[1] World Health Organization. Global action plan on antimicrobial resistance. Geneva: World Health Organization. 2015. https://fctc.who.int/publications/i/item/global-action-plan-on-antimicrobial-resistance.https://fctc.who.int/publications/i/item/global-action-plan-on-antimicrobial-resistance
[2] Wu D, Walsh TR, Wu YN. World antimicrobial awareness week 2021-spread awareness, stop resistance. China CDC Wkly 2021;3(47):987 − 93. http://dx.doi.org/10.46234/ccdcw2021.241CrossRef
[3] Li JY, Bi ZW, Ma SZ, Chen BL, Cai C, He JJ, et al. Inter-host transmission of carbapenemase-producing Escherichia coli among humans and backyard animals. Environ Health Perspect 2019;127(10):107009. http://dx.doi.org/10.1289/EHP5251CrossRef
[4] He T, Wei RC, Zhang LL, Gong L, Zhu L, Gu JL, et al. Dissemination of the tet(X)-variant genes from layer farms to manure-receiving soil and corresponding lettuce. Environ Sci Technol 2021;55(3):1604 − 14. http://dx.doi.org/10.1021/acs.est.0c05042CrossRef
[5] Jiang XL, Ellabaan MMH, Charusanti P, Munck C, Blin K, Tong YJ, et al. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat Commun 2017;8:15784. http://dx.doi.org/10.1038/ncomms15784CrossRef
[6] Wright GD. Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 2010;13(5):589-94. http://dx.doi.org/10.1016/j.mib.2010.08.005.http://dx.doi.org/10.1016/j.mib.2010.08.005
[7] D'Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, et al. Antibiotic resistance is ancient. Nature 2011;477(7365):457 − 61. http://dx.doi.org/10.1038/nature10388CrossRef
[8] World Health Organization. Technical brief on water, sanitation, hygiene and wastewater management to prevent infections and reduce the spread of antimicrobial resistance. Geneva: World Health Organization. 2020. https://www.who.int/publications/i/item/9789240006416.https://www.who.int/publications/i/item/9789240006416
[9] Zhang Y, Yang M, Liu MM, Dong L, Ren LL. Antibiotic pollution from Chinese drug manufacturing-antibiotic resistance. Toxicol Lett 2012;211 Suppl 1:S16. http://dx.doi.org/10.1016/j.toxlet.2012.03.076.http://dx.doi.org/10.1016/j.toxlet.2012.03.076
[10] AMR Industry Alliance. Minimizing risk of developing antibiotic resistance and aquatic ecotoxicity in the environment resulting from the manufacturing of human antibiotics. Geneva: AMR Industry Alliance 2022. https://www.amrindustryalliance.org/wp-content/uploads/2022/06/AMRIA_Antibiotic-Manufacturing-Standard_EMBARGOED-UNTIL-JUN-14-8-am-EDT.pdf
[11] Bengtsson-Palme J, Larsson DGJ. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ Int 2016;86:140 − 9. http://dx.doi.org/10.1016/j.envint.2015.10.015CrossRef
[12] Vestel J, Caldwell DJ, Tell J, Constantine L, Häner A, Hellstern J, et al. Default predicted no-effect target concentrations for antibiotics in the absence of data for the protection against antibiotic resistance and environmental toxicity. Integr Environ Assess Manag 2022;18(4):863 − 7. http://dx.doi.org/10.1002/ieam.4560CrossRef
[13] Tang M, Gu Y, Wei DB, Tian Z, Tian Y, Yang M, et al. Enhanced hydrolysis of fermentative antibiotics in production wastewater: hydrolysis potential prediction and engineering application. Chem Eng J 2020;391:12326. http://dx.doi.org/10.1016/j.cej.2019.123626CrossRef
[14] Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016;16(2):161 − 8. http://dx.doi.org/10.1016/S1473-3099(15)00424-7CrossRef
[15] Wang Y, Xu CY, Zhang R, Chen YQ, Shen YB, Hu FP, et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. Lancet Infect Dis 2020;20(10):1161 − 71. http://dx.doi.org/10.1016/S1473-3099(20)30149-3CrossRef
[16] Li D, Yu T, Zhang Y, Yang M, Li Z, Liu MM, et al. Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river. Appl Environ Microbiol 2010;76(11):3444 − 51. http://dx.doi.org/10.1128/AEM.02964-09CrossRef
[17] Shi YH, Tian Z, Gillings MR, Zhang Y, Zhang H, Huyan JQ, et al. Novel transposon Tn6433 variants accelerate the dissemination of tet(E) in Aeromonas in an aerobic biofilm reactor under oxytetracycline stresses. Environ Sci Technol 2020;54(11):6781 − 91. http://dx.doi.org/10.1021/acs.est.0c01272CrossRef
[18] Yi QZ, Zhang Y, Gao YX, Tian Z, Yang M. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: simultaneous reduction of COD and ARGs. Water Res 2017;110:211 − 7. http://dx.doi.org/10.1016/j.watres.2016.12.020CrossRef
[19] Tang M, Dou XM, Tian Z, Yang M, Zhang Y. Enhanced hydrolysis of streptomycin from production wastewater using CaO/MgO solid base catalysts. Chem Eng J 2019;355:586 − 93. http://dx.doi.org/10.1016/j.cej.2018.08.173CrossRef
[20] Han ZM, Feng HD, Luan X, Shen YP, Ren LR, Deng LJ, et al. Three-year consecutive field application of erythromycin fermentation residue following hydrothermal treatment: cumulative effect on soil antibiotic resistance genes. Engineering 2022;15:78 − 88. http://dx.doi.org/10.1016/j.eng.2022.05.011CrossRef
[21] Tian TT, Dai ST, Liu DJ, Wang Y, Qiao W, Yang M, et al. Occurrence and transfer characteristics of blaCTX-M genes among Escherichia coli in anaerobic digestion systems treating swine waste. Sci Total Environ 2022;834:155321. http://dx.doi.org/10.1016/j.scitotenv.2022.155321CrossRef
[22] Yang XX, Tian TT, Qiao W, Tian Z, Yang M, Zhang Y, et al. Prevalence and characterization of oxazolidinone and phenicol cross-resistance gene optrA in enterococci obtained from anaerobic digestion systems treating swine manure. Environ Pollut 2020;267:115540. http://dx.doi.org/10.1016/j.envpol.2020.115540CrossRef
[23] Dai ST, Liu DJ, Han ZM, Wang Y, Lu XF, Yang M, et al. Mobile tigecycline resistance gene tet(X4) persists with different animal manure composting treatments and fertilizer receiving soils. Chemosphere 2022;307:135866. http://dx.doi.org/10.1016/j.chemosphere.2022.135866CrossRef