[1] Rath S, Mishra B, Mohapatra PR, Datta A, Durgeshwar G, Vedala M, et al. Tuberculosis and COVID-19: An epidemic submerged in the pandemic: a case series and review of current literature. J Family Med Prim Care 2022;11(10):6576 − 80. https://doi.org/10.4103/jfmpc.jfmpc_258_22.
[2] Reid M, Agbassi YJP, Arinaminpathy N, Bercasio A, Bhargava A, Bhargava M, et al. Scientific advances and the end of tuberculosis: a report from the Lancet Commission on Tuberculosis. Lancet 2023;402(10411):1473 − 98. https://doi.org/10.1016/S0140-6736(23)01379-X.
[3] Crisan-Dabija R, Grigorescu C, Pavel CA, Artene B, Popa IV, Cernomaz A, et al. Tuberculosis and COVID-19: lessons from the past viral outbreaks and possible future outcomes. Can Respir J 2020;2020:1401053. https://doi.org/10.1155/2020/1401053.
[4] Schrager LK, Chandrasekaran P, Fritzell BH, Hatherill M, Lambert PH, McShane H, et al. WHO preferred product characteristics for new vaccines against tuberculosis. Lancet Infect Dis 2018;18(8):828 − 9. https://doi.org/10.1016/S1473-3099(18)30421-3.
[5] Ji ZH, Jian MM, Chen TG, Luo LS, Li LB, Dai XT, et al. Immunogenicity and safety of the M72/AS01E candidate vaccine against tuberculosis: a meta-analysis. Front Immunol 2019;10:2089. https://doi.org/10.3389/fimmu.2019.02089.
[6] Wilkie M, Satti I, Minhinnick A, Harris S, Riste M, Ramon RL, et al. A phase I trial evaluating the safety and immunogenicity of a candidate tuberculosis vaccination regimen, ChAdOx1 85A prime - MVA85A boost in healthy UK adults. Vaccine 2020;38(4):779 − 89. https://doi.org/10.1016/j.vaccine.2019.10.102.
[7] Wu YQ, Cai M, Ma JL, Teng XD, Tian MP, Bassuoney EBMB, et al. Heterologous boost following Mycobacterium bovis BCG reduces the late persistent, rather than the early stage of intranasal tuberculosis challenge infection. Front Immunol 2018;9:2439. https://doi.org/10.3389/fimmu.2018.02439.
[8] Bekker LG, Dintwe O, Fiore-Gartland A, Middelkoop K, Hutter J, Williams A, et al. A phase 1b randomized study of the safety and immunological responses to vaccination with H4:IC31, H56:IC31, and BCG revaccination in Mycobacterium tuberculosis-uninfected adolescents in Cape Town, South Africa. EClinicalMedicine 2020;21:100313. https://doi.org/10.1016/j.eclinm.2020.100313.
[9] Dijkman K, Lindenstrøm T, Rosenkrands I, Søe R, Woodworth JS, Arlehamn CSL, et al. A protective, single-visit TB vaccination regimen by co-administration of a subunit vaccine with BCG. NPJ Vaccines 2023;8(1):66. https://doi.org/10.1038/s41541-023-00666-2.
[10] Wang RH, Fan XT, Xu D, Li MC, Zhao XQ, Cao B, et al. Comparison of the immunogenicity and efficacy of rBCG-EPCP009, BCG prime-EPCP009 Booster, and EPCP009 protein regimens as tuberculosis vaccine candidates. Vaccines (Basel) 2023;11(12):1738. https://doi.org/10.3390/vaccines11121738.
[11] Woodworth JS, Clemmensen HS, Battey H, Dijkman K, Lindenstrøm T, Laureano RS, et al. A Mycobacterium tuberculosis-specific subunit vaccine that provides synergistic immunity upon co-administration with Bacillus Calmette-Guérin. Nat Commun 2021;12(1):6658. https://doi.org/10.1038/s41467-021-26934-0.
[12] Wang RH, Fan XT, Jiang Y, Li GL, Li MC, Zhao XQ, et al. Immunogenicity and efficacy analyses of EPC002, ECA006, and EPCP009 protein subunit combinations as tuberculosis vaccine candidates. Vaccine 2023;41(26):3836 − 46. https://doi.org/10.1016/j.vaccine.2023.04.003.
[13] Hatherill M, White RG, Hawn TR. Clinical development of new TB vaccines: recent advances and next steps. Front Microbiol 2019;10:3154. https://doi.org/10.3389/fmicb.2019.03154.
[14] Shurygina AP, Zabolotnykh N, Vinogradova T, Khairullin B, Kassenov M, Nurpeisova A, et al. Preclinical evaluation of TB/FLU-04l-an intranasal influenza vector-based boost vaccine against tuberculosis. Int J Mol Sci 2023;24(8):7439. https://doi.org/10.3390/ijms24087439.
[15] Fan XT, Li XY, Wan KL, Zhao XQ, Deng YL, Chen ZX, et al. Construction and immunogenicity of a T cell epitope-based subunit vaccine candidate against Mycobacterium tuberculosis. Vaccine 2021;39(47):6860 − 5. https://doi.org/10.1016/j.vaccine.2021.10.034.
[16] Moguche AO, Musvosvi M, Penn-Nicholson A, Plumlee CR, Mearns H, Geldenhuys H, et al. Antigen availability shapes T cell differentiation and function during tuberculosis. Cell Host Microbe 2017;21(6):695 − 706.e5. https://doi.org/10.1016/j.chom.2017.05.012.