]
|
Deng YQ, Zhang Y, Gao YX, Li D, Liu RY, Liu MM, et al. Microbial Community Compositional Analysis for Series Reactors Treating High Level Antibiotic Wastewater. Environ Sci Technol 2012;46(2):795 − 801. https://doi.org/10.1021/es2025998CrossRef
|
[25]
|
Zhang Y, Xie JP, Liu MM, Tian Z, He ZL, van Nostrand JD, et al. Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems. Water Res 2013;47(16):6298 − 308. https://doi.org/10.1016/j.watres.2013.08.003CrossRef
|
[26]
|
Tian Y, Tian Z, He YP, Sun GX, Zhang Y, Yang M. Removal of denatured protein particles enhanced UASB treatment of oxytetracycline production wastewater. Sci Total Environ 2022;816:151549. https://doi.org/10.1016/j.scitotenv.2021.151549CrossRef
|
[27]
|
Bengtsson-Palme J, Milakovic M, Švecová H, Ganjto M, Jonsson V, Grabic R, et al. Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities. Water Res 2019;162:437 − 45. https://doi.org/10.1016/j.watres.2019.06.073CrossRef
|
[28]
|
Amin MM, Zilles JL, Greiner J, Charbonneau S, Raskin L, Morgenroth E. Influence of the antibiotic erythromycin on anaerobic treatment of a pharmaceutical wastewater. Environ Sci Technol 2006;40(12):3971 − 7. https://doi.org/10.1021/es060428jCrossRef
|
[29]
|
Grela A, Kuc J, Klimek A, Matusik J, Pamuła J, Franus W, et al. Erythromycin scavenging from aqueous solutions by zeolitic materials derived from fly ash. Molecules 2023;28(2):798. https://doi.org/10.3390/molecules28020798CrossRef
|
[30]
|
Liu MM, Zhang Y, Zhang H, Zhang HF, Li KX, Tian Z, et al. Ozonation as an effective pretreatment for reducing antibiotic resistance selection potency in oxytetracycline production wastewater. Desalination Water Treat 2017;74:155 − 62. https://doi.org/10.5004/dwt.2017.20731CrossRef
|
[31]
|
Tang M, Gu Y, Wei DB, Tian Z, Tian Y, Yang M, et al. Enhanced hydrolysis of fermentative antibiotics in production wastewater: hydrolysis potential prediction and engineering application. Chem Eng J 2020;391:123626. https://doi.org/10.1016/j.cej.2019.123626CrossRef
|
[32]
|
Feng HD, Hu YQ, Tang L, Tian Y, Tian Z, Wei DB, et al. New hydrolysis products of oxytetracycline and their contribution to hard COD in biological effluents of antibiotic production wastewater. Chem Eng J 2023;471:144409. https://doi.org/10.1016/j.cej.2023.144409CrossRef
|
[33]
|
Han ZM, Feng HD, Luan X, Shen YP, Ren LR, Deng LJ, et al. Three-year consecutive field application of erythromycin fermentation residue following hydrothermal treatment: cumulative effect on soil antibiotic resistance genes. Engineering 2022;15:78 − 88. https://doi.org/10.1016/j.eng.2022.05.011CrossRef
|
[34]
|
Han ZM, Luan X, Feng HD, Deng YQ, Yang M, Zhang Y. Metagenomic insights into microorganisms and antibiotic resistance genes of waste antibiotic fermentation residues along production, storage and treatment processes. J Environ Sci 2024;136:45 − 55. https://doi.org/10.1016/j.jes.2022.10.035CrossRef
|
[35]
|
Ministry of Ecology and Environment of the People’s Republic of China. Discharge standard of water pollutants for pharmaceutical industry Fermentation products category. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/200807/t20080701_124699.shtml. [2024-11-25]. (In Chinese). |
[36]
|
Ofori-Boateng R, Aceves-Martins M, Wiratunga N, Moreno-Garcia CF. Towards the automation of systematic reviews using natural language processing, machine learning, and deep learning: a comprehensive review. Artif Intell Rev 2024;57(8):200. https://doi.org/10.1007/s10462-024-10844-wCrossRef
|
[37]
|
Foppiano L, Lambard G, Amagasa T, Ishii M. Mining experimental data from materials science literature with large language models: an evaluation study. Sci Technol Adv Mater: Methods 2024;4(1):2356506. https://doi.org/10.1080/27660400.2024.2356506CrossRef
|
[38]
|
Awad M, Tian Z, Gao YX, Yang M, Zhang Y. Pretreatment of spiramycin fermentation residue using hyperthermophilic digestion: quick startup and performance. Water Sci Technol 2018;78(9):1823 − 32. https://doi.org/10.2166/wst.2018.256CrossRef
|
[39]
|
Wang G, Liu HL, Gong PC, Wang J, Dai XH, Wang P. Insight into the evolution of antibiotic resistance genes and microbial community during spiramycin fermentation residue composting process after thermally activated peroxydisulfate pretreatment. J Hazard Mater 2022;424:127287. https://doi.org/10.1016/j.jhazmat.2021.127287CrossRef
|
[40]
|
Hua T, Li SN, Li FX, Ondon BS, Liu YWJ, Wang HN. Degradation performance and microbial community analysis of microbial electrolysis cells for erythromycin wastewater treatment. Biochem Eng J 2019;146:1 − 9. https://doi.org/10.1016/j.bej.2019.02.008CrossRef
|
[41]
|
Chu LB, Chen D, Wang JL, Yang ZL, Shen YP. Degradation of antibiotics and antibiotic resistance genes in erythromycin fermentation residues using radiation coupled with peroxymonosulfate oxidation. Waste Manage 2019;96:190 − 7. https://doi.org/10.1016/j.wasman.2019.07.031CrossRef
|
[42]
|
Zhang YX, Liu HL, Xin YJ, Shen YP, Wang J, Cai C, et al. Erythromycin degradation and ERY-resistant gene inactivation in erythromycin mycelial dreg by heat-activated persulfate oxidation. Chem Eng J 2019;358:1446 − 53. https://doi.org/10.1016/j.cej.2018.10.157CrossRef
|
[43]
|
Chu LB, Wang JL, Chen CH, He SJ, Wojnárovits L, Takács E. Advanced treatment of antibiotic wastewater by ionizing radiation combined with peroxymonosulfate/H2O2 oxidation. J Cleaner Prod 2021;321:128921. https://doi.org/10.1016/j.jclepro.2021.128921CrossRef
|
[44]
|
Pei J, Yao H, Wang H, Ren J, Yu XH. Comparison of ozone and thermal hydrolysis combined with anaerobic digestion for municipal and pharmaceutical waste sludge with tetracycline resistance genes. Water Res 2016;99:122 − 8. https://doi.org/10.1016/j.watres.2016.04.058CrossRef
|
[45]
|
Awad M, Tian Z, Zhang Y, Yang M, Yin WJ, Dong LP. Hydrothermal pretreatment of oxytetracycline fermentation residue: removal of oxytetracycline and increasing the potential for anaerobic digestion. Environ Eng Res 2020;26(4):200258. https://doi.org/10.4491/eer.2020.258CrossRef
|
[46]
|
Chen SN, Zhong WZ, Ning ZF, Niu JR, Feng J, Qin X, et al. Effect of homemade compound microbial inoculum on the reduction of terramycin and antibiotic resistance genes in terramycin mycelial dreg aerobic composting and its mechanism. Bioresour Technol 2023;368:128302. https://doi.org/10.1016/j.biortech.2022.128302CrossRef
|
[47]
|
Tian Y, Tian Z, Feng HD, Luan X, Han ZM, Zhang Y, et al. Unveiling the threshold values of organic and oxytetracycline loadings for nitrification recovery of a full-scale pharmaceutical wastewater treatment system. Chem Eng J 2023;463:142487. https://doi.org/10.1016/j.cej.2023.142487CrossRef
|
[48]
|
Hou J, Chen ZY, Gao J, Xie YL, Li LY, Qin SY, et al. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies. Water Res 2019;159:511 − 20. https://doi.org/10.1016/j.watres.2019.05.034CrossRef
|
[49]
|
Yang L, Zhang SH, Chen ZQ, Wen QX, Wang Y. Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge. Bioresour Technol 2016;204:185 − 91. https://doi.org/10.1016/j.biortech.2016.01.004CrossRef
|