[1]
|
World Health Organization. Influenza (seasonal). 2024. https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal). [2024-8-30]. |
[2]
|
Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, et al. Influenza. Nat Rev Dis Primers 2018;4(1):3. https://doi.org/10.1038/s41572-018-0002-y. |
[3]
|
Carrat F, Flahault A. Influenza vaccine: the challenge of antigenic drift. Vaccine 2007;25(39-40):6852 − 62. https://doi.org/10.1016/j.vaccine.2007.07.027. |
[4]
|
CDC. CDC's World Health Organization (WHO) collaborating center for surveillance, epidemiology and control of influenza. 2024. https://www.cdc.gov/flu/php/who-collaboration/index.html. [2024-8-6]. |
[5]
|
Houser K, Subbarao K. Influenza vaccines: challenges and solutions. Cell Host Microbe 2015;17(3):295 − 300. https://doi.org/10.1016/j.chom.2015.02.012. |
[6]
|
Liao YC, Lee MS, Ko CY, Hsiung CA. Bioinformatics models for predicting antigenic variants of influenza A/H3N2 virus. Bioinformatics 2008;24(4):505 − 12. https://doi.org/10.1093/bioinformatics/btm638. |
[7]
|
Li L, Chang D, Han L, Zhang XJ, Zaia J, Wan XF. Multi-task learning sparse group lasso: a method for quantifying antigenicity of influenza A(H1N1) virus using mutations and variations in glycosylation of Hemagglutinin. BMC Bioinformatics 2020;21(1):182. https://doi.org/10.1186/s12859-020-3527-5. |
[8]
|
Sun HL, Yang JL, Zhang T, Long LP, Jia K, Yang GH, et al. Using sequence data to infer the antigenicity of influenza virus. mBio 2013;4(4):e00230 − 13. https://doi.org/10.1128/mBio.00230-13. |
[9]
|
Qu W, Hon CT, Zhang YQ, Qian T. Matrix pre-orthogonal matching pursuit and pseudo-inverse. arXiv preprint arXiv:2412.05878, 2025. |
[10]
|
Hon C, Liu ZG, Qian T, Qu W, Zhao JM. Trends by adaptive Fourier decomposition and application in prediction. Int J Wavelets, Multiresolut Inf Process 2024;22(5):2450014. https://doi.org/10.1142/S0219691324500140. |