[1]
|
Alsharif W, Qurashi A. Effectiveness of COVID-19 diagnosis and management tools: a review. Radiography (Lond) 2021;27(2):682 − 7. http://dx.doi.org/10.1016/j.radi.2020.09.010CrossRef
|
[2]
|
Surkova E, Nikolayevskyy V, Drobniewski F. False-positive COVID-19 results: hidden problems and costs. Lancet Respir Med 2020;8(12):1167 − 8. http://dx.doi.org/10.1016/S2213-2600(20)30453-7CrossRef
|
[3]
|
Tang B, Wang X, Li Q, Bragazzi NL, Tang SY, Xiao YN, et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. J Clin Med 2020;9(2):462. http://dx.doi.org/10.3390/jcm9020462CrossRef
|
[4]
|
Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet 2020;395(10225):689 − 97. http://dx.doi.org/10.1016/S0140-6736(20)30260-9CrossRef
|
[5]
|
Yang ZF, Zeng ZQ, Wang K, Wong SS, Liang WH, Zanin M, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J Thorac Dis 2020;12(3):165 − 74. http://dx.doi.org/10.21037/jtd.2020.02.64CrossRef
|
[6]
|
Scott N, Palmer A, Delport D, Abeysuriya R, Stuart RM, Kerr CC, et al. Modelling the impact of relaxing COVID-19 control measures during a period of low viral transmission. Med J Aust 2021;214(2):79 − 83. http://dx.doi.org/10.5694/mja2.50845CrossRef
|
[7]
|
Roosa K, Lee Y, Luo R, Kirpich A, Rothenberg R, Hyman JM, et al. Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020. Infect Dis Model 2020;5:256 − 63. http://dx.doi.org/10.1016/j.idm.2020.02.002CrossRef
|
[8]
|
Attanayake AMCH, Perera SSN, Jayasinghe S. Phenomenological modelling of COVID-19 epidemics in Sri Lanka, Italy, the United States, and Hebei Province of China. Comput Math Methods Med 2020;2020:6397063. http://dx.doi.org/10.1155/2020/6397063CrossRef
|
[9]
|
Zou Y, Pan S, Zhao P, Han L, Wang XX, Hemerik L, et al. Outbreak analysis with a logistic growth model shows COVID-19 suppression dynamics in China. PLoS One 2020;15(6):e0235247. http://dx.doi.org/10.1371/journal.pone.0235247CrossRef
|
[10]
|
Hoertel N, Blachier M, Blanco C, Olfson M, Massetti M, Rico MS, et al. A stochastic agent-based model of the SARS-CoV-2 epidemic in France. Nat Med 2020;26(9):1417 − 21. http://dx.doi.org/10.1038/s41591-020-1001-6CrossRef
|
[11]
|
Koo JR, Cook AR, Park M, Sun YXH, Sun HY, Lim JT, et al. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. Lancet Infect Dis 2020;20(6):678 − 88. http://dx.doi.org/10.1016/S1473-3099(20)30162-6CrossRef
|
[12]
|
Lavine JS, Bjornstad ON, Antia R. Immunological characteristics govern the transition of COVID-19 to endemicity. Science 2021;371(6530):741 − 5. http://dx.doi.org/10.1126/science.abe6522CrossRef
|
[13]
|
Chowell G, Tariq A, Hyman JM. A novel sub-epidemic modeling framework for short-term forecasting epidemic waves. BMC Med 2019;17(1):164. http://dx.doi.org/10.1186/s12916-019-1406-6CrossRef
|
[14]
|
Chowell G, Hincapie-Palacio D, Ospina J, Pell B, Tariq A, Dahal S, et al. Using phenomenological models to characterize transmissibility and forecast patterns and final burden of Zika epidemics. PLoS Curr 20168. http://dx.doi.org/10.1371/currents.outbreaks.f14b2217c902f453d9320a43a35b9583.CrossRef
|
[15]
|
Liu Q, Li ZQ, Ji Y, Martinez L, Zia UH, Javaid A, et al. Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses. Infect Drug Resist 2019;12:2311 − 22. http://dx.doi.org/10.2147/IDR.S207809CrossRef
|
[16]
|
Dansana D, Kumar R, Das Adhikari J, Mohapatra M, Sharma R, Priyadarshini I, et al. Global forecasting confirmed and fatal cases of COVID-19 outbreak using autoregressive integrated moving average model. Front Public Health 2020;8:580327. http://dx.doi.org/10.3389/fpubh.2020.580327CrossRef
|
[17]
|
Duan XD, Zhang XL. ARIMA modelling and forecasting of irregularly patterned COVID-19 outbreaks using Japanese and South Korean data. Data Brief 2020;31:105779. http://dx.doi.org/10.1016/j.dib.2020.105779CrossRef
|
[18]
|
Benvenuto D, Giovanetti M, Vassallo L, Angeletti S, Ciccozzi M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief 2020;29:105340. http://dx.doi.org/10.1016/j.dib.2020.105340CrossRef
|
[19]
|
Dhamodharavadhani S, Rathipriya R, Chatterjee JM. COVID-19 mortality rate prediction for India using statistical neural network models. Front Public Health 2020;8:441. http://dx.doi.org/10.3389/fpubh.2020.00441CrossRef
|
[20]
|
Wang YD, Yan ZH, Wang D, Yang MT, Li ZQ, Gong XR, et al. Prediction and analysis of COVID-19 daily new cases and cumulative cases: times series forecasting and machine learning models. BMC Infect Dis 2022;22(1):495. http://dx.doi.org/10.1186/s12879-022-07472-6CrossRef
|
[21]
|
Namasudra S, Dhamodharavadhani S, Rathipriya R. Nonlinear neural network based forecasting model for predicting COVID-19 cases. Neural Process Lett 2021. https://doi.org/10.1007/S11063-021-10495-W.https://doi.org/10.1007/S11063-021-10495-W |
[22]
|
Naeem M, Yu J, Aamir M, Khan SA, Adeleye O, Khan Z. Comparative analysis of machine learning approaches to analyze and predict the COVID-19 outbreak. PeerJ Comput Sci 2021;7:e746. http://dx.doi.org/10.7717/peerj-cs.746CrossRef
|
[23]
|
de Melo GC, de Araújo Neto RA, de Araújo KCGM. Forecasting the rate of cumulative cases of COVID-19 infection in Northeast Brazil: a Boltzmann function-based modeling study. Cad Saude Publica 2020;36(6):e00105720. http://dx.doi.org/10.1590/0102-311x00105720CrossRef
|
[24]
|
Fu XM, Ying Q, Zeng TY, Long T, Wang Y. Simulating and forecasting the cumulative confirmed cases of SARS-CoV-2 in China by Boltzmann function-based regression analyses. J Infect 2020;80(5):578 − 606. http://dx.doi.org/10.1016/j.jinf.2020.02.019CrossRef
|
[25]
|
Li Q, Feng W, Quan YH. Trend and forecasting of the COVID-19 outbreak in China. J Infect 2020;80(4):469 − 96. http://dx.doi.org/10.1016/j.jinf.2020.02.014CrossRef
|
[26]
|
Anastassopoulou C, Russo L, Tsakris A, Siettos C. Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLoS One 2020;15(3):e0230405. http://dx.doi.org/10.1371/journal.pone.0230405CrossRef
|
[27]
|
Xiao LS, Zhang WF, Gong MC, Zhang YP, Chen LY, Zhu HB, et al. Development and validation of the HNC-LL score for predicting the severity of coronavirus disease 2019. eBioMedicine 2020;57:102880. http://dx.doi.org/10.1016/j.ebiom.2020.102880CrossRef
|
[28]
|
Liang WH, Liang HR, Ou LM, Chen BF, Chen AL, Li CC, et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern Med 2020;180(8):1081 − 9. http://dx.doi.org/10.1001/jamainternmed.2020.2033CrossRef
|
[29]
|
Shahid F, Zameer A, Muneeb M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos Solitons Fractals 2020;140:110212. http://dx.doi.org/10.1016/j.chaos.2020.110212CrossRef
|
[30]
|
Shapiro MB, Karim F, Muscioni G, Augustine AS. Adaptive susceptible-infectious-removed model for continuous estimation of the COVID-19 infection rate and reproduction number in the United States: modeling study. J Med Internet Res 2021;23(4):e24389. http://dx.doi.org/10.2196/24389CrossRef
|
[31]
|
Kermack WO, McKendrick AG. Contributions to the mathematical theory of epidemics-I. Bull Math Biol 1991;53(1–2):33 − 55. http://dx.doi.org/10.1016/S0092-8240(05)80040-0CrossRef
|
[32]
|
Liu WK, Ye WJ, Zhao ZY, Liu C, Deng B, Luo L, et al. Modelling the emerging COVID-19 epidemic and estimating intervention effectiveness — Taiwan, China, 2021. China CDC Wkly 2021;3(34):716 − 9. http://dx.doi.org/10.46234/ccdcw2021.177CrossRef
|
[33]
|
Li KG, Zhao ZY, Wei HJ, Rui J, Huang JF, Guo XH, et al. Feasibility of booster vaccination in high-risk populations for controlling coronavirus variants — China, 2021. China CDC Wkly 2021;3(50):1071 − 4. http://dx.doi.org/10.46234/ccdcw2021.259CrossRef
|
[34]
|
Zhao ZY, Niu Y, Luo L, Hu QQ, Yang TL, Chu MJ, et al. The optimal vaccination strategy to control COVID-19: a modeling study in Wuhan City, China. Infect Dis Poverty 2021;10(1):140. http://dx.doi.org/10.1186/s40249-021-00922-4CrossRef
|
[35]
|
Hao XJ, Cheng SS, Wu DG, Wu TC, Lin XH, Wang CL. Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature 2020;584(7821):420 − 4. http://dx.doi.org/10.1038/s41586-020-2554-8CrossRef
|
[36]
|
Li ZY, Lin SN, Rui J, Bai Y, Deng B, Chen QP, et al. An easy-to-use public health-driven method (the generalized logistic differential equation model) accurately simulated COVID-19 epidemic in Wuhan and correctly determined the early warning time. Front Public Health 2022;10:813860. http://dx.doi.org/10.3389/fpubh.2022.813860CrossRef
|
[37]
|
Nguemdjo U, Meno F, Dongfack A, Ventelou B. Simulating the progression of the COVID-19 disease in Cameroon using SIR models. PLoS One 2020;15(8):e0237832. http://dx.doi.org/10.1371/journal.pone.0237832CrossRef
|
[38]
|
McMahon A, Robb NC. Reinfection with SARS-CoV-2: discrete SIR (susceptible, infected, recovered) modeling using empirical infection data. JMIR Public Health Surveill 2020;6(4):e21168. http://dx.doi.org/10.2196/21168CrossRef
|
[39]
|
Neipel J, Bauermann J, Bo S, Harmon T, Jülicher F. Power-law population heterogeneity governs epidemic waves. PLoS One 2020;15(10):e0239678. http://dx.doi.org/10.1371/journal.pone.0239678CrossRef
|
[40]
|
Sharov KS. Trends in adaptation of fifteen European countries population to SARS-CoV-2 in March-May 2020: can Taiwanese experience be adopted? J Formos Med Assoc 2021;120(1):679-87. http://dx.doi.org/10.1016/j.jfma.2020.07.038.http://dx.doi.org/10.1016/j.jfma.2020.07.038 |
[41]
|
Borowiak M, Ning F, Pei J, Zhao S, Tung HR, Durrett R. Controlling the spread of COVID-19 on college campuses. Math Biosci Eng 2020;18(1):551 − 63. http://dx.doi.org/10.3934/mbe.2021030CrossRef
|
[42]
|
Anderez DO, Kanjo E, Pogrebna G, Kaiwartya O, Johnson SD, Hunt JA. A COVID-19-based modified epidemiological model and technological approaches to help vulnerable individuals emerge from the lockdown in the UK. Sensors (Basel) 2020;20(17):4967. http://dx.doi.org/10.3390/s20174967CrossRef
|
[43]
|
Fan RG, Wang YB, Luo M, Zhang YQ, Zhu CP. SEIR-based COVID-19 transmission model and inflection point prediction analysis. J Univ Electron Sci Technol China 2020;49(3):369-74. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=DKDX202003009&uniplatform=NZKPT&v=nYvDwcq-NBNBL28ubxcQm3MRbXiaKSmVHMuxHcs-vFefAzL6ngQ4nUXAFtl060Z7. (In Chinese). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=DKDX202003009&uniplatform=NZKPT&v=nYvDwcq-NBNBL28ubxcQm3MRbXiaKSmVHMuxHcs-vFefAzL6ngQ4nUXAFtl060Z7 |
[44]
|
Cai J, Jia HY, Wang K. Prediction of development trend of COVID-19 in Wuhan based on SEIR model. Shandong Med J 2020,60(6):1-4. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=SDYY202006001&uniplatform=NZKPT&v=8xaANp8M0BwIV90t8tMfOLHObOlIyVZ__8mnxBW2Gk1_DvrEr8BYh7ZyuG5gH_06. (In Chinese). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=SDYY202006001&uniplatform=NZKPT&v=8xaANp8M0BwIV90t8tMfOLHObOlIyVZ__8mnxBW2Gk1_DvrEr8BYh7ZyuG5gH_06 |
[45]
|
Zhang Y, Tian WL, Wu ZG, Chen ZW, Wang J. Transmission mechanism of COVID-19 epidemic along traffic routes based on improved SEIR model. J Traffic Transp Eng 2020;20(3):150 − 8. http://dx.doi.org/10.19818/j.cnki.1671-1637.2020.03.014 (In Chinese). CrossRef
|
[46]
|
Ahmad Z, Arif M, Ali F, Khan I, Nisar KS. A report on COVID-19 epidemic in Pakistan using SEIR fractional model. Sci Rep 2020;10(1):22268. http://dx.doi.org/10.1038/s41598-020-79405-9CrossRef
|
[47]
|
Niu Y, Rui J, Wang QP, Zhang W, Chen ZW, Xie F, et al. Containing the transmission of COVID-19: a modeling study in 160 countries. Front Med (Lausanne) 2021;8:701836. http://dx.doi.org/10.3389/fmed.2021.701836CrossRef
|
[48]
|
Zhao ZY, Zhu YZ, Xu JW, Hu SX, Hu QQ, Lei Z, et al. A five-compartment model of age-specific transmissibility of SARS-CoV-2. Infect Dis Poverty 2020;9(1):117. http://dx.doi.org/10.1186/s40249-020-00735-xCrossRef
|
[49]
|
Chen TM, Zhao ZY, Rui J, Yu SS, Zhu YZ, Xu JW, et al. Estimating the transmissibility of coronavirus disease 2019 and assessing the effectiveness of the countermeasures to control the disease in Xiamen City. J Xiamen Univ (Nat Sci) 2020;59(3):298-303. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=XDZK202003002&uniplatform=NZKPT&v=zviJ1kZOe2jhn9QwSusdNIs_Q5A03drMNkbR5XqbESvnBaRDkvIBuTPfU2Iyq6rf. (In Chinese). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=XDZK202003002&uniplatform=NZKPT&v=zviJ1kZOe2jhn9QwSusdNIs_Q5A03drMNkbR5XqbESvnBaRDkvIBuTPfU2Iyq6rf |
[50]
|
Leung CC, Lam TH, Cheng KK. Mass masking in the COVID-19 epidemic: people need guidance. Lancet 2020;395(10228):945. http://dx.doi.org/10.1016/S0140-6736(20)30520-1CrossRef
|
[51]
|
Hens N, Vranck P, Molenberghs G. The COVID-19 epidemic, its mortality, and the role of non-pharmaceutical interventions. Eur Heart J Acute Cardiovasc Care 2020;9(3):204 − 8. http://dx.doi.org/10.1177/2048872620924922CrossRef
|
[52]
|
Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 2020;584(7820):257 − 61. http://dx.doi.org/10.1038/s41586-020-2405-7CrossRef
|
[53]
|
Liu PJ, Rahman MU, Din A. Fractal fractional based transmission dynamics of COVID-19 epidemic model. Comput Methods Biomech Biomed Engin 20221 − 18. http://dx.doi.org/10.1080/10255842.2022.2040489.CrossRef
|
[54]
|
Lin SN, Rui J, Chen QP, Zhao B, Yu SS, Li ZY, et al. Effectiveness of potential antiviral treatments in COVID-19 transmission control: a modelling study. Infect Dis Poverty 2021;10(1):53. http://dx.doi.org/10.1186/s40249-021-00835-2CrossRef
|
[55]
|
Ngonghala CN, Iboi E, Eikenberry S, Scotch M, MacIntyre CR, Bonds MH, et al. Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus. Math Biosci 2020;325:108364. http://dx.doi.org/10.1016/j.mbs.2020.108364CrossRef
|
[56]
|
Kucharski AJ, Klepac P, Conlan AJK, Kissler SM, Tang ML, Fry H, et al. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. Lancet Infect Dis 2020;20(10):1151 − 60. http://dx.doi.org/10.1016/S1473-3099(20)30457-6CrossRef
|
[57]
|
Hachtel GD, Stack JD, Hachtel JA. Forecasting and modeling of the COVID-19 pandemic in the USA with a timed intervention model. Sci Rep 2022;12(1):4339. http://dx.doi.org/10.1038/s41598-022-07487-8CrossRef
|
[58]
|
Eikenberry SE, Mancuso M, Iboi E, Phan T, Eikenberry K, Kuang Y, et al. To mask or not to mask: modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic. Infect Dis Model 2020;5:293 − 308. http://dx.doi.org/10.1016/j.idm.2020.04.001CrossRef
|
[59]
|
Iboi EA, Sharomi O, Ngonghala CN, Gumel AB. Mathematical modeling and analysis of COVID-19 pandemic in Nigeria. Math Biosci Eng 2020;17(6):7192 − 220. http://dx.doi.org/10.3934/mbe.2020369CrossRef
|
[60]
|
Shen MW, Zu J, Fairley CK, Pagán JA, Ferket B, Liu B, et al. Effects of New York's executive order on face mask use on COVID-19 infections and mortality: a modeling study. J Urban Health 2021;98(2):197 − 204. http://dx.doi.org/10.1007/s11524-021-00517-2CrossRef
|
[61]
|
Keeling MJ, Hill EM, Gorsich EE, Penman B, Guyver-Fletcher G, Holmes A, et al. Predictions of COVID-19 dynamics in the UK: short-term forecasting and analysis of potential exit strategies. PLoS Comput Biol 2021;17(1):e1008619. http://dx.doi.org/10.1371/journal.pcbi.1008619CrossRef
|
[62]
|
Suthar DL, Habenom H, Aychluh M. Effect of vaccination on the transmission dynamics of COVID-19 in Ethiopia. Results Phys 2022;32:105022. http://dx.doi.org/10.1016/j.rinp.2021.105022CrossRef
|
[63]
|
Shen MW, Zu J, Fairley CK, Pagán JA, An L, Du ZW, et al. Projected COVID-19 epidemic in the United States in the context of the effectiveness of a potential vaccine and implications for social distancing and face mask use. Vaccine 2021;39(16):2295 − 302. http://dx.doi.org/10.1016/j.vaccine.2021.02.056CrossRef
|
[64]
|
Li YX, Ge LQ, Zhou Y, Cao X, Zheng JY. Toward the impact of non-pharmaceutical interventions and vaccination on the COVID-19 pandemic with time-dependent SEIR model. Front Artif Intell 2021;4:648579. http://dx.doi.org/10.3389/frai.2021.648579CrossRef
|
[65]
|
Laubenbacher R, Hinkelmann F, Oremland M. Chapter 5 - Agent-based models and optimal control in biology: a discrete approach. In: Robeva R, Hodge TL, editors. Mathematical concepts and methods in modern biology. Amsterdam: Academic Press. 2013143 − 78. http://dx.doi.org/10.1016/B978-0-12-415780-4.00005-3CrossRef
|
[66]
|
Hoertel N, Blachier M, Blanco C, Olfson M, Massetti M, Rico MS, et al. Lockdown exit strategies and risk of a second epidemic peak: a stochastic agent-based model of SARS-CoV-2 epidemic in France. medRxiv 2020. http://dx.doi.org/10.1101/2020.04.30.20086264.http://dx.doi.org/10.1101/2020.04.30.20086264 |
[67]
|
Mahdizadeh Gharakhanlou N, Hooshangi N. Spatio-temporal simulation of the novel coronavirus (COVID-19) outbreak using the agent-based modeling approach (case study: Urmia, Iran). Inform Med Unlocked 2020;20:100403. http://dx.doi.org/10.1016/j.imu.2020.100403CrossRef
|
[68]
|
Nguyen LKN, Howick S, McLafferty D, Anderson GH, Pravinkumar SJ, Van Der Meer R, et al. Evaluating intervention strategies in controlling coronavirus disease 2019 (COVID-19) spread in care homes: an agent-based model. Infect Control Hosp Epidemiol 2021;42(9):1060 − 70. http://dx.doi.org/10.1017/ice.2020.1369CrossRef
|
[69]
|
Cuevas E. An agent-based model to evaluate the COVID-19 transmission risks in facilities. Comput Biol Med 2020;121:103827. http://dx.doi.org/10.1016/j.compbiomed.2020.103827CrossRef
|
[70]
|
Rockett RJ, Arnott A, Lam C, Sadsad R, Timms V, Gray KA, et al. Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling. Nat Med 2020;26(9):1398 − 404. http://dx.doi.org/10.1038/s41591-020-1000-7CrossRef
|
[71]
|
Ying FB, O'Clery N. Modelling COVID-19 transmission in supermarkets using an agent-based model. PLoS One 2021;16(4):e0249821. http://dx.doi.org/10.1371/JOURNAL.PONE.0249821CrossRef
|
[72]
|
Araya F. Modeling the spread of COVID-19 on construction workers: an agent-based approach. Saf Sci 2021;133:105022. http://dx.doi.org/10.1016/j.ssci.2020.105022CrossRef
|
[73]
|
Lombardo G, Pellegrino M, Tomaiuolo M, Cagnoni S, Mordonini M, Giacobini M, et al. Fine-grained agent-based modeling to predict COVID-19 spreading and effect of policies in large-scale scenarios. IEEE J Biomed Health Inform 2022;26(5):2052 − 62. http://dx.doi.org/10.1109/JBHI.2022.3160243CrossRef
|
[74]
|
Thompson J, McClure R, Blakely T, Wilson N, Baker MG, Wijnands JS, et al. Modelling SARS-CoV-2 disease progression in Australia and New Zealand: an account of an agent-based approach to support public health decision-making. Aust N Z J Public Health 2022;46(3):292 − 303. http://dx.doi.org/10.1111/1753-6405.13221CrossRef
|