[1] Cuervo-Parra JA, Cortés TR, Ramirez-Lepe M. Mosquito-borne diseases, pesticides used for mosquito control, and development of resistance to insecticides. In: Trdan S, editor. Insecticides resistance. Rijcka: IntechOpen, 2016, 111-34. https://www.intechopen.com/chapters/49257.https://www.intechopen.com/chapters/49257
[2] Castro MC, Wilson ME, Bloom DE. Disease and economic burdens of dengue. Lancet Infect Dis 2017;17(3):e70-8. http://dx.doi.org/10.1016/S1473-3099(16)30545-XCrossRef
[3] Puntasecca CJ, King CH, LaBeaud AD. Measuring the global burden of chikungunya and Zika viruses: a systematic review. PLoS Negl Trop Dis 2021;15(3):e0009055. http://dx.doi.org/10.1371/journal.pntd.0009055CrossRef
[4] Pielnaa P, Al-Saadawe M, Saro A, Dama MF, Zhou M, Huang YX, et al. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology 2020;543:34-42. http://dx.doi.org/10.1016/j.virol.2020.01.015CrossRef
[5] Wilder-Smith A, Chang CR, Leong WY. Zika in travellers 1947–2017: a systematic review. J Travel Med 2018;25(1):1-10. http://dx.doi.org/10.1093/jtm/tay044CrossRef
[6] Wang J, Xu HB, Song S, Cheng R, Fan N, Fu SH, et al. Emergence of Zika Virus in Culex tritaeniorhynchus and Anopheles sinensis mosquitoes in China. Virol Sin 2021;36(1):33-42. http://dx.doi.org/10.1007/s12250-020-00239-wCrossRef
[7] Zhou CM, Liu JW, Qi R, Fang LZ, Qin XR, Han HJ, et al. Emergence of Zika virus infection in China. PLoS Negl Trop Dis 2020;4(5):e0008300. http://dx.doi.org/10.1371/journal.pntd.0008300CrossRef
[8] Su JL, Li S, Hu XD, Yu XL, Wang YY, Liu PP, et al. Duck egg-drop syndrome caused by BYD virus, a new Tembusu-related flavivirus. PLoS One 2011;6(3):e18106. http://dx.doi.org/10.1371/journal.pone.0018106CrossRef
[9] Yu GL, Lin Y, Tang Y, Diao YX. Evolution of Tembusu virus in ducks, chickens, geese, sparrows, and mosquitoes in Northern China. Viruses 2018;10(9):485. http://dx.doi.org/10.3390/v10090485CrossRef
[10] Fang Y, Zhang W, Xue JB, Zhang Y. Monitoring mosquito-borne arbovirus in various insect regions in China in 2018. Front Cell Infect Microbiol 2021;11:640993. http://dx.doi.org/10.3389/fcimb.2021.640993CrossRef
[11] Yang T, Li R, Hu Y, Yang L, Zhao D, Du L, et al. An outbreak of Getah virus infection among pigs in China, 2017. Transbound Emerg Dis 2018;65(3):632-7. http://dx.doi.org/10.1111/tbed.12867CrossRef
[12] Prow NA, Mah MG, Deerain JM, Warrilow D, Colmant AMG, O'Brien CA, et al. New genotypes of Liao ning virus (LNV) in Australia exhibit an insect-specific phenotype. J Gen Virol 2018;99(4):596-609. http://dx.doi.org/10.1099/jgv.0.001038CrossRef
[13] Attoui H, Jaafar FM, Belhouchet M, Tao SJ, Chen BQ, Liang GD, et al. Liao ning virus, a new Chinese seadornavirus that replicates in transformed and embryonic mammalian cells. J Gen Virol 2006;87(Pt 1):199-208. http://dx.doi.org/10.1099/vir.0.81294-0CrossRef
[14] Moureau G, Cook S, Lemey P, Nougairede A, Forrester NL, Khasnatinov M, et al. New insights into flavivirus evolution, taxonomy and biogeographic history, extended by analysis of canonical and alternative coding sequences. PLoS One 2015;10(2):e0117849. http://dx.doi.org/10.1371/journal.pone.0117849CrossRef
[15] Fang Y, Zhang Y, Zhou ZB, Shi WQ, Xia S, Li YY, et al. Co-circulation of Aedes flavivirus, Culex flavivirus, and Quang Binh virus in Shanghai, China. Infect Dis Poverty 2018;7:75. http://dx.doi.org/10.1186/s40249-018-0457-9CrossRef
[16] Fang Y, Li XS, Zhang W, Xue JB, Wang JZ, Yin SQ, et al. Molecular epidemiology of mosquito-borne viruses at the China-Myanmar border: discovery of a potential epidemic focus of Japanese encephalitis. Infect Dis Poverty 2021;10(1):57. http://dx.doi.org/10.1186/s40249-021-00838-zCrossRef
[17] Patterson EI, Villinger J, Muthoni JN, Dobel-Ober L, Hughes GL. Exploiting insect-specific viruses as a novel strategy to control vector-borne disease. Curr Opin Insect Sci 2020;39:50-6. http://dx.doi.org/10.1016/j.cois.2020.02.005CrossRef
[18] Newman CM, Cerutti F, Anderson TK, Hamer GL, Walker ED, Kitron UD, et al. Culex flavivirus and West Nile virus mosquito coinfection and positive ecological association in Chicago, United States. Vector Borne Zoonotic Dis 2011;11(8):1099-105. http://dx.doi.org/10.1089/vbz.2010.0144CrossRef
[19] Goenaga S, Kenney JL, Duggal NK, Delorey M, Ebel GD, Zhang B, et al. Potential for Co-infection of a mosquito-specific flavivirus, Nhumirim Virus, to block West Nile virus transmission in mosquitoes. Viruses 2015;7(11):5801-12. http://dx.doi.org/10.3390/v7112911CrossRef
[20] Romo H, Kenney JL, Blitvich BJ, Brault AC. Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus. Emerg Microbes Infect 2018;7(1):181. http://dx.doi.org/10.1038/s41426-018-0180-4CrossRef
[21] Farfan-Ale JA, Loroño-Pino MA, Garcia-Rejon JE, Hovav E, Powers AM, Lin M, et al. Detection of RNA from a novel West Nile-like virus and high prevalence of an insect-specific flavivirus in mosquitoes in the Yucatan Peninsula of Mexico. Am J Trop Med Hyg 2009;80(1):85-95. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663380/.CrossRef