[1] Li JC, Zhao J, Li H, Fang LQ, Liu W. Epidemiology, clinical characteristics, and treatment of severe fever with thrombocytopenia syndrome. Infect Med 2022;1(1):40 − 9. http://dx.doi.org/10.1016/j.imj.2021.10.001CrossRef
[2] Li J, Li S, Yang L, Cao PF, Lu JH. Severe fever with thrombocytopenia syndrome virus: a highly lethal bunyavirus. Crit Rev Microbiol 2021;47(1):112 − 25. http://dx.doi.org/10.1080/1040841X.2020.1847037CrossRef
[3] Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med 2011;364(16):1523 − 32. http://dx.doi.org/10.1056/NEJMoa1010095CrossRef
[4] Lin TL, Ou SC, Maeda K, Shimoda H, Chan JPW, Tu WC, et al. The first discovery of severe fever with thrombocytopenia syndrome virus in Taiwan. Emerg Microbes Infect 2020;9(1):148 − 51. http://dx.doi.org/10.1080/22221751.2019.1710436CrossRef
[5] Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T, Tominaga T, et al. The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan. J Infect Dis 2014;209(6):816 − 27. http://dx.doi.org/10.1093/infdis/jit603CrossRef
[6] Kim YR, Yun Y, Bae SG, Park D, Kim S, Lee JM, et al. Severe fever with thrombocytopenia syndrome virus infection, South Korea, 2010. Emerg Infect Dis 2018;24(11):2103 − 5. http://dx.doi.org/10.3201/eid2411.170756CrossRef
[7] Tran XC, Yun Y, Van An L, Kim SH, Thao NTP, Man PKC, et al. Endemic severe fever with thrombocytopenia syndrome, Vietnam. Emerg Infect Dis 2019;25(5):1029 − 31. http://dx.doi.org/10.3201/eid2505.181463CrossRef
[8] Liu Q, He B, Huang SY, Wei F, Zhu XQ. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis. Lancet Infect Dis 2014;14(8):763 − 72. http://dx.doi.org/10.1016/S1473-3099(14)70711-4CrossRef
[9] Hwang J, Kang JG, Oh SS, Chae JB, Cho YK, Cho YS, et al. Molecular detection of severe fever with thrombocytopenia syndrome virus (SFTSV) in feral cats from Seoul, Korea. Ticks Tick Borne Dis 2017;8(1):9 − 12. http://dx.doi.org/10.1016/j.ttbdis.2016.08.005CrossRef
[10] Lee SH, Kim HJ, Byun JW, Lee MJ, Kim NH, Kim DH, et al. Molecular detection and phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in shelter dogs and cats in the Republic of Korea. Ticks Tick Borne Dis 2017;8(4):626 − 30. http://dx.doi.org/10.1016/j.ttbdis.2017.04.008CrossRef
[11] Matsuno K, Nonoue N, Noda A, Kasajima N, Noguchi K, Takano A, et al. Fatal tickborne phlebovirus infection in captive cheetahs, Japan. Emerg Infect Dis 2018;24(9):1726 − 9. http://dx.doi.org/10.3201/eid2409.171667CrossRef
[12] Kim WY, Choi W, Park SW, Wang EB, Lee WJ, Jee Y, et al. Nosocomial transmission of severe fever with thrombocytopenia syndrome in Korea. Clin Infect Dis 2015;60(11):1681 − 3. http://dx.doi.org/10.1093/cid/civ128CrossRef
[13] Jung IY, Choi W, Kim J, Wang E, Park SW, Lee WJ, et al. Nosocomial person-to-person transmission of severe fever with thrombocytopenia syndrome. Clin Microbiol Infect 2019;25(5):633.e1 − 4. http://dx.doi.org/10.1016/j.cmi.2019.01.006CrossRef
[14] Huang XX, Li JD, Li AQ, Wang SW, Li DX. Epidemiological characteristics of severe fever with thrombocytopenia syndrome from 2010 to 2019 in Mainland China. Int J Environ Res Public Health 2021;18(6):3092. http://dx.doi.org/10.3390/ijerph18063092CrossRef
[15] Guo CT, Lu QB, Ding SJ, Hu CY, Hu JG, Wo Y, et al. Epidemiological and clinical characteristics of severe fever with thrombocytopenia syndrome (SFTS) in China: an integrated data analysis. Epidemiol Infect 2016;144(6):1345 − 54. http://dx.doi.org/10.1017/S0950268815002678CrossRef
[16] Choi SJ, Park SW, Bae IG, Kim SH, Ryu SY, Kim HA, et al. Severe fever with thrombocytopenia syndrome in South Korea, 2013-2015. PLoS Negl Trop Dis 2016;10(12):e0005264. http://dx.doi.org/10.1371/journal.pntd.0005264CrossRef
[17] Kato H, Yamagishi T, Shimada T, Matsui T, Shimojima M, Saijo M, et al. Epidemiological and clinical features of severe fever with thrombocytopenia syndrome in Japan, 2013-2014. PLoS One 2016;11(10):e0165207. http://dx.doi.org/10.1371/journal.pone.0165207CrossRef
[18] Jung IY, Ahn K, Kim J, Choi JY, Kim HY, Uh Y, et al. Higher fatality for severe fever with thrombocytopenia syndrome complicated by hemophagocytic lymphohistiocytosis. Yonsei Med J 2019;60(6):592 − 6. http://dx.doi.org/10.3349/ymj.2019.60.6.592CrossRef
[19] World Health Organization (WHO). 2018 Annual review of diseases prioritized under the Research and Development Blueprint. Geneva: WHO Research and Development Blueprint; 2018. https://www.who.int/docs/default-source/blue-print/2018-annual-review-of-diseases-prioritized-under-the-research-and-development-blueprint.pdf?sfvrsn=4c22e36_2.https://www.who.int/docs/default-source/blue-print/2018-annual-review-of-diseases-prioritized-under-the-research-and-development-blueprint.pdf?sfvrsn=4c22e36_2
[20] Liu JW, Zhao L, Luo LM, Liu MM, Sun Y, Su X, et al. Molecular evolution and spatial transmission of severe fever with thrombocytopenia syndrome virus based on complete genome sequences. PLoS One 2016;11(3):e0151677. http://dx.doi.org/10.1371/journal.pone.0151677CrossRef
[21] Yuan F, Zheng AH. Entry of severe fever with thrombocytopenia syndrome virus. Virol Sin 2017;32(1):44 − 50. http://dx.doi.org/10.1007/s12250-016-3858-6CrossRef
[22] Kim KH, Yi J, Kim G, Choi SJ, Jun KI, Kim NH, et al. Severe fever with thrombocytopenia syndrome, South Korea, 2012. Emerg Infect Dis 2013;19(11):1892 − 4. http://dx.doi.org/10.3201/eid1911.130792CrossRef
[23] Sun YL, Liang MF, Qu J, Jin C, Zhang QF, Li JD, et al. Early diagnosis of novel SFTS bunyavirus infection by quantitative real-time RT-PCR assay. J Clin Virol 2012;53(1):48 − 53. http://dx.doi.org/10.1016/j.jcv.2011.09.031CrossRef
[24] Jang WS, Lim DH, Choe YL, Nam J, Moon KC, Kim C, et al. Developing a multiplex loop-mediated isothermal amplification assay (LAMP) to determine severe fever with thrombocytopenia syndrome (SFTS) and scrub typhus. PLoS One 2022;17(2):e0262302. http://dx.doi.org/10.1371/journal.pone.0262302CrossRef
[25] Zhou JY, Wang QJ, Zhu LJ, Li SB, Li W, Fu YF, et al. Development and evaluation of a rapid detection assay for severe fever with thrombocytopenia syndrome virus based on reverse-transcription recombinase polymerase amplification. Mol Cell Probes 2020;52:101580. http://dx.doi.org/10.1016/j.mcp.2020.101580CrossRef
[26] Zhang M, Du Y, Yang L, Zhan L, Yang B, Huang X, et al. Development of monoclonal antibody based IgG and IgM ELISA for diagnosis of severe fever with thrombocytopenia syndrome virus infection. Braz J Infect Dis 2022;26(4):102386. http://dx.doi.org/10.1016/j.bjid.2022.102386CrossRef
[27] Liu W, Lu QB, Cui N, Li H, Wang LY, Liu K, et al. Case-fatality ratio and effectiveness of ribavirin therapy among hospitalized patients in China who had severe fever with thrombocytopenia syndrome. Clin Infect Dis 2013;57(9):1292 − 9. http://dx.doi.org/10.1093/cid/cit530CrossRef
[28] Wang XG, Zhang QF, Hao F, Gao XN, Wu W, Liang MY, et al. Development of a colloidal gold kit for the diagnosis of severe fever with thrombocytopenia syndrome virus infection. Biomed Res Int 2014;2014:530621. http://dx.doi.org/10.1155/2014/530621CrossRef
[29] Jiao LY, Ouyang SY, Liang MF, Niu FF, Shaw N, Wu W, et al. Structure of severe fever with thrombocytopenia syndrome virus nucleocapsid protein in complex with suramin reveals therapeutic potential. J Virol 2013;87(12):6829 − 39. http://dx.doi.org/10.1128/JVI.00672-13CrossRef
[30] Lee SY, Lee H, Yun SH, Park EC, Seo G, Kim HY, et al. Proteomics-based diagnostic peptide discovery for severe fever with thrombocytopenia syndrome virus in patients. Clin Proteomics 2022;19(1):28. http://dx.doi.org/10.1186/s12014-022-09366-wCrossRef
[31] Guardado-Calvo P, Rey FA. The envelope proteins of the Bunyavirales. Adv Virus Res 2017;98:83 − 118. http://dx.doi.org/10.1016/bs.aivir.2017.02.002CrossRef
[32] Ren FL, Shen S, Ning YJ, Wang QY, Dai SY, Shi JM, et al. Non-structural proteins of severe fever with thrombocytopenia syndrome virus suppress RNA synthesis in a transcriptionally active cDNA-derived viral RNA synthesis system. Front Microbiol 2021;12:709517. http://dx.doi.org/10.3389/fmicb.2021.709517CrossRef
[33] Vogel D, Thorkelsson SR, Quemin ERJ, Meier K, Kouba T, Gogrefe N, et al. Structural and functional characterization of the severe fever with thrombocytopenia syndrome virus L protein. Nucleic Acids Res 2020;48(10):5749 − 65. http://dx.doi.org/10.1093/nar/gkaa253CrossRef
[34] Williams HM, Thorkelsson SR, Vogel D, Milewski M, Busch C, Cusack S, et al. Structural insights into viral genome replication by the severe fever with thrombocytopenia syndrome virus L protein. Nucleic Acids Res 2023;51(3):1424 − 42. http://dx.doi.org/10.1093/nar/gkac1249CrossRef
[35] Feng Y, Xu CP, Li CX, Lin JF, Wang ZF, Zhang YJ, et al. Replication capacity and adaptability of a severe fever with thrombocytopenia syndrome virus at different temperatures. PLoS One 2017;12(11):e0188462. http://dx.doi.org/10.1371/journal.pone.0188462CrossRef
[36] Jiao YJ, Qi X, Liu DP, Zeng XY, Han YW, Guo XL, et al. Experimental and natural infections of goats with severe fever with thrombocytopenia syndrome virus: evidence for ticks as viral vector. PLoS Negl Trop Dis 2015;9(10):e0004092. http://dx.doi.org/10.1371/journal.pntd.0004092CrossRef
[37] Jin C, Liang MF, Ning JY, Gu W, Jiang H, Wu W, et al. Pathogenesis of emerging severe fever with thrombocytopenia syndrome virus in C57/BL6 mouse model. Proc Natl Acad Sci USA 2012;109:10053 − 8. http://dx.doi.org/10.1073/pnas.1120246109CrossRef
[38] Sato Y, Mekata H, Sudaryatma PE, Kirino Y, Yamamoto S, Ando S, et al. Isolation of severe fever with thrombocytopenia syndrome virus from various tick species in area with human severe fever with thrombocytopenia syndrome cases. Vector Borne Zoonotic Dis 2021;21(5):378 − 84. http://dx.doi.org/10.1089/vbz.2020.2720CrossRef
[39] Wei XM, Li SH, Lu Y, Qiu L, Xu NN, Guo XH, et al. Severe fever with thrombocytopenia syndrome virus aerosol infection in C57/BL6 mice. Virology 2023;581:58 − 62. http://dx.doi.org/10.1016/j.virol.2023.03.001CrossRef
[40] Kim SY, Seo CW, Lee HI. Severe fever with thrombocytopenia syndrome virus from ticks: a molecular epidemiological study of a patient in the Republic of Korea. Exp Appl Acarol 2023;89(2):305 − 15. http://dx.doi.org/10.1007/s10493-023-00783-6CrossRef
[41] Li ZF, Qi X, Zhou MH, Bao CJ, Hu JL, Wu B, et al. A two-tube multiplex real-time RT-PCR assay for the detection of four hemorrhagic fever viruses: severe fever with thrombocytopenia syndrome virus, Hantaan virus, Seoul virus, and dengue virus. Arch Virol 2013;158(9):1857 − 63. http://dx.doi.org/10.1007/s00705-013-1677-8CrossRef
[42] Park SY, Kwon JS, Kim JY, Kim SM, Jang YR, Kim MC, et al. Severe fever with thrombocytopenia syndrome-associated encephalopathy/encephalitis. Clin Microbiol Infect 2018;24(4):432.e1 − 4. http://dx.doi.org/10.1016/j.cmi.2017.09.002CrossRef
[43] Yoshikawa T, Fukushi S, Tani H, Fukuma A, Taniguchi S, Toda S, et al. Sensitive and specific PCR systems for detection of both Chinese and Japanese severe fever with thrombocytopenia syndrome virus strains and prediction of patient survival based on viral load. J Clin Microbiol 2014;52(9):3325 − 33. http://dx.doi.org/10.1128/JCM.00742-14CrossRef
[44] Chen HB, Hu K, Zou JJ, Xiao JX. A cluster of cases of human-to-human transmission caused by severe fever with thrombocytopenia syndrome bunyavirus. Int J Infect Dis 2013;17(3):e206 − 8. http://dx.doi.org/10.1016/j.ijid.2012.11.006CrossRef
[45] Hu B, Cai K, Liu M, Li WJ, Xu JQ, Qiu F, et al. Laboratory detection and molecular phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in Hubei Province, central China. Arch Virol 2018;163(12):3243 − 54. http://dx.doi.org/10.1007/s00705-018-3993-5CrossRef
[46] Jalal S, Hwang SY, Kim CM, Kim DM, Yun NR, Seo JW, et al. Comparison of RT-PCR, RT-nested PCRs, and real-time PCR for diagnosis of severe fever with thrombocytopenia syndrome: a prospective study. Sci Rep 2021;11(1):16764. http://dx.doi.org/10.1038/s41598-021-96066-4CrossRef
[47] Li ZF, Cui LB, Zhou MH, Qi X, Bao CJ, Hu JL, et al. Development and application of a one-step real-time RT-PCR using a minor-groove-binding probe for the detection of a novel bunyavirus in clinical specimens. J Med Virol 2013;85(2):370 − 7. http://dx.doi.org/10.1002/jmv.23415CrossRef
[48] Zhu YY, Wu HY, Gao J, Zhou X, Zhu RY, Zhang CZ, et al. Two confirmed cases of severe fever with thrombocytopenia syndrome with pneumonia: implication for a family cluster in East China. BMC Infect Dis 2017;17(1):537. http://dx.doi.org/10.1186/s12879-017-2645-9CrossRef
[49] Tian W, Ren XX, Gao X, Zhang YY, Chen ZH, Zhang W. Accuracy of reverse-transcription polymerase chain reaction and loop-mediated isothermal amplification in diagnosing severe fever with thrombocytopenia syndrome: A systematic review and meta-analysis. J Med Virol 2022;94(12):5922 − 32. http://dx.doi.org/10.1002/jmv.28068CrossRef
[50] Xu HH, Zhang L, Shen GQ, Feng C, Wang XY, Yan J, et al. Establishment of a novel one-step reverse transcription loop-mediated isothermal amplification assay for rapid identification of RNA from the severe fever with thrombocytopenia syndrome virus. J Virol Methods 2013;194(1 − 2):21 − 5. http://dx.doi.org/10.1016/j.jviromet.2013.07.037CrossRef
[51] Cui LB, Ge YY, Qi X, Xu GL, Li HJ, Zhao KC, et al. Detection of severe fever with thrombocytopenia syndrome virus by reverse transcription-cross-priming amplification coupled with vertical flow visualization. J Clin Microbiol 2012;50(12):3881 − 5. http://dx.doi.org/10.1128/JCM.01931-12CrossRef
[52] Huang MQ, Liu SH, Xu YN, Li AQ, Wu W, Liang MF, et al. CRISPR/Cas12a technology combined with RPA for rapid and portable SFTSV detection. Front Microbiol 2022;13:754995. http://dx.doi.org/10.3389/fmicb.2022.754995CrossRef
[53] Yun SM, Lee YJ, Choi W, Kim HC, Chong ST, Chang KS, et al. Molecular detection of severe fever with thrombocytopenia syndrome and tick borne encephalitis viruses in ixodid ticks collected from vegetation, Republic of Korea, 2014. Ticks Tick Borne Dis 2016;7(5):970 − 8. http://dx.doi.org/10.1016/j.ttbdis.2016.05.003CrossRef
[54] Park SW, Ryou J, Choi WY, Han MG, Lee WJ. Epidemiological and clinical features of severe fever with thrombocytopenia syndrome during an outbreak in South Korea, 2013-2015. Am J Trop Med Hyg 2016;95(6):1358 − 61. http://dx.doi.org/10.4269/ajtmh.16-0251CrossRef
[55] Yoshikawa T, Shimojima M, Fukushi S, Tani H, Fukuma A, Taniguchi S, et al. Phylogenetic and geographic relationships of severe fever with thrombocytopenia syndrome virus in China, South Korea, and Japan. J Infect Dis 2015;212(6):889 − 98. http://dx.doi.org/10.1093/infdis/jiv144CrossRef
[56] Zeng PB, Yang ZD, Bakkour S, Wang BJ, Qing S, Wang JX, et al. Development and validation of a real-time reverse transcriptase PCR assay for sensitive detection of SFTSV. J Med Virol 2017;89(7):1131 − 8. http://dx.doi.org/10.1002/jmv.24760CrossRef
[57] Ishijima K, Tatemoto K, Park E, Kimura M, Fujita O, Taira M, et al. Lethal disease in dogs naturally infected with severe fever with thrombocytopenia syndrome virus. Viruses 2022;14(9):1963. http://dx.doi.org/10.3390/v14091963CrossRef
[58] Kang JG, Oh SS, Jo YS, Chae JB, Cho YK, Chae JS. Molecular detection of severe fever with thrombocytopenia syndrome virus in Korean domesticated pigs. Vector Borne Zoonotic Dis 2018;18(8):450 − 2. http://dx.doi.org/10.1089/vbz.2018.2310CrossRef
[59] Rim JM, Han SW, Cho YK, Kang JG, Choi KS, Jeong H, et al. Survey of severe fever with thrombocytopenia syndrome virus in wild boar in the Republic of Korea. Ticks Tick Borne Dis 2021;12(6):101813. http://dx.doi.org/10.1016/j.ttbdis.2021.101813CrossRef
[60] Gowen BB, Westover JB, Miao JX, Van Wettere AJ, Rigas JD, Hickerson BT, et al. Modeling severe fever with thrombocytopenia syndrome virus infection in golden Syrian hamsters: importance of STAT2 in preventing disease and effective treatment with favipiravir. J Virol 2017;91(3):e01942 − 16. http://dx.doi.org/10.1128/JVI.01942-16CrossRef
[61] Tani H, Fukuma A, Fukushi S, Taniguchi S, Yoshikawa T, Iwata-Yoshikawa N, et al. Efficacy of T-705 (Favipiravir) in the treatment of infections with lethal severe fever with thrombocytopenia syndrome virus. mSphere 2016;1(1):e00061 − 15. http://dx.doi.org/10.1128/mSphere.00061-15CrossRef
[62] Notomi T, Mori Y, Tomita N, Kanda H. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol 2015;53(1):1 − 5. http://dx.doi.org/10.1007/s12275-015-4656-9CrossRef
[63] Soroka M, Wasowicz B, Rymaszewska A. Loop-mediated isothermal amplification (LAMP): the better sibling of PCR? Cells 2021;10(8):1931. http://dx.doi.org/10.3390/cells10081931.http://dx.doi.org/10.3390/cells10081931
[64] Yang GL, Li B, Liu LZ, Huang WC, Zhang W, Liu YD. Development and evaluation of a reverse transcription loop-mediated isothermal amplification assay for rapid detection of a new SFTS bunyavirus. Arch Virol 2012;157(9):1779 − 83. http://dx.doi.org/10.1007/s00705-012-1348-1CrossRef
[65] Huang XY, Hu XN, Ma H, Du YH, Ma HX, Kang K, et al. Detection of new bunyavirus RNA by reverse transcription-loop-mediated isothermal amplification. J Clin Microbiol 2014;52(2):531 − 5. http://dx.doi.org/10.1128/JCM.01813-13CrossRef
[66] Lee JW, Won YJ, Kang LH, Lee SG, Park SW, Paik SY. Development of a real-time loop-mediated isothermal amplification method for the detection of severe fever with thrombocytopenia syndrome virus. J Microbiol 2020;58(8):711 − 5. http://dx.doi.org/10.1007/s12275-020-0109-1CrossRef
[67] Sano S, Fukushi S, Yamada S, Harada S, Kinoshita H, Sugimoto S, et al. Development of an RT-LAMP assay for the rapid detection of SFTS virus. Viruses 2021;13(4):693. http://dx.doi.org/10.3390/v13040693CrossRef
[68] Ishijima K, Yokono K, Park E, Taira M, Tatemoto K, Kuroda Y, et al. Simple and rapid detection of severe fever with thrombocytopenia syndrome virus in cats by reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay using a dried reagent. J Vet Med Sci 2023;85(3):329 − 33. http://dx.doi.org/10.1292/jvms.22-0523CrossRef
[69] Li J, Macdonald J, Von Stetten F. Review: a comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst 2019;144(1):31 − 67. http://dx.doi.org/10.1039/c8an01621fCrossRef
[70] Lobato IM, O'Sullivan CK. Recombinase polymerase amplification: basics, applications and recent advances. Trends Analyt Chem 2018;98:19 − 35. http://dx.doi.org/10.1016/j.trac.2017.10.015CrossRef
[71] Daher RK, Stewart G, Boissinot M, Bergeron MG. Recombinase polymerase amplification for diagnostic applications. Clin Chem 2016;62(7):947 − 58. http://dx.doi.org/10.1373/clinchem.2015.245829CrossRef
[72] James A, Macdonald J. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Rev Mol Diagn 2015;15(11):1475 − 89. http://dx.doi.org/10.1586/14737159.2015.1090877CrossRef
[73] Tan MY, Liao C, Liang LN, Yi XL, Zhou ZH, Wei GJ. Recent advances in recombinase polymerase amplification: principle, advantages, disadvantages and applications. Front Cell Infect Microbiol 2022;12:1019071. http://dx.doi.org/10.3389/fcimb.2022.1019071CrossRef
[74] Park BJ, Yoo JR, Heo ST, Kim M, Lee KH, Song YJ. A CRISPR-Cas12a-based?diagnostic method for Cas12a-based diagnostic method for multiple genotypes of severe fever with thrombocytopenia syndrome virus. PLoS Negl Trop Dis 2022;16(8):e0010666. http://dx.doi.org/10.1371/journal.pntd.0010666CrossRef
[75] Lee H, Kim EJ, Song JY, Choi JS, Lee JY, Cho IS, et al. Development and evaluation of a competitive enzyme-linked immunosorbent assay using a monoclonal antibody for diagnosis of severe fever with thrombocytopenia syndrome virus in bovine sera. J Vet Sci 2016;17(3):307 − 14. http://dx.doi.org/10.4142/jvs.2016.17.3.307CrossRef
[76] Liu Y, Li Q, Hu WF, Wu JB, Wang YB, Mei L, et al. Person-to-person transmission of severe fever with thrombocytopenia syndrome virus. Vector Borne Zoonotic Dis 2012;12(2):156 − 60. http://dx.doi.org/10.1089/vbz.2011.0758CrossRef
[77] Yu MA, Jeong HW, Park SJ, Kim YI, Kwon HI, Kim EH, et al. Evaluation of two different enzyme-linked immunosorbent assay for severe fever with thrombocytopenia syndrome virus diagnosis. Clin Exp Vaccine Res 2018;7(1):82 − 6. http://dx.doi.org/10.7774/cevr.2018.7.1.82CrossRef
[78] Tran XC, Kim SH, Lee JE, Kim SH, Kang SY, Binh ND, et al. Serological evidence of severe fever with thrombocytopenia syndrome virus and IgM positivity were identified in healthy residents in Vietnam. Viruses 2022;14(10):2280. http://dx.doi.org/10.3390/v14102280CrossRef
[79] Lundu T, Tsuda Y, Ito R, Shimizu K, Kobayashi S, Yoshii K, et al. Targeting of severe fever with thrombocytopenia syndrome virus structural proteins to the ERGIC (endoplasmic reticulum Golgi intermediate compartment) and Golgi complex. Biomed Res 2018;39(1):27 − 38. http://dx.doi.org/10.2220/biomedres.39.27CrossRef
[80] Yu FX, Du YH, Huang XY, Ma H, Xu BL, Adungo F, et al. Application of recombinant severe fever with thrombocytopenia syndrome virus nucleocapsid protein for the detection of SFTSV-specific human IgG and IgM antibodies by indirect ELISA. Virol J 2015;12:117. http://dx.doi.org/10.1186/s12985-015-0350-0CrossRef
[81] Duan YQ, Wu W, Zhao QZ, Liu SH, Liu HY, Huang MQ, et al. Enzyme-antibody-modified gold nanoparticle probes for the ultrasensitive detection of nucleocapsid protein in SFTSV. Int J Environ Res Public Health 2020;17(12):4427. http://dx.doi.org/10.3390/ijerph17124427CrossRef