[1] Liu QY. The impacts of climate change on vector-borne diseases. Chin J Hyg Insect Equip 2013;19:7,12. (In Chinese). https://kns.cnki.net/kcms2/article/abstract?v=2dRWw02s3kwz3a0B1a2_5cdtoMXjXY8GDe99lLtE19nzfScOkcp1EwmSr-k6Rpl6v_liw00wWcBQp6MX9K-yCFRTQEmYq1kRiYqeqAVUiUnv0SaRefKNdebMGSqWiOSp9jcrDdp8gog=&uniplatform=NZKPT&language=CHS
[2] Wang JN, Lao JH, Hou J, Guo S, Wu YY, Ma X, et al. Effect of meteorological factors on rodent density. China Prev Med J 2018;30(9):870 − 3,878. https://doi.org/10.19485/j.cnki.issn2096-5087.2018.09.002.
[3] Niu YF, Liu HZ, Zhang YH, Kang DM, Liu G, Wang HF, et al. An analysis of the relationship between rodent fleas and meteorological factors in Meriones unguiculatus plague foci in Hebei province, China. Chin J Vector Biol Control 2021;32(1):41-4. http://dx.doi.org/10.11853/j.issn.1003.8280.2021.01.008. (In Chinese).
[4] Xu L, Li GC, Si XY, Fang XY, Liu QY. Nonlinear effects of climate driven plague in Meriones unguiculatus natural foci in Inner Mongolia. Chin J Vector Biol Control 2016;27(4):321 − 5. https://doi.org/10.11853/j.issn.1003.8280.2016.04.002.
[5] Parmenter RR, Yadav EP, Parmenter CA, Ettestad P, Gage KL. Incidence of plague associated with increased winter-spring precipitation in New Mexico. Am J Trop Med Hyg 1999;61(5):814 − 21. https://doi.org/10.4269/ajtmh.1999.61.814.
[6] Eads DA, Abbott RC, Biggins DE, Rocke TE. Flea parasitism and host survival in a plague-relevant system: theoretical and conservation implications. J Wildl Dis 2020;56(2):378. https://doi.org/10.7589/2019-08-201.
[7] Patterson JEH, Neuhaus P, Kutz SJ, Ruckstuhl KE. Parasite removal improves reproductive success of female North American red squirrels (Tamiasciurus hudsonicus). PLoS One 2013;8(2):e55779. https://doi.org/10.1371/journal.pone.0055779.
[8] Devevey G, Christe P. Flea infestation reduces the life span of the common vole. Parasitology 2009;136(11):1351 − 5. https://doi.org/10.1017/S0031182009990746.
[9] Iurgenson IA, Makesimov VN. Effect of air temperature and relative humidity on the preimaginal development of Ctenophthalmus teres fleas (Siphonaptera). Parazitologiia 1981;15(1):38-46. https://pubmed.ncbi.nlm.nih.gov/7465246/. (In Russian).
[10] Kreppel KS, Telfer S, Rajerison M, Morse A, Baylis M. Effect of temperature and relative humidity on the development times and survival of Synopsyllus fonquerniei and Xenopsylla cheopis, the flea vectors of plague in Madagascar. Parasit Vectors 2016;9:82. https://doi.org/10.1186/s13071-016-1366-z.
[11] Krasnov BR, Khokhlova IS, Fielden LJ, Burdelova NV. Effect of air temperature and humidity on the survival of pre-imaginal stages of two flea species (Siphonaptera: Pulicidae). J Med Entomol 2001;38(5):629 − 37. https://doi.org/10.1603/0022-2585-38.5.629.
[12] Ramírez-Bautista A, Williams JN. The importance of productivity and seasonality for structuring small rodent diversity across a tropical elevation gradient. Oecologia 2019;190(2):275 − 86. https://doi.org/10.1007/s00442-018-4287-z.
[13] Xiao H, Liu HN, Gao LD, Huang CR, Li Z, Lin XL, et al. Investigating the effects of food available and climatic variables on the animal host density of hemorrhagic fever with renal syndrome in Changsha, China. PLoS One 2013;8(4):e61536. http://dx.doi.org/10.1371/journal.pone.0061536.
[14] Xu L, Schmid BV, Liu J, Si XY, Stenseth NC, Zhang ZB. The trophic responses of two different rodent-vector-plague systems to climate change. Proc Biol Sci 2015;282(1800):20141846. http://dx.doi.org/10.1098/rspb.2014.1846.
[15] Yang K, Zhang JP, Wu ML, Bai X. Effects of habitat on flea community and life history. Chin J Vector Biol Control 2011;22(1):86-8. http://www.bmsw.net.cn/CN/Y2011/V22/I1/86. (In Chinese).