[1] Wang TG, Lu JL, Shi LX, Chen G, Xu M, Xu Y, et al. Association of insulin resistance and β-cell dysfunction with incident diabetes among adults in China: a nationwide, population-based, prospective cohort study. Lancet Diabetes Endocrinol 2020;8(2):115 − 24. http://dx.doi.org/10.1016/S2213-8587(19)30425-5CrossRef
[2] Kodama K, Tojjar D, Yamada S, Toda K, Patel CJ, Butte AJ. Ethnic differences in the relationship between insulin sensitivity and insulin response: a systematic review and meta-analysis. Diabetes Care 2013;36(6):1789 − 96. http://dx.doi.org/10.2337/dc12-1235CrossRef
[3] Møller JB, Pedersen M, Tanaka H, Ohsugi M, Overgaard RV, Lynge J, et al. Body composition is the main determinant for the difference in type 2 diabetes pathophysiology between Japanese and Caucasians. Diabetes Care 2014;37(3):796 − 804. http://dx.doi.org/10.2337/dc13-0598CrossRef
[4] Wang TG, Zhao ZY, Wang GX, Li Q, Xu Y, Li M, et al. Age-related disparities in diabetes risk attributable to modifiable risk factor profiles in Chinese adults: a nationwide, population-based, cohort study. Lancet Healthy Longev 2021;2(10):e618 − 28. http://dx.doi.org/10.1016/S2666-7568(21)00177-XCrossRef
[5] Wang TG, Lu JL, Xu Y, Li M, Sun JC, Zhang J, et al. Circulating prolactin associates with diabetes and impaired glucose regulation: a population-based study. Diabetes Care 2013;36(7):1974 − 80. http://dx.doi.org/10.2337/dc12-1893CrossRef
[6] Wang TG, Huang T, Heianza Y, Sun DJY, Zheng Y, Ma WJ, et al. Genetic susceptibility, change in physical activity, and long-term weight gain. Diabetes 2017;66(10):2704 − 12. http://dx.doi.org/10.2337/db17-0071CrossRef
[7] Wang TG, Heianza Y, Sun DJY, Zheng Y, Huang T, Ma WJ, et al. Improving fruit and vegetable intake attenuates the genetic association with long-term weight gain. Am J Clin Nutr 2019;110(3):759 − 68. http://dx.doi.org/10.1093/ajcn/nqz136CrossRef
[8] Wang TG, Heianza Y, Sun DJY, Huang T, Ma WJ, Rimm EB, et al. Improving adherence to healthy dietary patterns, genetic risk, and long term weight gain: gene-diet interaction analysis in two prospective cohort studies. BMJ 2018;360:j5644. http://dx.doi.org/10.1136/bmj.j5644CrossRef
[9] Wang B, Li M, Zhao ZY, Lu JL, Chen YH, Xu Y, et al. Urinary bisphenol A concentration and glucose homeostasis in non-diabetic adults: a repeated-measures, longitudinal study. Diabetologia 2019;62(9):1591 − 600. http://dx.doi.org/10.1007/s00125-019-4898-xCrossRef
[10] Wang TG, Li M, Chen B, Xu M, Xu Y, Huang Y, et al. Urinary bisphenol A (BPA) concentration associates with obesity and insulin resistance. J Clin Endocrinol Metab 2012;97(2):E223 − 7. http://dx.doi.org/10.1210/jc.2011-1989CrossRef
[11] Ning G, Bi YF, Wang TG, Xu M, Xu Y, Huang Y, et al. Relationship of urinary bisphenol A concentration to risk for prevalent type 2 diabetes in Chinese adults: a cross-sectional analysis. Ann Intern Med 2011;155(6):368 − 74. http://dx.doi.org/10.7326/0003-4819-155-6-201109200-00005CrossRef
[12] Bi YF, Wang WQ, Xu M, Wang TG, Lu JL, Xu Y, et al. Diabetes genetic risk score modifies effect of Bisphenol A exposure on deterioration in glucose metabolism. J Clin Endocrinol Metab 2016;101(1):143 − 50. http://dx.doi.org/10.1210/jc.2015-3039CrossRef
[13] Wang TG, Xu M, Bi YF, Ning G. Interplay between diet and genetic susceptibility in obesity and related traits. Front Med 2018;12(6):601 − 7. http://dx.doi.org/10.1007/s11684-018-0648-6CrossRef
[14] Wang TG, Liu HK, Wang LS, Huang T, Li WQ, Zheng Y, et al. Zinc-associated variant in SLC30A8 gene interacts with gestational weight gain on postpartum glycemic changes: a longitudinal study in women with prior gestational diabetes mellitus. Diabetes 2016;65(12):3786 − 93. http://dx.doi.org/10.2337/db16-0730CrossRef
[15] Wang TG, Zhao ZY, Yu XF, Zeng TS, Xu M, Xu Y, et al. Age-specific modifiable risk factor profiles for cardiovascular disease and all-cause mortality: a nationwide, population-based, prospective cohort study. Lancet Reg Health West Pac 2021;17:100277. http://dx.doi.org/10.1016/j.lanwpc.2021.100277CrossRef
[16] Wang TG, Li M, Zeng TS, Hu RY, Xu Y, Xu M, et al. Association between insulin resistance and cardiovascular disease risk varies according to glucose tolerance status: a nationwide prospective cohort study. Diabetes Care 2022;45(8):1863 − 72. http://dx.doi.org/10.2337/dc22-0202CrossRef
[17] Wang TG, Lu JL, Su Q, Chen YH, Bi YF, Mu YM, et al. Ideal cardiovascular health metrics and major cardiovascular events in patients with prediabetes and diabetes. JAMA Cardiol 2019;4(9):874 − 83. http://dx.doi.org/10.1001/jamacardio.2019.2499CrossRef
[18] Ye CJ, Kong LJ, Wang YY, Lin H, Wang SY, Zhao ZY, et al. Causal associations between age at diagnosis of diabetes and cardiovascular outcomes: a Mendelian randomization study. J Clin Endocrinol Metab 2023;108(5):1202 − 14. http://dx.doi.org/10.1210/clinem/dgac658CrossRef
[19] Ye CJ, Kong LJ, Wang YY, Zheng J, Xu M, Xu Y, et al. Causal associations of sarcopenia-related traits with cardiometabolic disease and Alzheimer's disease and the mediating role of insulin resistance: a Mendelian randomization study. Aging Cell 2023;22(9):e13923. http://dx.doi.org/10.1111/ACEL.13923CrossRef
[20] Kong LJ, Ye CJ, Wang YY, Hou TZC, Zheng J, Zhao ZY, et al. Genetic evidence for causal effects of socioeconomic, lifestyle, and cardiometabolic factors on epigenetic-age acceleration. J Gerontol: Ser A 2023;78(7):1083 − 91. http://dx.doi.org/10.1093/GERONA/GLAD078CrossRef
[21] Ye CJ, Kong LJ, Wang YY, Dou C, Zheng J, Xu M, et al. Mendelian randomization evidence for the causal effects of socio-economic inequality on human longevity among Europeans. Nat Hum Behav 2023;7(8):1357 − 70. http://dx.doi.org/10.1038/S41562-023-01646-1CrossRef
[22] Rosengren A, Smyth A, Rangarajan S, Ramasundarahettige C, Bangdiwala SI, AlHabib KF, et al. Socioeconomic status and risk of cardiovascular disease in 20 low-income, middle-income, and high-income countries: the Prospective Urban Rural Epidemiologic (PURE) study. Lancet Glob Health 2019;7(6):e748 − 60. http://dx.doi.org/10.1016/S2214-109X(19)30045-2CrossRef
[23] Wang WJ. Interpretation of the diabetes prevention and control action of the healthy China initiative 2019-2030. China CDC Wkly 2020;2(9):143 − 5. http://dx.doi.org/10.46234/ccdcw2020.039CrossRef
[24] Wang LS, Wang HJ, Wang ZH, Jiang HR, Li WY, Wang SSZ, et al. Interpretation of healthy diet campaign in healthy China initiative 2019-2030. China CDC Wkly 2021;3(16):346 − 9. http://dx.doi.org/10.46234/ccdcw2021.092CrossRef
[25] Bogar K, Brensinger CM, Hennessy S, Flory JH, Bell ML, Shi C, et al. Climate change and ambient temperature extremes: association with serious hypoglycemia, diabetic ketoacidosis, and sudden cardiac arrest/ventricular arrhythmia in people with type 2 diabetes. Diabetes Care 2022;45(11):e171 − 3. http://dx.doi.org/10.2337/dc22-1161CrossRef
[26] Lind PM, Lind L. Endocrine-disrupting chemicals and risk of diabetes: an evidence-based review. Diabetologia 2018;61(7):1495 − 502. http://dx.doi.org/10.1007/s00125-018-4621-3CrossRef
[27] Longo VD, Anderson RM. Nutrition, longevity and disease: from molecular mechanisms to interventions. Cell 2022;185(9):1455 − 70. http://dx.doi.org/10.1016/j.cell.2022.04.002CrossRef
[28] Zhou WY, Sailani MR, Contrepois K, Zhou YJ, Ahadi S, Leopold SR, et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 2019;569(7758):663 − 71. http://dx.doi.org/10.1038/s41586-019-1236-xCrossRef
[29] Kreitmaier P, Katsoula G, Zeggini E. Insights from multi-omics integration in complex disease primary tissues. Trends Genet 2023;39(1):46 − 58. http://dx.doi.org/10.1016/j.tig.2022.08.005CrossRef
[30] Singhal K, Azizi S, Tu T, Mahdavi SS, Wei J, Chung HW, et al. Large language models encode clinical knowledge. Nature 2023;620(7972):172 − 180. http://dx.doi.org/10.1038/s41586-023-06291-2CrossRef