[1] GBD 2016 Occupational Risk Factors Collaborators. Global and regional burden of disease and injury in 2016 arising from occupational exposures: a systematic analysis for the Global Burden of Disease Study 2016. Occup Environ Med 2020;77(3):133 − 41. http://dx.doi.org/10.1136/oemed-2019-106008CrossRef
[2] Zhou JN, Shi ZH, Zhou LF, Hu Y, Zhang MB. Occupational noise-induced hearing loss in China: a systematic review and meta-analysis. BMJ Open 2020;10(9):e039576. http://dx.doi.org/10.1136/bmjopen-2020-039576CrossRef
[3] Sun X. Occupational noise exposure and worker’s health in China. China CDC Wkly 2021;3(18):375 − 77. http://dx.doi.org/10.46234/ccdcw2021.102CrossRef
[4] Chen YL, Zhang MB, Qiu W, Sun X, Wang X, Dong YW, et al. Prevalence and determinants of noise-induced hearing loss among workers in the automotive industry in China: a pilot study. J Occup Health 2019;61(5):387 − 97. http://dx.doi.org/10.1002/1348-9585.12066CrossRef
[5] Suter AH. Occupational hearing loss from non-Gaussian noise. Semin Hear 2017;38(3):225 − 62. http://dx.doi.org/10.1055/s-0037-1603726CrossRef
[6] Zhang MB, Qiu W, Xie HW, Xu XH, Shi ZH, Gao XJ, et al. Applying kurtosis as an indirect metric of noise temporal structure in the assessment of hearing loss associated with occupational complex noise exposure. Ear Hear 2021;42(6):1782 − 96. http://dx.doi.org/10.1097/AUD.0000000000001068CrossRef
[7] Hamernik RP, Qiu W. Energy-independent factors influencing noise-induced hearing loss in the chinchilla model. J Acoust Soc Am 2001;110(6):3163 − 8. http://dx.doi.org/10.1121/1.1414707CrossRef
[8] Ministry of Health of the People's Republic of China. GBZ 2.2-2007 Occupational exposure limits for hazardous agents in the workplace, Part 2: Physical agents. Beijing: People's Medical Publishing House, 2007. (In Chinese). 
[9] Ministry of Health of the People's Republic of China. GBZ/T 189.8-2007 Measurement of physical agents in workplace, Part 8: Noise. Beijing: Standards Press of China, 2007. (In Chinese). 
[10] Henderson D, Hamernik RP. Impulse noise: critical review. J Acoust Soc Am 1986;80(2):569 − 84. http://dx.doi.org/10.1121/1.394052CrossRef
[11] Qiu W, Zhang MB, Hu WJ, Sun X. Application of the kurtosis metric to the assessment of hearing loss associated with occupational noise exposure. China CDC Wkly 2021;3(18):390 − 93. http://dx.doi.org/10.46234/ccdcw2021.105CrossRef
[12] Qiu W, Hamernik RP, Davis RI. The value of a kurtosis metric in estimating the hazard to hearing of complex industrial noise exposures. J Acoust Soc Am 2013;133(5):2856 − 66. http://dx.doi.org/10.1121/1.4799813CrossRef
[13] Müller RAJ, Von Benda-Beckmann AM, Halvorsen MB, Ainslie MA. Application of kurtosis to underwater sound. J Acoust Soc Am 2020;148(2):780. http://dx.doi.org/10.1121/10.0001631CrossRef
[14] Zhang MB, Hu Y, Qiu W, Gao XJ, Zeng AK, Shi ZH, et al. Developing a guideline for measuring workplace non-Gaussian noise exposure based on kurtosis adjustment of noise level in China. Front Public Health 2022;10:1003203. http://dx.doi.org/10.3389/fpubh.2022.1003203CrossRef
[15] Zhang MB, Gao XJ, Murphy WJ, Kardous CA, Sun X, Hu WJ, et al. Estimation of occupational noise-induced hearing loss using kurtosis-adjusted noise exposure levels. Ear Hear 2022;43(6):1881 − 92. http://dx.doi.org/10.1097/AUD.0000000000001223CrossRef
[16] Tian Y, Ding WX, Zhang MB, Zhou TS, Li JS, Qiu W. Analysis of correlation between window duration for kurtosis computation and accuracy of noise-induced hearing loss prediction. J Acoust Soc Am 2021;149(4):2367 − 76. http://dx.doi.org/10.1121/10.0003954CrossRef
[17] ISO (International Standard Organization). ISO 1999:2013. Acoustics-estimation of noise-induced hearing loss. Geneva, Switzerland: International Organization for Standardization, 2013. https://www.iso.org/standard/45103.html.https://www.iso.org/standard/45103.html
[18] International Standard Organization (ISO). ISO 1999:1990. Acoustics-determination of occupational noise exposure and estimation of noise-induced hearing impairment. Geneva, Switzerland: International Organization for Standardization, 2013. https://www.iso.org/standard/6759.html.https://www.iso.org/standard/6759.html
[19] HSE (Health and Safety Executive). The control of noise at work regulations 2005: guidance on regulations. UK: HSE; 2005. HMSO PublicationNo1643. https://www.legislation.gov.uk/uksi/2005/1643/contents/made.https://www.legislation.gov.uk/uksi/2005/1643/contents/made
[20] National Institute for Occupational Safety and Health (NIOSH). Criteria for a recommended standard: occupational noise exposure. Cincinnati: NIOSH; 1998. DHHS (NIOSH) Publication No. 98-126. https://www.cdc.gov/niosh/docs/98-126/pdfs/98-126.pdf?id=10.26616/NIOSHPUB98126.https://www.cdc.gov/niosh/docs/98-126/pdfs/98-126.pdf?id=10.26616/NIOSHPUB98126
[21] Davis RR, Clavier O. Impulsive noise: a brief review. Hear Res 2017;349:34 − 6. http://dx.doi.org/10.1016/j.heares.2016.10.020CrossRef
[22] Lempert B. ISO estimates of noise-induced hearing impairment. J Acoust Soc Am 2019;145(6):3640. http://dx.doi.org/10.1121/1.5111862CrossRef
[23] Hamernik RP, Qiu W, Davis B. The effects of the amplitude distribution of equal energy exposures on noise-induced hearing loss: the kurtosis metric. J Acoust Soc Am 2003;114(1):386 − 95. http://dx.doi.org/10.1121/1.1582446CrossRef
[24] Davis RI, Qiu W, Hamernik RP. Role of the kurtosis statistic in evaluating complex noise exposures for the protection of hearing. Ear Hear 2009;30(5):628 − 34. http://dx.doi.org/10.1097/AUD.0b013e3181b527a8CrossRef
[25] Zhang MB, Xie HW, Zhou JN, Sun X, Hu WJ, Zou H, et al. New metrics needed in the evaluation of hearing hazard associated with industrial noise exposure. Ear Hear 2021;42(2):290 − 300. http://dx.doi.org/10.1097/AUD.0000000000000942CrossRef
[26] Shi ZH, Zhou JN, Huang YW, Hu Y, Zhou LF, Shao YQ, et al. Occupational hearing loss associated with non-Gaussian noise: a systematic review and meta-analysis. Ear Hear 2021;42(6):1472 − 84. http://dx.doi.org/10.1097/AUD.0000000000001060CrossRef
[27] Zhou LF, Ruan XY, Wang TS, Xie HW, Hu Y, Shi ZH, et al. Epidemiological characteristics of hearing loss associated with noise temporal structure among manufacturing workers. Front Integr Neurosci 2022;16:978213. http://dx.doi.org/10.3389/fnint.2022.978213CrossRef
[28] Zhang MB, Gao XJ, Qiu W, Sun X, Hu WJ. The role of the kurtosis metric in evaluating the risk of occupational hearing loss associated with complex noise — Zhejiang Province, China, 2010-2019. China CDC Wkly 2021;3(18):378 − 82. http://dx.doi.org/10.46234/ccdcw2021.103CrossRef
[29] Shi ZH, Wang X, Gao XJ, Xie HW, Zhou LF, Zhang MB. Assessment of occupational hearing loss associated with non-Gaussian noise using the kurtosis-adjusted cumulative noise exposure metric: a cross-sectional survey. Front Psychol 2022;13:870312. http://dx.doi.org/10.3389/fpsyg.2022.870312CrossRef
[30] Xie HW, Qiu W, Heyer NJ, Zhang MB, Zhang P, Zhao YM, et al. The use of the kurtosis-adjusted cumulative noise exposure metric in evaluating the hearing loss risk for complex noise. Ear Hear 2016;37(3):312 − 23. http://dx.doi.org/10.1097/AUD.0000000000000251CrossRef
[31] Zhao YM, Qiu W, Zeng L, Chen SS, Cheng XR, Davis RI, et al. Application of the kurtosis statistic to the evaluation of the risk of hearing loss in workers exposed to high-level complex noise. Ear Hear 2010;31(4):527 − 32. http://dx.doi.org/10.1097/AUD.0b013e3181d94e68CrossRef
[32] Goley GS, Song WJ, Kim JH. Kurtosis corrected sound pressure level as a noise metric for risk assessment of occupational noises. J Acoust Soc Am 2011;129(3):1475 − 81. http://dx.doi.org/10.1121/1.3533691CrossRef