[1] Li ZY, Zhang XF, Müller H, Zhang ST. Large-scale retrieval for medical image analytics: a comprehensive review. Med Image Anal 2018;43:66 − 84. http://dx.doi.org/10.1016/j.media.2017.09.007CrossRef
[2] Guo YC, Ding GG, Han J, Guo Y. SitNet: discrete similarity transfer network for zero-shot hashing. In: Proceedings of the 26th international joint conference on artificial intelligence. Melbourne, VIC, Australia: IJCAI. 2017;p.1767 − 73. http://dx.doi.org/10.24963/ijcai.2017/245.http://dx.doi.org/10.24963/ijcai.2017/245
[3] Ji Z, Sun YX, Yu YL, Pang YW, Han JG. Attribute-guided network for cross-modal zero-shot hashing. IEEE Trans Neural Netw Learn Syst 2020;31(1):321 − 30. http://dx.doi.org/10.1109/TNNLS.2019.2904991CrossRef
[4] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th international conference on machine learning. Sydney, NSW, Australia: ACM. 2017;p.1126 − 35. https://dl.acm.org/doi/10.5555/3305381.3305498.https://dl.acm.org/doi/10.5555/3305381.3305498
[5] Dong YP, Liao FZ, Pang TY, Su H, Zhu J, Hu XL, et al. Boosting adversarial attacks with momentum. In: Proceedings of 2018 IEEE/CVF conference on computer vision and pattern recognition. Salt Lake City: IEEE. 2018;p.9185 − 93. http://dx.doi.org/10.1109/CVPR.2018.00957.http://dx.doi.org/10.1109/CVPR.2018.00957
[6] Li D, Yang YX, Song YZ, Hospedales TM. Learning to generalize: meta-learning for domain generalization. https://arxiv.org/abs/1710.03463. [2020-11-28].https://arxiv.org/abs/1710.03463
[7] Izmailov P, Podoprikhin D, Garipov T, Vetrov D, Wilson AG. Averaging weights leads to wider optima and better generalization. https://arxiv.org/abs/1803.05407. [2020-11-28].https://arxiv.org/abs/1803.05407
[8] Ruder S. An overview of gradient descent optimization algorithms. https://arxiv.org/abs/1609.04747. [2020-11-28].https://arxiv.org/abs/1609.04747
[9] Kaggle. NIH Chest X-rays. https://www.kaggle.com/nih-chest-xrays/data. [2020-11-28].https://www.kaggle.com/nih-chest-xrays/data
[10] Kaggle. Random Sample of NIH Chest X-ray Dataset. https://www.kaggle.com/nih-chest-xrays/sample. [2020-11-28].https://www.kaggle.com/nih-chest-xrays/sample
[11] He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In: Proceedings of 2016 IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE. 2016;p.770 − 8. http://dx.doi.org/10.1109/CVPR.2016.90.http://dx.doi.org/10.1109/CVPR.2016.90